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Abstract. We studied the field structure and 3-D propagation on diffraction of a multi circular segment-
shaped laser beam. Diffraction of a laser beam with the shape of the multi circular segments (two, four
and six) was investigated. We have observed for the first time the Mathieu–Gauss (MG)-like spatial modes
formation and its propagation in the slow-expansion mode. The fundamental difference between diffraction
of the multi-segments’ laser beams from the well-known MG beams is the large propagation distance
(meters) in the slow-expansion mode without using a focusing lens.

1 Introduction

This study was inspired by the surprising experimental
effect such as the development of the beam configuration
transmitting in a slow-expansion mode on diffraction of
a laser beam with the shape of a circular segment [1]. It
was thought that diffraction of such a beam produces the
Mathieu–Gauss (MG) beam-like structure. In this paper,
more universal experiment of the laser beam diffrac-
tion blocked by the multi segment-shaped aperture was
investigated.

Gutiérrez-Vega et al. [2] just proposed an explana-
tion of propagation-invariant optical fields (PIOFs). These
fields are well-defined by the Mathieu functions. In [3],
the authors first described the experimental observation
of Mathieu beams. In this framework, the ideal PIOFs,
more recently titled as Helmholtz–Gauss waves in general,
have been studied [4]. The author of the paper [5] pro-
posed to use an amplitude-type spatial light modulator to
load angular spectrum of Mathieu functions distribution
along a narrow annular pupil to produce various forms of
Mathieu beams. Bessel–Gauss beams represent a special
case of the MG beams when the focal distance of the ellip-
tical coordinates reduces to zero [6]. In [7], the authors
considered the MG beam diffraction. It was found that
the MG beam diffracts in a slow-expansion (if ω0 < 2/kt)
or a fast-expansion (if ω0 > 2/kt) modes, where kt is the
magnitude of the transverse component of the wave vec-
tor, ω0 is the waist radius of the Gaussian beam. We used
converted formulas θt < λ/πω0 (the slow-expansion mode)
and θt > λ/πω0 (the fast-expansion mode), where θt is the
diffraction angle [1].

In this paper, we report here for the first time the obser-
vation of the MG-like modes formation and its propaga-
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tion in the slow-expansion mode on diffraction of a laser
beam with the shape of the multi circular segments (two,
four and six). We have explored the light field on diffrac-
tion of the multi circular segment-shaped laser beam. The
experimental system and results will be defined in the next
section. The paper concludes with the discussion and con-
clusion sections.

2 Experiment

The optical scheme of the experimental setup is shown in
Figure 1. The experiment was performed by a Gaussian
laser beam, a beam diameter of 5 mm, and the wave-
length of 0.65µm. In the experiment, laser beams were
used consisting of two, four, and six circular segments
formed from the initial circular laser beam. As shown in
Figure 1, a blocking strip (ST, the strip width of 3 mm)
with sharp edges glued to a glass plate (GP) produces a
two segments-shaped laser beam. The square (SQ) and
hexagonal (H) blocking plates construct a truncated laser
beam with the shape of four and six circular segments (see
Fig. 1). Sharp-edge blocking plates glued to the plane-
parallel glass plates were positioned close to the laser
exit (L). Diffraction patterns were observed on a white
screen (S) located at different distances from the block-
ing plates and photographed with magnification using a
camera (C).

2.1 Numerical calculations

We used the Fresnel–Kirchhoff integral [8,9] to express the
complex amplitude:
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Fig. 1. Experimental setup: L – a laser, ST – a strip, SQ – a
square aperture, GP – a glass plate, H – a hexagon aperture,
DB – a diffracted beam, S – a white screen, DP – a diffraction
pattern, C – a camera.

U (xs, ys, zs) = −U0i

2λ

∫ ∫
xy

exp [ik (r + s)]
r·s

× [cos (n̄, r̄)− [cos (n̄, s̄)]] dxdy,

where U (xs, ys, zs) is the complex amplitude at the obser-
vation point, U0 is the field amplitude, λ is the wavelength,
n̄ (0, 0, 1) is the normal unit to the aperture plane, x, y are
coordinates of the aperture point. The vectors r̄ (0, 0, 1)
and s̄ (0, 0, 1), respectively, determine the position of the
light source and the observation point. The origin of the
reference system is aligned with the center of the aperture.

The integral has oscillating terms that lead to insta-
bility of the numerical solution. We solved this prob-
lem by increasing the number of nodes in the plane of
the aperture. The number of nodes for partitioning the
aperture was selected depending on the size of the aper-
ture and the distance to the observation plane. In cal-
culations 1000 × 1000 aperture nodes were used (for the
integration) for the aperture diameter of 5 mm. This num-
ber of nodes ensure the stability of the solution and the
required accuracy. A gradient scale presents the intensity
(in relative units) and the phase.

2.2 Experimental results

At the first stage of the experiments, 3-D diffraction
of a laser beam formed by two circular segments was
investigated. The experimental results are presented in
Figures 2a–2c, and the results of the numerical calcula-
tion are shown in Figures 2d–2f. The spatial structure (in
the xy-plane) of the diffraction of the laser beam dur-
ing propagation along the z-axis was studied at various

distances from the blocking aperture. xy-diffraction pat-
terns (Figs. 2a–2c) were obtained at distances of 150 mm,
200 mm and 300 mm from the blocking strip using the
optical scheme shown in Figure 1. The numerical cal-
culation presented in Figures 2d–2f, respectively, was
performed according to the procedure described in the
Section 2.1.

In the following experiments, 3-D diffraction of a
laser beam formed by four and six circular segments
was studied. The experimental results are presented in
Figures 3a–3c and 4a–4c, respectively, and the results of
the numerical calculation are shown in Figures 3d–3f and
4d–4f, respectively. xy-diffraction patterns (Figs. 3a–3c)
were obtained at distances of 300 cm, 350 cm and 400 cm
from the blocking plate (square), and the patterns shown
in Figures 4a–4c were obtained at distances of 330 cm,
410 cm and 490 cm from the blocking plate (hexagon)
(according to the optical scheme of Fig. 1). The numeri-
cal calculation (Figs. 3 and 4d–4f), respectively, was per-
formed according to the experimental conditions and to
the procedure described in Section 2.1.

In Figures 2g–4g the theoretical 3-D intensity distri-
butions along the xz-plane (y = 0) at different distances
from the blocking apertures are shown. Full width at half
maximum (FWHM) of the diffracted beams (dp) at cor-
responding distances (z) is presented in Table 1.

We use the formula d = λz/πω0 to estimate the cen-
tral band of the diffraction pattern for distances z shown
in Table 1 (ω0 = dp taking at distances of 150 mm and
500 mm, for a strip and a square, a hexagon, respectively).
As follows from the above calculations, the multi circular
segment-shaped laser beam diffracts in a slow-expansion
mode (dp � d).

The experimental results presented in Figures 3 and 4
are somewhat different from theoretical calculations. This
is because the calculations were performed under the
assumption of a circular shape of a laser beam. In the
experiment, the laser beam had a slightly elliptical shape.
The experimental results shown in Figure 2 are less sen-
sitive to the shape of the laser beam and the calculation
show quite good agreement with the experiment.

It should be noted that the results presented in
Figures 2–4 show that the laser beams shaped by two,
four and six circular segments diffracts in a slow-expansion
mode. The spatial structures of the diffracted beams are
quite different from the spatial modes of the Mathieu–
Gauss beam. Below we present the theoretical model to
investigate the structures of multi segment-shaped laser
beams.

2.3 Theoretical model

Figures 5A-a–5C-a show equivalent theoretical structures
of two, four and six segments. To obtain equivalent
arrangements, we used the segmentation by the narrow
vertical or horizontal stripes. As a result, each segment
radiating a diffracted wave can be represented as a combi-
nation of a rectangular slit (a virtual slit (VS)) and a nar-
row radiating circular slit having a complex configuration:
with a circular external arc and an internal arc formed by
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Fig. 2. (a)–(c) are the experimental diffraction patterns (DPs) obtained at distances of 150 mm, 200 mm and 300 mm from the
blocking strip, (d)–(f) are the theoretical DPs obtained by the numerical calculation at the same distances, (g) is the theoretical
3-D intensity distribution along the xz-plane (y = 0) at different distances from the blocking strip.

rectangular segments. Figure 5 shows the combinations:
A-a – two rectangular and 2 circular slits; in B-a – four
rectangular and 4 circular slits and C-a – six rectangular

and 6 circular slits. As a result, the diffraction pattern
obtained from two segments (Fig. 5A-a) can be consid-
ered as a superposition of two diffraction patterns: from
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Fig. 3. (a)–(c) are the experimental diffraction patterns (DPs) obtained at distances of 3000 mm, 3500 mm and 4000 mm from
the blocking square plate (SP), (d)–(f) are the theoretical DPs obtained by the numerical calculation at the same distances, (g)
is the theoretical 3-D intensity distribution along the xz-plane (y = 0) at different distances from the blocking SP.

a narrow circular aperture separated by a vertical strip,
and a diffraction pattern formed by the interference of two
vertical slits. Diffraction patterns obtained from four and
six slits (Figs. 5B-a and 5C-a) can be considered as super-
position of diffraction patterns from a circular aperture
separated by four and six absorbing strips and a diffrac-
tion pattern formed by the interference of four and six
slits, respectively.

Figures 5A-b and 5A-c present the results of numerical
simulations of diffraction patterns formed, respectively, by
two segments (b) and 2 radiating circular slits (c) shown
in Figure 5A-d. Figures 5B-b and 5B-c show the outcomes
of numerical simulations of diffraction patterns produced,

respectively, by four segments and 4 radiating circular
slits shown in Figure 5B-d. Figures 5C-b and 5C-c present
the results of numerical simulations of diffraction patterns
formed, respectively, by six segments and 6 radiating cir-
cular slits shown in Figure 5C-d.

To explain these results we apply the solution of the
3-D Helmholtz equation as the product of two func-
tions depending on the z-coordinate and coordinates (x, y)
[5,10]:

E (x, y, z) = Ez·Exy. (1)

The solution for Ez is trivial:

Ez = exp (ikzz) (2)
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Fig. 4. (a)–(c) are the experimental diffraction patterns (DPs) obtained at distances of 3300 mm, 4100 mm and 4900 mm from
the blocking hexagon plate (HP), (d)–(f) are the theoretical DPs obtained by the numerical calculation at the same distances,
(g) is the theoretical 3-D intensity distribution along the xz-plane (y = 0) at different distances from the blocking HP.

kz – axial wave number.
The equation for Exy in the elliptical-cylindrical coor-

dinate system has the form:

∂2E (ξ, η)
∂ξ2

+
∂2E (ξ, η)

∂η2
+
f2

λ2

[
ch2 (ξ)− cos2 (η)

]
E (ξ, η) = 0

(3)
where E (ξ, η) – an amplitude; ξ, η, z – elliptical coordi-
nates; f – half focal length in the elliptical-cylindrical
coordinate system.

The relationship between the Cartesian x, y, z coordi-
nates and the elliptical ones satisfy the relations:

x = f · cosh (ξ) · cos (η), y = f · sinh (ξ) · sin (η), z = z.
(4)

This form of record (HE) due to the possibility of sep-
aration of variables allows us to reduce the problem to
the solution of the canonical and modified Mathieu equa-
tions. In this case, the solution can be represented as the
product of the canonical and modified Mathieu functions
[11]:

Er (ξ, η) = Crcer (η, q) ·Jer (ξ, q) · exp
(
−x

2 + y2

ω2
0

)
(5)

Er (ξ, η) = Srser (η, q) ·Jor (ξ, q) · exp
(
−x

2 + y2

ω2
0

)
, (6)

where q = f2k2
t

4 – ellipticity factor; kt – radial
wave number; ω0 – waist radius of a Gauss beam;
cer (η, q) , Jer (ξ, q) – even angular and radial Mathieu
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Table 1.

Z, mm dp, mm d, mm

150 0.03 0.03
200 0.04 0.4
300 0.06 1.1

A strip 400 0.07 1.8
600 0.10 3.3
800 0.15 4.8
1000 0.19 6.3
500 0.05 0.05
1000 0.13 2.0

A square 2000 0.21 6.1
3000 0.33 10.2
3500 0.39 12.2
4000 0.50 14.2
500 0.06 0.06
1000 0.23 1.6

A hexagon 1500 0.30 3.2
3300 1.00 9.1
4100 1.93 11.6
4900 1.26 14.2

functions of order r; ser (η, q) , Jor (ξ, q) – odd angular
and radial Mathieu functions of order r; Cr, Sr – normal-
ization factors.

We apply as well the solution of the Helmholtz equation
stated by the Whittaker integral [2], explicitly,

E (x, y, z)=exp (ikzz)
2π

∫
0
A (ϕ) exp[ikt(x cosϕ+y sinϕ)]dϕ,

(7)
where A (ϕ) is the angular spectrum of field E (r), kz is
the magnitude of the longitudinal component of the wave
vector k0, ϕ is an angular variable.

According to [12] even and odd Mathieu functions of
order r, respectively, have the form:

cer (η, q = 0) = cos (rη) , (8)
ser (η, q = 0) = cos (rη − π/2) . (9)

Radial functions Jer (ξ, q = 0) and Jor (ξ, q = 0) we
find based on (8) and (9):

Jer (ξ, q = 0) = cer (iξ, q = 0) = cos (iξr), (10)
Jor (ξ, q = 0) = −iser (iξ, q = 0) = −i cos (riξ − π/2).

(11)

Figures 5A-e–5C-e present the calculation of the inten-
sity distribution of the Mathieu–Gauss beams shown in
Figures 5A-f–5C-f by means of the expressions (5)–(7) and
taking into account (8)–(11). The resulting shapes corre-
spond to r-order Mathieu–Gauss beams for r = 2, 3, 4,
respectively. An r-order Mathieu beam has r angular
nodal lines over the beam center and, when q = 0 the
radial nodal lines of Mathieu beams are circular [5].

3 Discussion

Comparing the patterns shown in Figures 5A-c–5C-c with
the diffraction patterns shown in Figures 5A-e–5C-e we

can conclude that the diffraction patterns (DPs) from
two, four, and six segments of the circular laser beam are
formed by a superposition of the two DPs. The first DP
is produced by the r-order MG-like beams (for r = 2, 3, 4)
and the second one is formed by interference of radiation
from the virtual rectangular slits (two, four and six). It
should be noted that the experimentally observed diffrac-
tion in the slow-expansion mode is explained by the for-
mation of the MG type beams on diffraction of the laser
beams shaped by two, four, and six circular segments. The
superposition of these MG-like beams with diffraction pat-
terns from virtual slits only leads to a redistribution of
intensity in diffraction patterns without changing the fun-
damental property of the MG-beams – propagation in the
slow-expansion mode. We notice that the Mathieu–Gauss
patterns shown in Figure 5e can be formed in the focal
plane of the lens as a result of diffraction of the laser beam
by a narrow annular pupil by corresponding modulation
of the intensity distribution [3,5] (with focusing depth of
1–2 cm). The fundamental difference between diffrac-
tion of the multi-segments’ beams from the well-known
Mathieu–Gauss beams is the large propagation length
(meters) in the slow-expansion mode without using a
focusing lens.

4 Conclusion

We report here for the first time the observation of the
MG type spatial modes formation and its propagation in
the slow-expansion mode on diffraction of a laser beam
with the shape of the multi circular segments. In the
experiment, laser beams were used consisting of two, four,
and six circular segments formed from the initial circular
laser beam. The DPs from two, four, and six segments
of the circular laser beam are formed by a superposition
of the two DPs. The first DP is produced by the r-order
MG-like beams (for r = 2, 3, 4) and the second one is
formed by interference of radiation from the virtual rect-
angular slits (two, four and six). The major difference
between diffraction of the multi-segments’ beams from
the MG beams is the huge propagation distance (meters)
in the slow-expansion mode without using a focusing
lens.

Our results can be useful for more insightful thoughts on
light diffraction, which may advance the production of new
diffractive optics. A high power laser beam propagating in
the slow-expansion mode can be invented.
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Fig. 5. (A)–(C): (a) are equivalent theoretical structures of two, four and six segments; VS shows virtual radiating strips; ST,
SQ and H are a blocking strip, square and hexagon apertures. (A): (b), (c) are the theoretical DPs obtained by the numerical
calculation at distances of 500, 1000 mm, (B): (b), (c) −500, 500 mm, (C): (b), (c) −500, 3300 mm. (A)–(C): (d) are narrow
virtual radiating slits corresponding to the two, four and six segments of the laser beam; (e) are the intensity distributions of
the Mathieu–Gauss beams (from two, four and six circular slits shown in (A)–(C) (f)).
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