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Abstract. We study the dynamics of three-dimensional Bose-Einstein condensates confined by double-
well potentials using a two-mode (TM) model with an effective on-site interaction energy parameter. The
effective on-site interaction energy parameter is evaluated for different numbers of particles ranging from a
low experimental value to larger ones approaching the Thomas-Fermi limit, yielding important corrections
to the dynamics. We analyze the time periods as functions of the initial imbalance and find a closed integral
form that includes all interaction-driven parameters. A simple analytical formula for the self-trapping period
is introduced and shown to accurately reproduce the exact values provided by the TM model. Systematic
numerical simulations of the problem in 3D demonstrate the excellent agreement of the TM model for
experimental parameters.

1 Introduction

TM model applied to double-well atomic Bose-Einstein
condensates has been extensively studied in the recent
years [1–12]. Such a model assumes that the condensate
order parameter can be described as a superposition of
wave functions localized in each well with time depen-
dent coefficients [1,2]. The localized wave functions are
straightforwardly obtained in terms of the stationary sym-
metric and antisymmetric states, which in turn determine
the parameters involved in the TM equations of motion
[1–4]. The corresponding dynamics exhibits Josephson
and self-trapping (ST) regimes [1,2] which have been
experimentally observed by Albiez et al. [5].

The ST phenomenon, which is also present in extended
optical lattices [13–18], is a non linear effect where the
difference of populations between neighboring sites does
not change sign during the whole time evolution. There
is nowadays an active research on the ST effect, which
involves different types of systems, including mixtures of
atomic species [6,19,20]. Research on condensates trapped
in ring-shaped optical lattices is also a promising area
given that successful efforts has been done in their exper-
imental realization [21]. The dynamics on systems with
three [22] and four wells [23] has been initially investigated
through multimode models that utilized ad hoc values
for the hopping and on-site energy parameters. Whereas
in [24], such parameters have been extracted for a ring-
shaped optical lattice with an arbitrary number of wells,
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by constructing two-dimensional localized Wannier-like
(WL) functions in terms of stationary Gross-Pitaevskii
(GP) states.

In recent works it has been shown that a correction in
the TM model that involves the interaction energy should
be taken into account in order to properly describe the
exact dynamics [24,25]. In particular in [25] an effective
two-mode (ETM) model has been developed with an inter-
action parameter which has been analytically obtained
in the Thomas-Fermi (TF) limit, that completely heals
this disagreement. In the present work, we will extend
these studies for lower numbers of particles by numeri-
cally calculating the effective parameter that enters in the
model. Here we will analyze the double-well system with
the experimental conditions of [5], where the number of
particles is 1150, and increase such a number to show that
the correction to the on-site interaction energy parame-
ter goes to the one predicted in the TF regime [25]. The
main goal of this work is to assess the accuracy of the
ETM model by calculating the time periods as functions
of the initial imbalance and analyze the role of the differ-
ent parameters. To this end, we shall confront the values
of the orbits periods predicted by this model to those
obtained by numerically solving the three-dimensional GP
equations. In particular, within the ETM model frame-
work we derive closed expressions for the periods valid for
any imbalance value. We then develop a simple analytical
approximation to the ST period and improve the calcu-
lation of the Josephson period for small imbalances by
taking into account the parameter that involves the den-
sity overlap between the localized states in neighboring
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sites [3]. This correction will be of importance for the
experimental configuration of the Heidelberg group [5].
We will show that the critical imbalance for the transition
between the Josephson and ST regimes predicted by our
model is in good agreement with the experimental finding
in reference [26] for the first time.

This paper is organized as follows. In Section 2 we
describe the double-well system and find the effective
on-site interaction energy parameter for several particle
numbers. Such a parameter is obtained from a linear
approximation of the on-site interaction energy as a func-
tion of the imbalance. We will show that the corresponding
second order term in the approximation turns out to be
much smaller and gives rise to a third order correction
in the equations of motion which can be safely disre-
garded. In Section 3 we derive a closed integral form
for the period of the orbits with an arbitrary initial
imbalance and obtain explicit analytical approximations
within the ST and Josephson regimes, while the numeri-
cal results and comparisons with the GP calculations are
included in Section 4. To conclude, a summary of our
work is presented in Section 5 including a perspective of
the application of these methods to multiple-well systems
in configurations with high symmetries. Finally, the def-
inition of the parameters employed in the equations of
motion are gathered in Appendix A.

2 Two-mode model

We consider a Bose-Einstein condensate of Rubidium
atoms confined by the external potential Vtrap used in the
experiment of the Heidelberg group [5],

Vtrap(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

+V0 cos2(πx/q0), (1)

where m is the atom mass, ωx = 2π × 66 Hz, ωy = 2π ×
78 Hz, and ωz = 2π × 90 Hz. The lattice parameters are
given by V0 = 2π× 412~Hz and q0 = 5.2µm. The number
of particles used in the experiment is N = 1150, but we
will also consider particle numbers up to N = 105.

2.1 Inclusion of effective on-site interaction energy
effects

In previous works [24,25] we have shown that the linear
dependence on the imbalance of the interaction energy
integrated in each well gives rise to a lower effective on-
site interaction parameter. Here we will evaluate such
a parameter by using a combination of the procedures
described in [24,25] and also by expanding to a higher
order approximation on the imbalance.

In doing so, we first rewrite the TM equations of motion
by assuming that the on-site interaction energy U can be
different in the left (UL) and right (UR) wells. As described
in [25], UR and UL arise from introducing in the mean-
field interaction term of the GP equation a more realistic
density distribution that depends on the imbalance. Then
the GP equation projected into two localized modes at the

left and right wells yields [3]

~
dZ

dt
= −2K

√
1− Z2 sinϕ+ I(1− Z2) sin 2ϕ, (2)

~
dϕ

dt
= UR(Z)NR − UL(Z)NL + 2K

[
Z√

1− Z2

]
cosϕ

−IZ(2 + cos 2ϕ). (3)

The dynamical variables are the standard imbalance Z =
(NR −NL)/N and phase difference ϕ = ϕL − ϕR, where
NR and NL are the number of particles in the right and
left wells, respectively. As derived in [25] we have

Uk(∆N) = g

∫
d3rρkN (r)ρkN+∆N (r), (4)

where k = R,L, and ρkN , and ρkN+∆N are the localized
densities in the k-site for systems with total number of
particles N and N + ∆N , respectively. The remaining
parameters J , and the interaction-driven F and I are
defined as usual [1–3] in terms of the localized wave
functions (see Appendix A), being K = J + F .

Aiming at reproducing the experimental conditions of
[5], where the number of particles N = 1150 is not large
enough to be in the TF regime, and thus the dependence
on the imbalance of the on-site interaction energy UR and
UL cannot be analytically calculated, we should evaluate
equation (4). To simplify the numerical calculation given
that the wells are equal, instead of using the localized den-
sities in equation (4), we can use the alternative method
proposed in [24] where only GP ground-state densities are
involved. In that work it has been shown that Uk(∆Nk)
with ∆Nk = Nk −N/2 can be evaluated as

Uk(∆Nk)

U
=

∫
d3rρN (r)ρN+∆N (r)∫

d3rρ2
N (r)

, (5)

where ρN and ρN+∆N are the GP ground-state densi-
ties for systems with N and N + ∆N total number of
particles, respectively, being ∆N = 2∆Nk. The numerical
result of Uk/U as a function of ∆N/N has been depicted
in Figure 1, where it can be seen that it exhibits an almost
linear behavior. A second order approximation of Uk

Uk(∆Nk)

U
' 1− α2∆Nk

N
+ β

(
2∆Nk
N

)2

, (6)

can be obtained by using a polynomial fit of the function
with parameters α and β. These parameters are listed
in Table 1 for different numbers of particles and trap-
ping parameters. It is worthwhile mentioning that for the
largest number of particles considered in this work, we
have taken a larger q0 value than that of the Heidel-
berg experiment and modified the depth of the wells since
the size of the condensate increases with the number of
particles.
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Fig. 1. On-site interaction energy ratio Uk/U as a function of
∆N/N , for N = 1150, N = 104, and N = 105.

Introducing the expansions of UR and UL in the equa-
tion of motion (3) for the phase difference, we obtain the
on-site interaction-driven correction,

UR(∆NR)

U
NR−

UL(∆NL)

U
NL =

[
(1− α)Z+βZ3

]
N, (7)

which yields

~
dϕ

dt
=
[
(1− α)Z + βZ3

]
UN + 2K

[
Z√

1− Z2

]
cosϕ

−IZ(2 + cos 2ϕ). (8)

We note that for all number of particles of Table 1 we
have βZ3 � (1 − α)Z, and hence one can safely disre-
gard the term of third order in Z in equation (8) in all
cases. Then, we conclude that the effective TM model
can be simply obtained by replacing the on-site inter-
action energy parameter U by Ueff = (1 − α)U = f3DU .
For the largest number of particles considered here, we
have f3D = 7/10 in accordance with the analytic result
obtained in the TF approximation [25], whereas for the
lowest valueN = 1150, we obtain f3D = 0.79. Such a value
does not seem to depend on the ratio of the trap frequen-
cies, since in [27] the harmonic trap frequencies are equal
in the three directions and the same value of f3D was also
obtained.

2.2 Two-mode model using the effective interaction
parameter

We now focus on the experimentally relevant case of N =
1150, where we have obtained the following TM model
[3] parameters: U = 2.47× 10−3~ωx, J = 1.89× 10−2~ωx,
F = 2.51× 10−2~ωx, and I = 5.62× 10−3~ωx. Using the
results of the previous section, we obtain Ueff = f3DU =
1.95× 10−3~ωx, with f3D = 1− α = 0.79.

In terms of the conjugate coordinates, imbalance Z and
phase difference ϕ, one can define the following ETM
model Hamiltonian [25]:

HETM(Z,ϕ) =
1

2
ΛeffZ

2 −
√

1− Z2 cosϕ

+
γ

2
(1− Z2)(2 + cos 2ϕ), (9)

with Λeff = UeffN/(2K) and γ = I/(2K).
The corresponding equations of motion are given in

Hamiltonian form by

Ż = − ∂

∂ϕ
HETM and ϕ̇ =

∂

∂Z
HETM, (10)

which yield

dZ

dt
= −

√
1− Z2 sinϕ+ γ(1− Z2) sin 2ϕ, (11)

dϕ

dt
= ΛeffZ +

[
Z√

1− Z2

]
cosϕ− γZ(2 + cos 2ϕ), (12)

where the time t is given in units of ~/2K.
The separatrix between Josephson and ST orbits on

the phase portrait (Z,ϕ) has a critical imbalance Zc
determined by the condition H(Zc, 0) = H(0, π), which
yields

ZETM
c = 2

√
Λeff − 3γ − 1

Λeff − 3γ
. (13)

Using Λeff = 25.5 we obtain a critical imbalance ZETM
c =

0.389 which is much closer to that numerically found,
ZGP
c = 0.39, than the value ZTM

c = 0.347 obtained with
the bare Λ = 32.27 from the TM-model version improved
by Ananikian and Bergeman [3]. We also note that the
effect of γ is negligible in the Zc calculation. The numerical
value of ZGP

c was obtained by analyzing the time evolu-
tions of the GP equation with different initial conditions
as done in [6]. In contrast to previous approximations, the
value of ZETM

c compares very well with the experimental
finding of the Heidelberg group as indicated in [26].

We can estimate the relative deviation between the
ETM and TM models as

∆Zc
ZTM
c

' 1√
f3D
− 1, (14)

which goes from 0.13 for N = 1150 to 0.2 for the largest
N considered.

3 Two-mode model periods

3.1 Exact determination

The time periods of orbits in both the TM and ETM
models can be obtained for any initial imbalance Zi and
phase difference ϕi. For a classical Hamiltonian system
such as that described by equation (9) we can obtain the
period τ from the line integral over a given trajectory,
τ = −

∮
1/(∂H/∂ϕ)dZ [28]. Following this approach, an

expression which does not include the parameter γ was
previously obtained in [28,29] for the TM model. Here we
extend that result and show that an expression incorpo-
rating γ can also be achieved, demonstrating that this
correction may be important in the Josephson regime.

https://epjd.epj.org/
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Table 1. Coefficients α and β of the quadratic fit of Uk/U as a function of ∆N/N and γ for several values of the
system parameters. In the 6th column the factor f3D that reduces the interaction energy parameter is also given.

N q0 (µm) V0 (2π~Hz) α β f3D = 1 − α γ

1150 5.2 412 0.21 0.06 0.79 0.064
104 5.2 858 0.28 0.08 0.72 0.010
105 8.0 1980 0.30 0.08a 0.70b 0.005
a The Thomas-Fermi limit is 77/1000.
b The Thomas-Fermi limit is 7/10.

The period τ of a given trajectory can be calculated
from the integral τ =

∮
(1/Ż)dZ where Ż is given by (11).

The relation between Z and ϕ is obtained for a given
energy E by setting H(Z,ϕ) = E, yielding a quadratic
equation for cosϕ with the solution cosϕ = 1

2γ
√

1−Z2
(1−

√
Y ), where Y = 1− 2γ[(Λ− γ)Z2 − 2E + γ]. Taking this

into account the time period is given by

τ(Zi, ϕi) = 2

∫ ZM

Zm

dZ
1√
Y

1√
1−Z2 − 1

4γ2 (1−
√
Y )2

, (15)

where Zm (ZM ) is the minimum (maximum) imbalance
reached by the system. The values of Zm and ZM are
obtained from the phase diagram that emerges by set-
ting H = E, and have different expressions depending
on the regime. In the Josephson regime (ZM < Zc) the
conditions are H(Zi, ϕi) = H(ZM , 0) = H(Zm, 0) with
ZM > 0, Zm = −ZM , which give

Zm
M

= ∓
√

2

A2

[
AB − 1 +

√
C
]
, (16)

where A = Λ− 3γ, B = E − 3γ/2 and C = (AB − 1)2 −
A2(B2 − 1). On the other hand, in the ST regime, taking
into account that the phase diagram is symmetric under
the inversion of Zi we restrict the domain of Zi to Zi > 0.
In this case the conditions read H(Zi, ϕi) = H(ZM , 0) =
H(Zm, π) valid for ZM > Zc, which yield

Zm
M

=

√
2

A2

[
AB − 1∓

√
C
]
. (17)

This formulation can also be used for the ETM model by
replacing Λ by Λeff . It is worthwhile mentioning that the
expression (15) for γ = 0 can be written in terms of the
complete Elliptic integral of the first kind K(k), as shown
previously in [2] by directly integrating the equations of
motion for Z(t) and ϕ(t).

3.2 Approximate expressions

Even though the above formalism provides a closed inte-
gral form for the time periods amenable to a numerical
calculation, both in the Josephson and ST regimes, it
is also useful to derive analytical expressions in specific
limits. In the case of small oscillations, by retaining only
quadratic terms in the Hamiltonian, equation (15) can be

straightforwardly integrated and we recover the expres-
sions given by the standard formula in [1,6] with the
inclusion of γ [3]. Replacing U by Ueff , one thus obtains
the ETM model period,

TETM
so =

π~
K
√

(Λeff + 1− 3γ)(1− 2γ)
, (18)

which yields TETM
so = 14.91ω−1

x in contrast to TTM
so =

13.29ω−1
x obtained using the bare Λ value. We remark that

an important correction is also provided by the parameter
γ. This correction diminishes for increasing Zi, and it does
not affect sizeably either the critical imbalance Zc, or the
time periods in the ST regime.

In the ST regime one can also derive a limiting approx-
imation for the time period valid for large Λ. In this case,
we can neglect γ and take the first-order approximation of
the function K(k) around k = 0. This yields the analytical
expression for the time period τ0

τ0 =
~

2K

2π

ΛZi
. (19)

A higher-order approximation of K(k) could also be
employed to increase the accuracy of τ0, but since
one should retain an important number of terms to
achieve a noticeable improvement, this procedure become
quite cumbersome thus relegating the simplicity of
equation (19).

However, a simple analytical formula that improves τ0
can be developed in the ST regime by performing some
approximations directly in the equations of motion. We
will keep assuming a large interaction parameter Λ and
neglect the parameter γ, as it does not contribute to
any significant change in the predictions of this regime.
Considering the imbalance performs oscillations around
a positive mean value and using Λ � 1, (12) can be
approximated by,

dϕ

dt
= ΛZ +

[
Z√

1− Z2

]
cosϕ ' ΛZ ' ΛZ0, (20)

where Z0 = Z(t) denotes the mean value of the time
dependent imbalance, and we have used that the sec-
ond term of equation (20) averages approximately to zero.
Then, assuming ϕ(0) = 0 we obtain,

ϕ(t) = ΛZ0t, (21)

https://epjd.epj.org/
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which replaced in equation (11) with the further assump-

tion that
√

1− Z2 '
√

1− Z2
0 yields,

dZ

dt
= −

√
1− Z2

0 sin(ΛZ0t). (22)

Integrating the last expression with respect to time and
considering the initial value Z(0) = Zi, we finally obtain
for small Z2

0

Z(t) =

(
1− Z2

0

2

)
cos(ΛZ0t)

ΛZ0

−
(

1− Z2
0

2

)
1

ΛZ0
+ Zi. (23)

Furthermore, to be consistent with Z0 being the mean
value of Z(t), we impose

Z0 = −
(

1− Z2
0

2

)
1

ΛZ0
+ Zi, (24)

which yields a quadratic equation for Z0 with the following
solution for Λ� 1,

Z0 =
Zi
2

[
1±

√
1− 4

ΛZ2
i

]
. (25)

Given that we are assuming a ST regime, which implies
that Z(t) from equation (23) should not change sign dur-
ing the evolution, we discard the minus sign in front
of the square root in equation (25). Therefore, using
equation (25) we can estimate the ST period Tst =
2π/(ΛZ0) as,

Tst =
Ziπ~
2K

(
1−

√
1− 4

ΛZ2
i

)
, (26)

which will be expressed in units of ω−1
x . The above equa-

tion can also be used by replacing Λ by Λeff to better take
into account the effective interaction effects. For exam-
ple, for an initial imbalance Zi = 0.45 it yields TETM

st =
8.42ω−1

x and TTM
st = 6.05ω−1

x in comparison with that
obtained with the GP simulation, TGP

st = 8.54ω−1
x .

4 Numerical results

Aiming at testing the validity of the model equations,
we have numerically solved the GP equation using a
second order in time, split-step spatial Fourier operator
[30,31] with up to 512 × 512 × 256 grid points and time
steps down to ∆t = 5 × 10−5ω−1

x . In Figures 2 and 3
we show the GP time evolutions for initial imbalances in
the Josephson and ST regimes, respectively, as compared
to those given by TM models using the bare Λ and the
effective Λeff values. It becomes clear that the effective
approach reproduces the GP results much better than the
bare TM model in both regimes. We also notice that the

Fig. 2. Time evolution of an initial imbalance in the Josephson
regime using the GP equation, the TM and ETM models for
the initial condition Zi = 0.1 and ϕi = 0. The vertical arrows
indicate the small-oscillation period estimates for both models,
equation (18).

Fig. 3. Time evolution of an initial imbalance in the ST regime
using the GP equation, the TM and ETM models for the initial
condition Zi = 0.45 and ϕi = 0. The vertical arrows indicate
the ST period estimates arising from equation (26) for both
models.

small-oscillation period (18) calculated from the effective
interaction parameter is a much better estimate and the
same holds for the period estimates given by equation (26)
in the ST regime.

In Figure 4 we compare the time periods as a function
of the imbalance using the TM and ETM models together
with several periods obtained from GP simulations. We
also plot with empty circles Tst(Zi) from equation (26)
and with horizontal lines Tso given by equation (18), both
for the TM and ETM models. We notice that the pre-
dictions for both the ST and the small-oscillation periods
are highly accurate within both TM models, and that the
ETM results agree well with the full GP calculation. We
have also included in Figure 4 calculations neglecting γ
(depicted in thinner lines), so as to emphasize that for the
experimentally relevant case of N = 1150 the inclusion
of the parameter γ also yields a sizable correction to the
Josephson periods. On the other hand, for smaller overlaps
between the densities of the localized states, the factor γ
is substantially reduced (cf. Tab. 1) and thus it does not
play any significant role in determining these periods.

We also compare in Figure 5 the exact results for
γ = 0 in the ST regime with the value of τ0 given by
equation (19), and with Tst, equation (26). In particu-
lar, we show the results for Λ = 16, 25.5, and 64, where
it may be seen that our estimate, Tst, provides a simple

https://epjd.epj.org/
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Fig. 4. Trajectory periods as functions of the initial imbalance
Zi for the TM (dashed blue lines) and ETM (dash-dotted red
lines) models according to equation (15) with ϕi = 0. Thinner
lines correspond to calculations neglecting γ. The vertical lines
mark the critical imbalance Zc, while the circles correspond to
equation (26) for the TM and ETM models and the horizontal
solid lines correspond to the small-oscillation approximations.
The stars indicate the periods obtained from the full 3D GP
simulation.

Fig. 5. Comparison of the time periods τ (in units of ~/(2K))
in different approximations for Λ = 16, 25.5, and 64. The solid,
dashed, and dash-dotted lines correspond to the exact results
(15), the approximation τ0 (19), and Tst given by equation
(26), respectively. The vertical dotted lines mark the critical
imbalance Zc for each value of Λ.

and improved overall approximation around an extended
region in Zi. For lower values of Λ the assumption Λ� 1
breaks down and hence both approximations becomes less
accurate. For larger values both estimates get closer to the
exact result, while our prediction is able to quantitatively
describe the exact curve closer to Zc much better than
τ0. For values above Λ ' 103 despite the error is substan-
tially reduced in both approximations, Tst still improves
the period calculation over τ0.

5 Summary and concluding remarks

We have studied the dynamics of three-dimensional Bose-
Einstein condensates using a TM model with an effective
on-site interaction parameter and compare it to the full
3D GP simulations. We demonstrate that the periods of
the orbits for TM models with arbitrary initial condi-
tions can be written as a closed integral form which takes

into account the effect of the overlap between the local-
ized densities through the parameter γ. We show that
this interaction-driven effect is specially important in the
Josephson regime for the experimental conditions of [5].
Furthermore, based on the dynamical equations for the
populations and phase differences in each well, we have
derived a simple analytical formula for the period in the
ST regime, which accurately reproduces the exact inte-
gral expression of the TM model and correctly describes
GP simulation results for large on-site interaction energy
parameters.

The three-dimensional numerical simulations prove that
the precise determination of the effective on-site interac-
tion energy parameter is essential to correctly reproduce
the GP results and thus to calculate accurate estimates of
the time periods.

The present study opens the possibility to the applica-
tion of the ETM model and the time period expressions to
multiple-well systems with symmetric initial populations.
In such cases, the dynamics can be characterized by a sin-
gle imbalance and a phase difference in terms of which the
TM Hamiltonian can be easily furnished. Studies in such
direction are currently underway for a four-well system.

This work was supported by CONICET and Universidad de
Buenos Aires through grants PIP 11220150100442CO and
UBACyT 20020150100157, respectively.
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Appendix A: Multimode parameters

The parameters of the TM model are defined as

J = −
∫
d3rψR(r)

[
− ~2

2m
∇2 + Vtrap(r)

]
ψL(r), (A.1)

U = g

∫
d3rψ4

R(r), (A.2)

F = −gN
∫
d3rψ3

R(r)ψL(r), (A.3)

I = gN

∫
d3rψ2

R(r)ψ2
L(r). (A.4)

where ψR(r) and ψL(r) are the localized modes at
the right and left sides, respectively. As usual the left
(right) mode is obtained from the sum (difference) of the
lowest energy symmetric and antisymmetric stationary
order parameters obtained from the GP equation. The
interaction-driven parameters F and I were first defined
in [3] and later analyzed in [4].

https://epjd.epj.org/
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Together with the calculation of these parameters
through the preceding definitions, we have applied also
the alternative method outlined in [24], finding an agree-
ment between both procedures with a precision higher
than 99%. In particular, we note that the difference of
energies between antisymmetric and ground states of the
TM model defines the hopping parameter K [32].
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