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Abstract. By constructing a hydrodynamic canonical formalism, we show that the occurrence of an arbi-
trary density-dependent gauge potential in the meanfield Hamiltonian of a Bose-condensed fluid invariably
leads to nonlinear flow-dependent terms in the wave equation for the phase, where such terms arise due
to the explicit dependence of the mechanical flow on the fluid density. In addition, we derive a canonical
momentum transport equation for this class of nonlinear fluid and obtain an expression for the stress
tensor. Further, we study the hydrodynamic equations in a particular nonlinear fluid, where the effective
gauge potential results from the introduction of weak contact interactions in an ultracold dilute Bose gas
of optically-addressed two-level atoms. In the Cauchy equation of mechanical momentum transport of the
superfluid, two non-trivial terms emerge due to the density-dependent vector potential. A body-force of
dilation appears as a product of the gauge potential and the dilation rate of the fluid, while the stress
tensor features a canonical flow pressure term given by the inner-product of the gauge potential and the
canonical current density. By numerical simulation, we illustrate an interesting effect of the nonlinear gauge
potential on the groundstate wavefunction of a superfluid in the presence of a foreign impurity. We find
that the groundstate adopts a non-trivial local phase, which is antisymmetric under reversal of the gauge
potential. The phase profile leads to a canonical-flow or phase-flow dipole about the impurity, resulting
in a skirting mechanical flow. As a result, the pressure becomes asymmetric about the object and the
condensate undergoes a deformation.

1 Introduction

In classical mechanics, the interaction of charged particles
with the electromagnetic field can be completely described
in terms of the force fields E and B. The electromagnetic
potentials φ and A on the other hand, enter merely as
auxiliary mathematical quantities bearing no physical sig-
nificance. The situation is drastically different in quantum
physics: quantisation of a classical theory proceeds from
knowledge of the canonical momenta, and it is the energies
and momenta which are the central quantities determining
the phases of quantum wavefunctions. As a result, charged
particles couple directly to the electromagnetic potentials
in the quantum theory, where the form of this coupling
notably leads to the Aharanov-Bohm effect and the local
gauge invariance of quantum mechanics. The implications
of the fundamental role played by the potentials [1], have
since led to a diverse range of intriguing physical effects.
These arise through the interplay between particle-particle
interactions and applied fields. Although the weak field

? Contribution to the Topical Issue “Topological Ultracold
Atoms and Photonic Systems”, edited by G. Juzeliūnas,
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behaviour of gauge-coupled systems is well described by
linear response theory, large perturbing field values do not
generally allow for a meaningful first order expansion [2].
As the field is gradually increased, the ordering of the
system changes abruptly at certain critical values and a
variety of physical phenomena become associated with
each intensity range [3]: from paramagnetic effects [4],
to the quantum Hall [5–7] and spin quantum Hall [8–11]
effects observed in two-dimensional electron systems. This
notably led to the classification of symmetry protected
topological phases of matter [12,13] and paved the way for
the implementation of topological insulators [14,15], illus-
trating the range of intriguing phenomena which emerge
in gauge-coupled many-body systems.

The charge neutrality of Bose-condensed atomic sys-
tems seemingly restricts the discovery of exotic states of
matter of this kind. However, the versatility, controlla-
bility and robust character of ultracold quantum gases,
have since allowed for the possibility of simulating artifi-
cial gauge potentials for charge-neutral systems. These are
generally engineered through combined interactions, such
that a system exhibits spatially varying local eigenstates
[16,17]. In other words, the action of a gauge potential
can be mimicked by imparting a geometric phase onto the
wavefunction [16–19]. In this regard, the elucidation of
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the geometrical nature of the Aharonov-Bohm phase [18]
was a landmark in understanding magnetism in quantum
mechanics. Local eigenstates can be induced in a variety of
different ways. Initial attempts exploited the equivalence
of the Lorentz and Coriolis forces, by stirring the conden-
sate with a focused laser beam in a magnetic trap [20], a
technique that quickly led to the observation of vortex lat-
tices [21]. More recent implementations have relied almost
exclusively on dressing the bare atomic states using light-
matter interactions. For instance, a two-photon Raman
scheme [22] was employed in a series of experiments to
engineer both electric [23] and magnetic [24] synthetic
force fields, as well as synthetic spin-orbit coupling [25],
spin Hall effect [26] and partial waves [27]. Atomic light-
dressing has also opened up the possibility of generat-
ing non-Abelian vector potentials with non-commuting
components. These can be implemented for atoms with
degenerate eigenstates, and generally emerge when cou-
pling to a laser field produces a degenerate subspace of
dressed states [16]. In addition, efforts have been made to
extend the first generation of synthetic potentials - whose
space and time dependence are prescribed externally and
unaffected by particle motion – and endow these with
dynamical properties [22]. For instance, it was shown [28]
how the introduction of weak collisional interactions in an
ultracold dilute Bose gas of optically addressed two-level
atoms, gives rise to a nonlinear effective vector potential
A(ρ) acting on the condensate, where |A| is modulated by
the density of the atomic gas. Density-dependent gauge
potentials have also been proposed [29] in spin-dependent
optical lattices, by combining periodically modulated
interactions and Raman-assisted hopping. In fact, such
a potential was recently experimentally implemented by
modulating the interaction strength in synchrony with lat-
tice shaking [30], resulting in a density-dependent hopping
amplitude.

It is the emergence of such nonlinear gauge potentials
which has motivated the present study. From a hydro-
dynamical point of view this is an interesting situation
because the kinetic energy density becomes nonlinear in
the fluid density. Thus, flow depends explicitly on the
density profile of the fluid, where the magnitude of flow
of a volume element typically increases as the element
shrinks. In this paper, we investigate the fluid stress
and body-forces which emerge in a superfluid subject to
a nonlinear gauge potential. The paper comprises two
parts. In Section 2, we construct a general formalism and
demonstrate how the occurrence of an arbitrary density-
dependent gauge potential in the meanfield Hamiltonian
acting on a macroscopic wavefunction, invariably produces
flow-dependent terms in the wave equation for the phase.
We also derive a canonical momentum transport equation
for this class of nonlinear fluid and obtain an expression
for the stress tensor. In Section 3, we apply our results
from Section 2 to a particular type of nonlinear fluid,
whose microscopic model is well-established. We find that
the nonlinear gauge potential gives rise to two non-trivial
terms in the mechanical momentum transport equation of
the superfluid, in the form of a canonical flow pressure and
a body-force of dilation. Finally, by numerical simulation,
we illustrate an interesting implication of the nonlinear

gauge potential on the ground state phase profile of an
inhomogeneous superfluid.

2 General formalism for nonlinear
gauge-coupled quantum fluids

2.1 Hydrodynamic canonical formalism

Let us assume that an effective density-dependent vector
potential A (ρ) and effective scalar potential η (ρ), emerge
in the meanfield Lagrangian

LMF =
∫
d3r

[
ψ∗
(
i~∂t − ĤMF

)
ψ
]
, (1)

governing the dynamics of a macroscopic wavefunction ψ.
Since a gauge potential enters the meanfield Hamiltonian,
ĤMF , in a manner consistent with the minimal substi-
tution, p̂ → p̂ − A, our study pertains to the class of
quantum fluids described by

ĤMF =
(p̂−A (ρ))2

2m
+ η (ρ) + V (r, t) , (2)

where we have included an external potential, V . Further,
we shall consider a particular microscopic model leading
to a ĤMF of the above form, but presently, let us construct
a hydrodynamic formalism for the more general case. In
accordance with equation (1), the Lagrangian density of
the nonlinear field, may be presented as

L =
i~
2

(
ψ∗ψ̇ − ψ̇∗ψ

)
− 1

2m
[(p̂−A)ψ]∗ [(p̂−A)ψ]− ρη − ρV, (3)

where we have denoted partial differentiation with respect
to time by a dot and performed the transformation L →
L− i~∂t (ψ∗ψ) /2, in order for L to be real.

Perhaps the most conspicuous feature of a density-
dependent gauge potential, is the occurrence of a flow non-
linearity in the wave equation for ψ. One may gain insight
into the appearance of such a term, by casting the mean-
field description into a hydrodynamical form. To do so, we
write the macroscopic wavefunction in the Madelung [31],
or polar form

ψ =
√
ρei

θ
~ , ψ∗ =

√
ρe−i

θ
~ , (4)

and treat ρ and θ as the independent field variables. In
terms of these, the Lagrangian density (3), assumes the
form

L = −ρ
(
θ̇ +

1
2
mv2 + η + V

)
−Q, (5)

where, v = |v|, is the magnitude of the mechanical flow,
or gauge-covariant flow

v = u−A/m, (6)
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u = ∇θ/m is the canonical flow, or phase flow, and

Q =
~2

8mρ
(∇ρ)2

, (7)

is a quantum energy density contribution. We make the
distinction between the canonical flow and the gauge flow.
In the canonical flow, we include the total flow which can
be accounted for locally by a phase twist in a suitable
gauge, whereas the gauge flow denotes the flow contri-
bution from A which can not be absorbed in the phase
without destroying the form of the dynamical equations
of the fluid. The fact that it is not possible to gauge
away density-dependent vector potentials, will be covered
elsewhere.

Since L is linear in the field velocities and the linear
form appears as −ρθ̇, the field components ρ and θ play
the role of conjugate variables [32,33], governed by the
canonical field equations

ρ̇ (r) =
δH

δθ (r)
, (8)

θ̇ (r) = − δH

δρ (r)
, (9)

where the Hamiltonian and Lagrangian densities, are
related by

L = −ρθ̇ −H, (10)

such that

H = ρ

(
1
2
mv2 + η + V

)
+Q. (11)

Note that the derivatives on the right hand side of equa-
tions (8) and (9) are functional, or variational derivatives,
e.g. δH/δρ = ∂H/∂ρ − ∇ · (∂H/∂ (∇ρ)). Inserting the
Hamiltonian density (11) into the canonical field equa-
tions (8) and (9), yields, respectively, the wave equations

∂tρ+ ∇ · (ρv) = 0, (12)

∂tθ +
1
2
mv2 + Φ (ρ,u) + V +Q = 0, (13)

where the density-dependence of the kinetic term within
the brackets of equation (11) leads to an additional non-
linear flow-dependent term in the wave equation for the
phase, such that

Φ = −ρv · ∂A
∂ρ

+ η + ρ
∂η

∂ρ
, (14)

and

Q = − ~2

2m
∇2√ρ
√
ρ
, (15)

is the quantum potential, which emerges due to the quan-
tum energy density Q in equation (11). Equation (12)
expresses the conservation of mass while equation (13)
takes the form of a quantum Hamilton-Jacobi equation
(QHJE), the gradient of which expresses the conservation
of mechanical momentum.

In summary, when a fluid is subject to a nonlinear vec-
tor potential, the flow v in equation (6) depends explicitly
on the density of the fluid and the kinetic energy density
κ = ρmv2/2 becomes nonlinear in ρ. Thus, the change δκ
in an infinitesimal volume due to δρ, is not determined
simply by the kinetic energy mv2/2 of the volume as it
is typically, since δκ =

(
mv2/2 + ρmv · ∂v/∂ρ

)
δρ. As a

result, a nonlinear flow-dependent term enters the wave
equation for the phase. This feature is intrinsic to sys-
tems whose effective Hamiltonian (2) features a density-
dependent vector potential A (ρ).

2.2 Canonical momentum transport equation

In the following section, we derive a canonical momentum
transport equation for the nonlinear fluid and investigate
the implications of the nonlinear gauge potential on the
stress tensor. To do so, recall that the dynamical state
of the matter-field is completely specified by the stress-
energy-momentum tensor

Tµν = −
∑
φ=ρ,θ

∂L
∂(∂µφ)

∂νφ+ δµνL, (16)

while the transport equations governing energy-flow and
momentum-flow, follow from the conservation law

∂µTµν = ∂νL, (17)

where we have adopted a relativistic-like notation with
µ = 0, 1, 2, 3. The Lagrangian density of the field, is given
by equation (5). Alternatively, L may be cast in terms of
the fields and their spatial derivatives, by substituting the
QHJE (13) into equation (5), which yields

L = − ~2

4m
∇2ρ+ ρ (Φ− η) . (18)

Rendering L into this form is essential for evaluating the
components of the field stress tensor, Tij . The stress-
energy-momentum tensor from equation (16), charac-
terises the dynamical state of the field by specifying the
energy density, the momentum density, and the currents
associated with both of these quantities. The energy den-
sity of the field, is

−T00 = −ρθ̇ − L = H, (19)

where the last equality follows from equation (10). The
energy current density, takes the form

−Tk0 = Dρ̇wk − ρθ̇vk ≡ Sk, (20)

where
wk = −D

ρ
∇kρ, (21)

is the osmotic velocity [34–36] and D = ~/ (2m) is the
quantum diffusion coefficient. The canonical momentum
density, reads

T0k = ρ∇kθ = ρmuk ≡ Pk. (22)
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The canonical momentum current density or stress tensor
Tjk of the field, is found to be

Tjk = ρm (wjwk + vjuk) + δjkL. (23)

Note the distinction between vj and uk in the above equa-
tion. The interpretation of equations (20) and (23) as the
respective current densities of the quantities defined in
equations (19) and (22), follows from the conservation law
in equation (17), which separates out into an equation of
continuity of energy

∂tH+∇iSi = −∂L
∂t
, (24)

and an equation of continuity of momentum

∂tPk +∇jTjk =
∂L
∂xk
· (25)

Let us cast the above equation into a Cauchy form [37] and
describe the momentum transport in the reference frame
of the fluid. Substituting equations (22) and (23) into (25)
and making use of the continuity of fluid mass, leads to
the following canonical momentum transport equation in
the fluid frame:

mρ

(
∂

∂t
+ v ·∇

)
uk =

∂L
∂xk

+∇jΠjk, (26)

where
Πjk = −Tjk +mρvjuk, (27)

is the fluid stress tensor. Notice the difference in sign
convention used for Πjk and Tjk in the transport equa-
tions (26) and (25). In addition, Πjk and Tjk differ by a
flow-stress term, mρvjuk, as a result of the relative motion
between the fluid and field frames. The Πjk define a lin-
ear map between the surface normal vectors and the forces
acting on these, such that the stress tensor of a fluid may
be written in the form [38]

Πjk = −Pδjk + σjk, (28)

where P is the fluid pressure associated with normal forces
and the σjk account for shearing forces. Note that P rep-
resents the pressure of an infinitesimal volume element
which flows with the fluid, and not at a fixed point of
space. As such, for a typical fluid, P is independent of the
flow profile of the fluid. However, for a nonlinear gauge-
coupled fluid, this is no longer the case. Indeed, upon sub-
stituting expressions (18) and (23) into equation (27), we
find that the stress tensor of the fluid takes the form of
equation (28), where

σjk = −mρwjwk, (29)

is the quantum stress tensor, while the fluid pressure is
equivalent to the Lagrangian density of the field from
equation (18), such that

P = − ~2

4m
∇2ρ+ ρ (Φ− η) . (30)

Hence, by virtue of equation (14), the fluid pressure in a
nonlinear gauge-coupled quantum fluid depends explicitly
on the flow profile of the fluid.

3 The nonlinear gauge-coupled superfluid

3.1 The origin of the nonlinear gauge potential

The formalism outlined in the previous section was gen-
eral, in the sense that the nonlinear gauge potential
was viewed as an arbitrary function of the density. We
now turn our attention to a specific model yielding an
effective gauge-coupled Hamiltonian. In particular, it has
been shown [28] that the introduction of weak contact-
interactions in an optically-addressed dilute Bose gas
of two-level atoms, leads to a density-modulated gauge
potential acting on the condensate. To see this, we begin
by noting that the microscopic Hamiltonian of the dilute
cloud, may be written as

Ĥ = ĤKin + ĤLM + ĤIP , (31)

where ĤKin is the single-particle kinetic energy operator,
ĤLM describes the light-matter coupling, which we treat
semi-classically, and ĤIP is the interparticle potential

ĤIP =
∑
i<j

 ∑
a,b=1,2

gabδ(ri − rj)|λ(i)
a λ

(j)
b 〉〈λ

(i)
a λ

(j)
b |

⊗11ij .

(32)
Here i and j label the atoms, |λ(i)

a 〉 denotes the ath internal
state of atom i and 11ij is the identity on the complement
of the Hilbert space for particles i and j. The coupling
constants are related to the associated scattering lengths,
in the customary form gij = 4π~2aij/m. We also assume
a constant detuning over space, and write

ĤLM =
~Ω

2

∑

j

(
eiφ(rj)|λ(j)

1 〉〈λ
(j)
2 |+ e−iφ(rj)|λ(j)

2 〉〈λ
(j)
1 |
)
⊗ 11j ,

(33)

where Ω is the Rabi frequency characterising the light-
matter coupling and φ is the phase of the laser field. By
assuming that the N -body wavefunction is a product of
N identical single-particle wavefunctions, we obtain [39] a
meanfield Lagrangian in the form of equation (1), where
ĤMF acts on the two-component macroscopic wavefunc-
tion, ψ, as

ĤMFψ (r) =
(

p̂2

2m
+ ÛLM + ÛMF

)
ψ (r) (34)

where ÛLM = ~Ω
2

(
0 e−iφ(r)

eiφ(r) 0

)
, and ÛMF =(

g11ρ1 + g12ρ2 0
0 g12ρ1 + g22ρ2

)
describes the meanfield

collisional effects, with ρi representing the density of
atoms occupying the ith internal state. The full wavefunc-
tion may be written

∑
i=± ψi|χi〉, where the |χ±〉 denote

the eigenstates of ÛLM + ÛMF , the so-called interacting
dressed states. When the light-matter coupling is much
stronger than the interparticle potential, which we will
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assume to be the case in what follows, these can be approx-
imated by treating ÛMF as a perturbation to ÛLM . Fur-
thermore, by preparing the atoms in a particular dressed
state, |χ+〉 say, then, within the adiabatic approximation,
we may set ψ− to zero and obtain a projected meanfield
Lagrangian (1), where the meanfield Hamiltonian govern-
ing the dynamics of ψ+ ≡ ψ, is obtained in the form

Ĥ =
(p̂−A)2

2m
+W +

~Ω
2

+
g

2
ρ, (35)

where g = (g11 + g22 + 2g12) /4, and the geometric syn-
thetic potentials enter the effective Hamiltonian in the
form of a scalar function, W = ~2

2m |〈χ+|∇χ−〉|2 and a
Berry connection A = i~〈χ+|∇χ+〉. Notice that the |χ±〉
depend on ρ, and A inherits this dependence: thus we
have a density dependent synthetic gauge potential. To
first order, the synthetic potentials read

W =

∣∣A(0)
∣∣2

2m
, (36)

A = A(0) + aρ, (37)

where A0 = −~
2 ∇φ is the single particle contribution to

the vector potential and

a =
g11 − g22

8Ω
∇φ, (38)

controls the effective strength and orientation of the gauge
potential.

3.2 Mechanical momentum transport equation

The nonlinear gauge-coupled superfluid governed by the
effective Hamiltonian from equation (35), may be viewed
as a particular case of quantum fluid discussed in
Section 2, where, in an appropriate gauge, η = gρ/2 and
A = aρ. Hence, the nonlinear scalar term entering the
QHJE (13), now reads

Φ = −v ·A + gρ, (39)

where v = u − aρ/m. As such, the canonical momentum
transport equation for the superfluid is retained in the
form of equation (26), where the stress tensor of the fluid
takes the form

Πjk = σjk − δjk
(
− ~2

4m
∇2ρ+

g

2
ρ2 − J ·A

)
, (40)

where J = ρv and σjk is the quantum stress tensor from
equation (29). Substituting the canonical flow uk in equa-
tion (26) for the mechanical flow vk = uk − akρ/m, and
evaluating ∂L/∂xk holding the fields ρ, θ and their deriva-
tives constant, leads to a Cauchy equation of mechanical
momentum transport

mρ

(
∂

∂t
+ v ·∇

)
vk = ρfk +∇jΠjk, (41)

where Πjk is given by (40) and the body-force acting on
the superfluid, takes the form

fk = −∇kV +Ak∇ · v. (42)

Note that in order to obtain the above expression, we have
used the continuity equation (12) and relation ∇×a = 0.
We have also assumed that a is independent of time. Typ-
ically, body-forces are associated with external potentials
whereas fluid stress is connected with nonlinear potentials.
However, in the case of a nonlinear vector potential, we see
that A (ρ) plays a double role in equation (41), carrying
implications for both Πjk and fk.

3.3 Canonical flow pressure and body-force of dilation

Since the fluid pressure can be read from the diagonal
components of the stress tensor (see Eq. (28)), we have

P = − ~2

4m
∇2ρ+

g

2
ρ2 − J ·A. (43)

Hence the fluid pressure depends on the overlap of the cur-
rent density and the vector potential, and as such, depends
explicitly on the canonical flow, u, of the fluid. In other
words, the fluid pressure becomes a function of both inde-
pendent dynamical variables ρ and u. One consequence
of this, is that P transforms from one Galilean frame of
reference to another. In order to obtain Galilean covariant
transformation laws where the pressure remains an invari-
ant quantity, clearly, the nonlinear potentials will have to
be transformed in some fashion. This will be covered else-
where. Expanding the current density in expression (43),
the fluid pressure may be written as

P = − ~2

4m
∇2ρ+

(
g

2
+
a2

m
ρ

)
ρ2 − Ju ·A, (44)

where a = |a| and Ju = ρu is the canonical current den-
sity. We shall call the pressure term which depends explic-
itly on the canonical flow, the canonical flow pressure:

Pu = −Ju ·A. (45)

Complementing this pressure term, a nonlinear body-force
enters equation (42) as a result of the time-dependence of
A (ρ), namely

fdk = Ak∇ · v, (46)

which may be interpreted as a body-force of dilation.
This follows from the continuity of fluid mass from equa-
tion (12), which can be given the form

∇ · v = −1
ρ

(
∂

∂t
+ v ·∇

)
ρ. (47)

The right hand side of the above equation represents
the dilation rate of the fluid [37]. Therefore, if we track
an infinitesimal volume element of fluid as it flows, an
additional body-force is exerted throughout the element
whenever the size of the volume element changes. If for
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Fig. 1. An example of an experimental setup with a super-
fluid cloud of atoms with density |ψ(r)|2. An incident laser
beam with constant intensity and phase φ(r) = kx where k
is the wave number of the light, together with a collisionally
induced detuning of the resonant laser frequency, gives rise to
the nonlinear gauge potential.

instance, the element is compressed as a result of enter-
ing an increasing surrounding local pressure field, flow
is imparted onto the whole element through fdk . This
explains how a shrinking infinitesimal volume element
acquires additional gauge-flow, which must be the result
of a body-force.

3.4 Ground state canonical flow-dipole in an
inhomogeneous superfluid

In this final section, we illustrate an interesting effect of
the nonlinear gauge potential on the ground state wave-
function of an inhomogeneous superfluid. For the system
considered here, the pair of hydrodynamic equations (12)
and (13), are equivalent to the nonlinear Schrödinger
equation

i~∂tψ =

[
(p̂− aρ)2

2m
− a · J + gρ+ V

]
ψ, (48)

where

J =
i~
2m

[
ψ

(
∇ +

i

~
A
)
ψ∗ − ψ∗

(
∇− i

~
A
)
ψ

]
, (49)

is the gauge-covariant current. We consider the case of a
monochromatic laser field with constant phase twist, i.e.
a plane wave, such that a (r) is constant. See Figure 1
for a description of a possible experimental realisation.
The numerical integration of equation (48) was achieved
using the Crank-Nicholson method for a system of dimen-
sion d = 2 with periodic boundary conditions. We present
results for a condensate populated by N = 1600 particles
in a box with side length L = 47, comprising 416 × 416
points. We let the origin of the system coincide with the
center of the box and adopt Cartesian coordinates, denot-
ing the horizontal and vertical axes by x and y, respec-
tively. For our simulation, we have chosen parameters
|a| = 0.73~L2 and g = 3.66~2L/ (2m), and set the orienta-
tion of the gauge potential at angle π/4 relative to the x-
axis, e.g. â = (x̂ + ŷ) /

√
2. To establish an inhomogeneous

ground state profile, we introduce an immobile impurity
into the system, which we model as a Gaussian potential
V (r) = 20e−|r|

2/2. The ground state was obtained using
the method of imaginary time propagation.

Fig. 2. Plot showing the non-trivial phase profile adopted by
the ground-state wavefunction in the vicinity of a Gaussian
impurity. 17 contours are included, equally spaced between
−π/2 and +π/2.

In the absence of an impurity, the ground state is that
of a homogeneous superfluid, where ρ = ρ0 is constant.
Assuming there is no superflow, the phase is constant over
space and oscillates periodically in time. However, unlike a
standard weakly-interacting superfluid, the gauge-coupled
superfluid is not at rest, but exhibits a steady current
as a result of the gauge-flow −aρ0/m. In other words,
the ground state of the homogeneous superfluid is in a
steady state of flow even though no spatial phase twists
occur in the system. Next, let us introduce the localised
potential into the system. This leads to a density-depleted
region in the vicinity of the impurity. As a consequence,
the gauge-flow is no longer uniform as in the homoge-
neous case, but drops in magnitude upon approaching
the center of the impurity. This introduces both non-
vanishing transverse and longitudinal components for the
gauge-flow −aρ/m. The longitudinal component is a sig-
nificant energy expense for the system, due to the intro-
duction of real-time dependence into the wave-amplitude
of the state. One may verify numerically that an initial
state (with non-vanishing ground state overlap), evolves
in imaginary time in such a way that the divergence
of the gauge-covariant current approaches zero through-
out space. Notice that in order to achieve this and for
the ground state density distribution to be preserved in
time, a non-trivial local phase profile must be adopted by
the groundstate wavefunction in order to compensate for
the non-steady gauge-current. In other words, the ground
state of the system exhibits a non-vanishing canonical
flow. This is illustrated in Figure 2, where we have plotted
a series of ground state phase contours in the vicinity of
the object, evenly spaced from −π/2 to π/2. The phase
is antisymmetric under reversal of the gauge potential,
a → −a. In the bottom left half of the plot, the phase
increases from 0 to π/2 as we approach (−1.25,−1.25),
whereas in the upper right half the phase decreases from

https://www.epjd.epj.org
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Fig. 3. Plots showing the ground state canonical flow, u, and
mechanical flow, v = u−A/m, in the vicinity of the impurity.
The magnitude of the flow in units ~/ (2mL), is given by the
arrow length × 0.068.

Fig. 4. Plots showing the canonical flow pressure, Pu, and the
fluid pressure, P , in the vicinity of the impurity. The pressure
is given in units ~2/

(
2mL5

)
and asymmetric about the origin.

The impurity is compressed along the axis of the nonlinear
gauge (y = x) and stretched along the normal axis (y = −x).

0 to −π/2 as we approach (1.25, 1.25). In Figure 3 we
show vector plots of the associated ground-state canoni-
cal flow u = (ψ∗∇ψ − ψ∇ψ∗) /

(
i |ψ|2

)
and mechanical

flow v = u − aρ/m. Here, we notice that u takes the
form of a flow-dipole, leading to a mechanical flow field
which skirts around the object. In turn, the canonical flow-
dipole has interesting implications for the fluid pressure.
In Figure 4, we show the ground state canonical flow pres-
sure and total pressure, computed using expressions (45)
and (44), respectively. The flow nonlinearity favours occu-
pation (inoccupation) of the blue (red) regions in the left
image of Figure 4, leading to an aspherical pressure about
the impurity (right image). This leads to a deformation of
the condensate, as seen from the wave-amplitude plot in
Figure 5.

4 Conclusion

The hydrodynamic canonical formalism is an ideal frame-
work for understanding how a nonlinear gauge potential
invariably leads to nonlinear flow terms in the wave equa-
tion of a quantum fluid, these resulting from the non-
linear density-dependence of the kinetic energy density.

Fig. 5. Ground state wave-amplitude, |ψ|, in the vicinity of
an immobile Gaussian impurity, where

∫
d3r |ψ|2 = 1.

In turn, two non-trivial terms emerge in the mechanical
momentum-transport equation of a superfluid subject to a
density-modulated gauge potential, in the form of a canon-
ical flow pressure and a body force of dilation. The non-
linear gauge potential has interesting implications for an
inhomogeneous superfluid, where a nontrivial local phase
is adopted by the ground state wavefunction. The nonlin-
ear gauge potential also has important consequences for
the Galilean covariance of the fluid, where new transfor-
mations laws are required in order to restore the invariance
of the fluid under the transformation group. The canonical
flow pressure should also carry significant implications for
the elementary excitations of the fluid. For instance, one
should no longer expect the velocity of sound to be deter-
mined exclusively by the adiabatic compressibily, since
P depends explicitly on the flow. This calls for a gen-
eralised expression relating the velocity of sound to the
fluid pressure. Finally, the nonlinear body force of dila-
tion should appear in the drag force acting on a mov-
ing impurity and may be investigated numerically. For
typical quantum fluids, the drag force is determined by
the configuration of the fluid density in the vicinity of
the localised object potential. In contrast, the reaction to
the body force of dilation should occur throughout the
whole fluid, taking place wherever the divergence of the
velocity field is non-vanishing. Here, we would expect the
onset of vortex nucleation to depend on the relative orien-
tation of the gauge potential with respect to the travelling
impurity.
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