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Abstract. A rigorous theoretical investigation is made to study the characteristics of dust-acoustic (DA)
waves (DAWs) in an electron depleted unmagnetized opposite polarity dusty plasma system that con-
tains super-thermal (κ-distributed) ions, mobile positively and negatively charged dust grains for the first
time. The reductive perturbation method is employed to obtain the NLSE to explore the modulational
instability (MI) conditions for DAWs as well as the formation and characteristics of gigantic rogue waves.
The nonlinear and dispersion properties of the dusty plasma medium are the prime reasons behind the
formation of rogue waves. The height and thickness of the DARWs associated with DAWs as well as the
MI conditions of DAWs are numerically analyzed by changing different dusty plasma parameters, such as
dust charges, dust and ion number densities, and ion-temperature, etc. The implications of the results for
various space dusty plasma systems (viz., mesosphere, F-rings of Saturn, and cometary atmosphere, etc.)
as well as laboratory dusty plasma produced by laser-matter interaction are briefly mentioned.

1 Introduction

Opposite polarity (OP) dusty plasma (OPDP) is charac-
terised as fully ionized gas, comprising massive positively
and negatively charged dust grains as well as electrons and
ions, and is believed to exist in space, viz., planetary rings
[1], Jupiter’s magnetosphere [2], interstellar clouds [3–5],
earth polar mesosphere [2], cometary tails [2], solar system
[4] and laboratory situations, viz., laser-matter interaction
[5]. Rao et al. [6] have first theoretically predicted a new
kind of low-frequency dust-acoustic (DA) waves (DAWs),
and this low-frequency DAWs have been further experi-
mentally identified by Barkan et al. [7] in dusty plasma
(DP) medium (DPM). A revolution associated with DP
physics has been welcomed after experimental identifica-
tion of the DAWs, and many researchers have performed
various modern eigen modes, viz., DAWs [2–4], dust lattice
waves [8], dust-drift waves [9], DA shock waves (DASHWs)
[10], DA solitary waves (DASWs) [5] and dust-ion-acoustic
waves (DIAWs) [1] in DPM to understand various nonlin-
ear structures regarding the propagation of low frequency
electrostatic perturbation.

The attachment of electrons with massive dust grains
from the ambient DPM during the dust charging process
is referred to as electron depletion [10–15]. The signa-
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ture of electron depletion mechanism, in which major-
ity even sometimes all the electrons are inserted into
the massive dust grains, associated to the dust can be
observed in space environments, viz., F-rings of Saturn
[13], Jupiter’s magnetosphere [2], interstellar clouds [4],
earth polar mesosphere [2], cometary tails [2], solar system
[4], and laboratory DPM. Shukla and Silin studied DIAWs
in an electron depleted DPM (EDDPM). Mamun et al. [11]
examined solitary potentials in two components EDDPM,
and found that both dust and ion densities enhance
the negative potentials. Sahu and Tribeche [14] reported
the small amplitude double-layers (DLs) in an unmagne-
tized EDDPM, and demonstrated that their model can
admit both compressive and rarefactive DA DLs (DADLs)
according to the properties of plasma parameters.
Ferdousi et al. [10] studied DASHWs in two components
EDDPM, and found that under consideration, their model
supports both positive and negative potentials. Hossen
et al. [2,3] investigated DAWs in three components
EDDPM having inertial massive OP dust grains (OPDGs)
and inertialess non-thermal ions, and observed that the
presence of the positively charged dust significantly modi-
fied the shape of DASWs and DADLs potential structures.

The super-thermal or κ-distribution [16–22] can
describe the deviation, according to the values of the
super-thermal parameter κ which manifests the presence
of the external force fields or wave-particle interaction,
of plasma species from the thermal or Maxwellian dis-
tribution. The super-thermal or κ-distribution exchanges
with the Maxwellian distribution when κ tends to infinity,
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i.e., κ → ∞, and κ-distribution is normalizable for any
kind of values of κ by fulfilling this condition κ > 3/2
[17–22]. Shahmansouri and Alinejad [17] investigated
DASWs in a super-thermal DPM, and found that the
depth of the potential well decreases with increasing
the value of κ. Kourakis and Sultana [18] examined the
presence of the super-thermal particles in a DPM, and
observed how the fast particles change the speed of the
DIA solitons, and also found that lower κ values support
faster solitons. Uddin et al. [19] analyzed the nonlinear
propagation of positron-acoustic waves in a super-thermal
plasma, and highlighted that the height of the positive
potential decreases with increasing value of κ.

The modulational instability (MI), energy localiza-
tion, and energy redistribution of the carrier waves are
governed by the standard nonlinear Schrödinger equa-
tion (NLSE) [20–24]. Sultana and Kourakis [20] stud-
ied electron-acoustic (EA) envelope solitons in presence
of super-thermal electrons, and observed that the unsta-
ble domain of EA waves increases with κ. Ahmed et al.
[21] examined ion-acoustic waves in multi-component plas-
mas, and demonstrated that the critical wave number (kc)
decreases with the increase of κ. Gill et al. [22] investigated
the MI of the DAWs in presence of super-thermal ions in
a DPM, and found that the excess super-thermality of
the ions enhances the stable domain of the DAWs. Saini
and Kourakis [23] reported amplitude modulation of the
DAWs in presence of the super-thermal ions in a DPM,
and the excess super-thermality of the plasma species rec-
ognizes narrower envelope solitons. Kourakis and Shukla
[24] demonstrated the MI of the DAWs in an OPDP.

Recently, Shahmansouri and Alinejad [5] demonstrated
DASWs in an EDDPM in presence of super-thermal
plasma species, and found that the height of the DASWs
increases with the increase in the value of super-thermality
of plasma particles. In this paper, we want to develop suf-
ficient extension of previous published work [5] by present-
ing a real and novel three component DP model. It could
be of interest to examine the MI of DAWs and formation of
DA rogue waves (DARWs) by considering a three compo-
nent DP model having highly charged massive OPDGs as
well as inertialess ions are modelled by the super-thermal
κ-distribution.

The layout of our paper can be written as: the model
equations which explain the plasma model are shown in
Section 2. A standard NLSE is derived in Section 3. The
MI and DARWs are presented in Section 4. Results and
discussion are explained in Section 5. A conclusion is given
in Section 6.

2 Model equations

We consider a three component unmagnetized EDDPM
comprising inertial negatively and positively charged mas-
sive dust grains, and κ-distributed positive ions. At equi-
librium, the quasi-neutrality condition can be written as
Zini0 + Z+n+0 ≈ Z−n−0; where ni0, n−0, and n+0 are
the number densities of positive ions, negative and pos-
itive dust grains, respectively, and Zi, Z+ and Z− are
the charge state of the positive ion, positive and negative

dust grains, respectively. So, the normalizing equations to
study the DAWs are

∂n+

∂t
+

∂

∂x
(n+u+) = 0, (1)

∂u+

∂t
+ u+

∂u+

∂x
= −∂φ

∂x
, (2)

∂n−
∂t

+
∂

∂x
(n−u−) = 0, (3)

∂u−
∂t

+ u−
∂u−
∂x

= s1
∂φ

∂x
, (4)

∂2φ

∂x2
= s2n− − (s2 − 1)ni − n+, (5)

where ni, n−, and n+ are normalized by ni0, n−0, and
n+0, respectively; u+ and u− represent the positive and
negative dust fluid speed, respectively, normalized by the
DA wave speed C+ = (Z+kBTi/m+)1/2 (with Ti being
temperature of ion, m+ being positive dust mass, and kB
being the Boltzmann constant); φ represents the electro-
static wave potential normalized by kBTi/e (with e being
the magnitude of single electron charge); the time and
space variables are, respectively, normalized by ω−1

P+
=

(m+/4πe2Z2
+n+0)1/2, and λD+ = (kBTi/4πe2Z+n+0)1/2.

Other parameters can be defined as s1 = Z−m+/Z+m−
and s2 = Z−n−0/Z+n+0. It may be noted here that we
have considered m− > m+, Z− > Z+, and n−0 > n+0.
The expression for the number density of ions following
the κ-distribution [5] can be written as

ni =
[
1 +

φ

(κ− 3/2)

]−κ+ 1
2

(6)

where the parameter κ is known as super-thermality of the
ions. Now, by substituting equation (6) into equation (5),
and expanding up to third order in φ, we obtain

∂2φ

∂x2
+n+− s2n− = (1− s2) +M1φ+M2φ

2 +M3φ
3 + · · · ,

(7)
where

M1 =
(s2 − 1)(2κ− 1)

(2κ− 3)
,

M2 =
(1− s2)(2κ− 1)(2κ+ 1)

2(2κ− 3)2
,

M3 =
(s2 − 1)(2κ− 1)(2κ+ 1)(2κ+ 3)

6(2κ− 3)3
·

We note that the term on the right hand side is the
contribution of positive ions.

3 Derivation of the NLSE

To study the MI of DAWs, we will derive the NLSE by
employing the reductive perturbation method. So, we first
introduce the stretched co-ordinates

ξ = ε(x− vgt), (8)

τ = ε2t, (9)
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where vg is the group speed and ε is a small parameter.
Then, we can write the dependent variables as

n+ = 1 +
∞∑
m=1

εm
∞∑

l=−∞

n
(m)
+l (ξ, τ)exp[il(kx− ωt)], (10)

u+ =
∞∑
m=1

εm
∞∑

l=−∞

u
(m)
+l (ξ, τ)exp[il(kx− ωt)], (11)

n− = 1 +
∞∑
m=1

εm
∞∑

l=−∞

n
(m)
−l (ξ, τ)exp[il(kx− ωt)], (12)

u− =
∞∑
m=1

εm
∞∑

l=−∞

u
(m)
−l (ξ, τ)exp[il(kx− ωt)], (13)

φ =
∞∑
m=1

εm
∞∑

l=−∞

φ
(m)
l (ξ, τ)exp[il(kx− ωt)], (14)

where k (ω) is real variables representing the carrier wave
number (frequency). The derivative operators in the above
equations are treated as follows:

∂

∂t
→ ∂

∂t
− εvg

∂

∂ξ
+ ε2

∂

∂τ
, (15)

∂

∂x
→ ∂

∂x
+ ε

∂

∂ξ
· (16)

Now, by substituting equations (10)−(16) into
equations (1)−(4) and equation (7), and collecting the
terms containing ε, the first order (m = 1 with l = 1)
equations can be expressed as

ωn
(1)
+1 = ku

(1)
+1, (17)

kφ
(1)
1 = ωu

(1)
+1, (18)

ωn
(1)
−1 = ku

(1)
−1, (19)

ks1φ
(1)
1 = −ωu(1)

−1, (20)

n
(1)
+1 = k2φ

(1)
1 +M1φ

(1)
1 + s2n

(1)
−1, (21)

these equations reduce to

n
(1)
+1 =

k2

ω2
φ

(1)
1 , (22)

u
(1)
+1 =

k

ω
φ

(1)
1 , (23)

n
(1)
−1 = −s1k

2

ω2
φ

(1)
1 , (24)

u
(1)
−1 = −ks1

ω
φ

(1)
1 , (25)

we thus obtain the dispersion relation for DAWs

ω2 =
k2(1 + s1s2)
M1 + k2

· (26)

The second-order (m = 2 with l = 1) equations are
given by

n
(2)
+1 =

k2

ω2
φ

(2)
1 +

2ik(vgk − ω)
ω3

∂φ
(1)
1

∂ξ
, (27)

u
(2)
+1 =

k

ω
φ

(2)
1 +

i(vgk − ω)
ω2

∂φ
(1)
1

∂ξ
, (28)

n
(2)
−1 = −s1k

2

ω2
φ

(2)
1 −

2iks1(vgk − ω)
ω3

∂φ
(1)
1

∂ξ
, (29)

u
(2)
−1 = −ks1

ω
φ

(2)
1 −

is1(vgk − ω)
ω2

∂φ
(1)
1

∂ξ
, (30)

with compatibility condition

vg =
∂ω

∂k
=
ω(1 + s1s2 − ω2)
k(1 + s1s2)

· (31)

The coefficients of ε for m = 2 with l = 2 provide the
second-order harmonic amplitudes which are found to be
proportional to |φ(1)

1 |2

n
(2)
+2 = M4|φ(1)

1 |2, (32)

u
(2)
+2 = M5|φ(1)

1 |2, (33)

n
(2)
−2 = M6|φ(1)

1 |2, (34)

u
(2)
−2 = M7|φ(1)

1 |2, (35)

φ
(2)
2 = M8|φ(1)

1 |2, (36)

where

M4 =
3k4 + 2M8ω

2k2

2ω4
,

M5 =
k3 + 2M8kω

2

2ω3
,

M6 =
3s21k

4 − 2M8s1k
2ω2

2ω4
,

M7 =
s21k

3 − 2ks1M8ω
2

2ω3
,

M8 =
2M2ω

4 + 3s2s21k
4 − 3k4

2ω2(k2 + s1s2k2 −M1ω2 − 4k2ω2)
·

Now, we consider the expression for (m = 3 with l = 0)
and (m = 2 with l = 0) which leads the zeroth harmonic
modes. Thus, we obtain

n
(2)
+0 = M9|φ(1)

1 |2, (37)

u
(2)
+0 = M10|φ(1)

1 |2, (38)

n
(2)
−0 = M11|φ(1)

1 |2, (39)

u
(2)
−0 = M12|φ(1)

1 |2, (40)

φ
(2)
0 = M13|φ(1)

1 |2, (41)

where

M9 =
2vgk3 + ωk2 +M13vgω

3

v2
gω

3
,

M10 =
k2 +M13ω

2

vgω2
,

M11 =
2vgs21k

3 + ωk2s21 − s1M13ω
3

v2
gω

3
,
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M12 =
k2s21 − s1M13ω

2

vgω2
,

M13 =
2M2v

2
gω

3 − 2vgk3 − ωk2 + 2s2vgs21k
3 + ωs2k

2s21
ω3(1 + s1s2 −M1v2

g)
·

Finally, the third harmonic modes (m = 3) and (l = 1),
with the help of (22)−(41), give a set of equations which
can be reduced to the following NLSE:

i
∂Φ
∂τ

+ P
∂2Φ
∂ξ2

+QΦ|Φ|2 = 0, (42)

where Φ = φ
(1)
1 is used for simplicity. The dispersion coef-

ficient P is

P =
3vg(vgk − ω)

2kω
,

and the nonlinear coefficient Q is

Q =
2M2ω

3(M8 +M13) + 3M3ω
3 −R

2k2(1 + s1s2)
,

where

R = 2k3(M5 +M10) + 2s1s2k3(M7 +M12)

+ ωk2(M4 +M9) + s1s2ωk
2(M6 +M11).

It may be noted here that both P and Q are function
of various plasma parameters such as k, s1, s2, and κ.
So, all the plasma parameters are used to maintain the
nonlinearity and the dispersion properties of the EDDPM.

4 Modulational instability and Rogue waves

The stable and unstable parametric regimes of the DAWs
are organized by the sign of the dispersion (P ) and non-
linear (Q) coefficients of the standard NLSE (42) [20–24].
When P and Q have same sign (i.e., P/Q > 0), the evo-
lution of the DAWs amplitude is modulationally unsta-
ble. On the other hand, when P and Q have opposite
sign (i.e., P/Q < 0), the DAWs are modulationally sta-
ble in presence of the external perturbations. The plot of
P/Q against k yields stable and unstable domains for the
DAWs. The point, at which transition of P/Q curve inter-
sect with k-axis, is known as threshold or critical wave
number k (=kc).

The governing equation regarding the electron depleted
DARWs in the modulationally unstable parametric regime
(P/Q > 0) can be written as [25,26]

Φ(ξ, τ) =

√
2P
Q

[
4(1 + 4iPτ)

1 + 16P 2τ2 + 4ξ2
− 1
]

exp(2iPτ).

(43)

The plot of P/Q vs k for different plasma parame-
ters can demonstrate the stable and unstable paramet-
ric regimes of DAWs. In the unstable parametric regime
DARWs are formed in an EDDPM due to the interaction
of OPDGs with ions.
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Fig. 1. Plot of P vs k for various values of s1 when s2 = 2.0
and κ = 1.7.
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Fig. 2. Plot of Q vs k for various values of s1 when s2 = 2.0
and κ = 1.7.

5 Results and discussion

The stability conditions of the DAWs and the formation
of the DARWs can be observed from Figures 1–6. It is,
however, clear from Figure 1 that (a) the P is always neg-
ative for all positive values of k; (b) the absolute value
of the P increases with increasing s1, i.e., charge state of
the negative dust grain or mass of the positive dust grain
when the charge state of the positive dust and the mass
of the negative dust grains remain constant. On the other
hand, from Figure 2, it can be manifested that (a) Q is
positive or negative according to the values of k and s1,
when other plasma parameters, namely, s2 and κ remain
unchanged; (b) Q is positive (negative) for small (large)
values of k. This indicates that the instability criterion of
the DAWs as well as generation of the highly energetic
DARWs in an EDDPM only to be determined by the sign
of Q.

Figures 3 and 4 show two parametric regimes, one cor-
responding to the stable (i.e., P/Q < 0) DAWs and other
corresponding to the unstable (i.e., P/Q > 0 and indicat-
ing the formation of the DARWs) DAWs in an EDDPM.
These two parametric regimes, however, are separated by
a vertical line, and corresponding wave number is known
as critical wave number (= kc) in “P/Q versus k” curve.
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Fig. 3. Plot of P/Q vs k for various values of s1 when s2 = 2.0
and κ = 1.7.
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Fig. 4. Plot of P/Q vs k for various values of κ when s1 = 0.6
and s2 = 2.0.

The effects of positive and negative dust masses and their
charge states in recognizing the stable and unstable para-
metric regimes associated with DAWs in an EDDPM can
be observed from Figure 3, and it is obvious from this
figure that (a) the kc decreases (increases) with an increase
in the value of positive (negative) dust mass for constant
value of negative and positive dust charge states; (b) on
the contrary, the kc increases (decreases) with an increase
in the value of Z+ (Z−) for constant value of negative and
positive dust masses (via s1). So, the mass and charge
state of the positive and negative dust play an oppo-
site role in recognizing the stability of the DAWs in an
EDDPM.

To examine the effects of the super-thermality of the
positive ions to establish the stable and unstable para-
metric regimes for DAWs in an EDDPM, we have depicted
Figure 4 and this figure indicates that (a) both stable (i.e.,
P/Q < 0) and unstable (i.e., P/Q > 0 and indicating the
formation of the DARWs) parametric regimes for DAWs
can exist; (b) when κ = 1.6, 1.7, and 1.8 then the corre-
sponding kc value is kc ≡ 2.0 (dotted blue curve), kc ≡ 1.5
(dashed green curve), and kc ≡ 1.2 (solid red curve); (c)
so, the κ reduces the critical value hence the stable domain
for the DAWs.
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Fig. 5. Plot of |Φ| vs ξ for various values of s1 when k = 1.6,
τ = 0, s2 = 2.0, and κ = 1.7.
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Fig. 6. Plot of |Φ| vs ξ for various values of s2 when k = 1.6,
τ = 0, s1 = 0.6, and κ = 1.7.

We have numerically analyzed equation (43) in
Figures 5 and 6 to understand how various plasma param-
eters influence the nonlinearity as well as the formation
of DARWs associated with unstable parametric regime of
DAWs in an EDDPM. The transformation of the ampli-
tude of the carrier waves in a nonlinear dispersive medium
is highly influenced by the existence of OPDGs and their
intrinsic properties (viz., charge and mass) as they inter-
fere with each other to organize nonlinear property, which
describes the structure of the DARWs associated with
DAWs in the modulationally unstable parametric regime,
of the EDDPM in presence of the super-thermal ions can
be seen from Figure 5, and it is clear from this figure
that the nonlinearity as well as the height and thickness
of the DARWs in an EDDPM having super-thermal ions
increases (decreases) with increasing Z+ (Z−) for fixed
value of m− and m+ (via s1). The exact nature of the
electrostatic DARWs according to the number density and
charge state of the OPDGs (via s2) can be observed from
Figure 6, and this figure exhibits that (a) the number
density of negative (positive) dust in an EDDPM min-
imizes (maximizes) the nonlinearity, i.e., the height as
well as thickness of the DARWs in an EDDPM decreases
(increases) in space evolution for a constant value of time
as well as negative and positive dust charge states.
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6 Conclusion

In this paper, we have emphasized not only the nonlin-
ear and dispersive features of a three component EDDPM
but also the stability of the DAWs and construction of
DARWs by deriving a standard NLSE. The nonlinear and
the dispersive coefficients of the standard NLSE reflect the
stable and unstable parametric regimes of the DAWs as
well as the mechanism to establish the gigantic DARWs
associated with DAWs in the unstable parametric regime.
The numerical analysis shows that the super-thermal ions
have the capability to control the MI of DAWs in an
EDDPM, and also expresses that the MI conditions of
the DAWs in an EDDPM are also function of the intrinsic
properties (viz., charge, mass, and number density) of the
massive OPDGs as well as ions. We can expect that the
outcomes of our current work can be applicable in max-
imizing our knowledge regarding the formation of the
DARWs in an EDDPM which are quite connected with
various space plasma, viz., the earth polar mesosphere [2],
interstellar space [3], cometary tails, Jupiter’s magneto-
sphere, F-rings of Saturn [13], and also laboratory plasma
namely, laser-matter plasma interaction [5].
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