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Abstract. In this paper, we consider a three-level Λ-type atom interacting with a two-mode of electro-
magnetic cavity field surrounded by a nonlinear Kerr-like medium, the atom and the field are suffering
decay rates (i.e. the cavity is not ideal) when the multi-photon processes is considered. Also, the atom
and the field are assumed to be coupled with a modulated time-dependent coupling parameter under the
rotating wave approximation. The wave function and the probability amplitudes are obtained, when the
atom initially prepared in the superposition states and the field initially in the coherent states, by solving
the time-dependent Schrödinger equation by taking a proper approximation to the system of differential
equations. An analytical expression of the atomic reduced density operator is given. We studied the degree
of entanglement, between the field and atom, measure (DEM) via the concurrence, Shannon information
entropy, momentum increment and diffusion, and finally we investigated the effects of decay rates and the
time-dependent parameters on Husimi Q-function.

1 Introduction

Information cannot be separated from being represented
physically. It always be stored in an appropriate physi-
cal system and some physical processes can manipulate
with it. Quantum entanglement is considered as one of
the key resources for quantum information science such
as quantum computation and communication [1] and
quantum teleportation [2]. Whilst the realization of a
quantum computer is along term goal, these pursuits are
motivating an enormous amount of cross-disciplinary col-
laboration in questioning some of the fundamentals of
quantum mechanics, information theory, and how the
two are related [3]. Since the early days of quantum
mechanics, physicists have been puzzled by the counter-
intuitive consequences of entanglement [4], which has in
fact stimulated an intense debate regarding fundamen-
tal issues of quantum theory [5,6]. Recently, a particular
attention has been given to develop different methods of
entanglement measures [7]. Progress has also been made
theoretically in the understanding of quantum entangle-
ment in continuous spaces between two or more modes [8].
The Jaynes-Cummings model (JCM), as is well-known, is
a fully quantum mechanical and exactly solvable model
which gives a pattern for the description of the most basic
and important interaction between light (a single-mode
quantized electromagnetic field) and matter (a two-level
atom) in the rotating wave approximation (RWA) [9]. The
JCM has been the subject of intensive theoretical stud-
ies and also of experimental investigations [10,11]. The
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influence of the external classical field on the entanglement
of a two-level atom is studied [12,13] as well as studying
the entanglement for a dissipative cavity problem [14–16].

In the recent years, a great attention is paid for studying
the interaction between a three-level atom and electro-
magnetic cavity field. It is important to point out that the
increased insight into the dynamics of the three-level sys-
tems may be helpful in developing quantum information
theory [17–22]. It was demonstrated that key distribu-
tions based on three-level quantum systems are more
secure against eavesdropping than those based on two-
level systems [23,24]. Studying the purity of a three-level
atomic system in the presence of Stark shift contribu-
tions and the effects of gravity field are presented in
[25,26]. The dynamics of entanglement of a three-level
atom in motion interacting one and two coupled modes
has been investigated [27–30]. Studying the entanglement
of a multi-photon three-level atom near the edge of a pho-
tonic band gap is presented in [31]. The entanglement
between the three-level atom for different configurations
and a cavity field (correlated and non-correlated) in the
presence of nonlinearities (intensity-dependent coupling
and cross and non-linear Kerr medium) is well studied in
many cases for initial states of the system [32–38] as well
as when the atom and the field are assumed to be cou-
pled with modulated coupling parameter which depends
explicitly on time [39]. The autocorrelation function of the
light emitted by a microcavity containing a semiconductor
quantum well in the non-stationary regime is investigated
[40]. Information dynamics of a three-level atom interact-
ing with a damped cavity field is recently investigated
taking into consideration that the optical cavity is coupled
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to the environment [41]. The effects of an environment on
a cavity QED system controlled by bichromatic adiabatic
passage is studied for the two-level atomic subsystem [42].
The motion of a pair of solitons propagating through an
absorbing three-level atoms in the lambda configuration
is analyzed [43]. The transient gain in a three-level system
has common features with Dicke super-radiance and can
yield strong extreme ultraviolet lasing in, for example He
atoms is showed [44]. The optomechanical entanglement
of a superconducting charge qubit coupled to a trans-
mission line resonator and a nanomechanical oscillator is
studied [45]. The case of a dissipative cavity is studied
for a three-level atomic system through master equation
methods [46,47] and postulating a non-Hermitian model
Hamiltonian [48–50].

This paper is organized as follows: In Section 2,
we present a non-Hermitian model Hamiltonian and
derive the wave function by using the time-dependent
Schrödinger function, solving the system of differential
equations and the atomic reduced density matrix is given.
In Section 3, we study the Shannon entropy. In Section 4,
we study the degree of entanglement by using the con-
currence. In Section 5, we study the evolution of Husimi
Q-function. In Section 6, we study the atomic momen-
tum increment and momentum diffusion. A conclusion of
the paper is presented in Section 7. Finally, we added an
appendix shows some detailed mathematical procedure.

2 The physical model

The Hamiltonian Ĥ specifies the energy levels and time
evolution of a quantum theory. A standard axiom of quan-
tum mechanics requires that H be Hermitian because
Hermiticity guarantees that the energy spectrum is real
and that time evolution is unitary. Hamiltonians that are
non-Hermitian have traditionally been used to describe
dissipative processes, such as the phenomenon of radioac-
tive decay. However, these non-Hermitian Hamiltonians
are only approximate, phenomenological descriptions of
physical processes. They cannot be regarded as fundamen-
tal because they violate the requirement of unitarity. A
non-Hermitian Hamiltonian whose purpose is to describe a
particle that undergoes radioactive decay predicts that the
probability of finding the particle gradually decreases in
time. Of course, a particle cannot just disappear because
this would violate the conservation of probability; rather,
the particle transforms into other particles. Thus, a non-
Hermitian Hamiltonian that describes radioactive decay
can at best be a simplified, phenomenological, and non-
fundamental description of the decay process because it
ignores the precise nature of the decay products [51].

The physical system to be considered is a two-mode
field interacting with a three-level Λ-type atom (illus-
trated schematically in Fig. 1). The non-degenerate case
of the quantized radiation field with interaction in the
RWA in a non-ideal cavity filled with a Kerr-like medium
is assumed. The atom can pass the cavity through a hole.
Kerr effect can be observed by surrounding the atom by
a nonlinear medium inside a low Q-cavity. To include
damping effects, we propose the following non-Hermitian

Hamiltonian to describe the moving three-level atom of
the Λ-type through the leaking cavity (~ = 1)

Ĥ =
~̂p2

2µ
+

2∑
`=1

Ω`â
†
` â` +

3∑
j=1

ωj σ̂jj

+χ

[
â†1â1â

†
2â2 +

2∑
`=1

â†` â`(â
†
` â` − 1)

]

−i γ̄
2
σ̂11 − i

Γ̄

2
(n̂1 + n̂2)

+λ1(t)
(
âm1 e

im~κ1.~rσ̂12 + â†m1 e−im~κ1.~rσ̂21
)

+λ2(t)
(
âm2 e

im~κ2.~rσ̂13 + â†m2 e−im~κ2.~rσ̂31
)

(1)

where p̂ is the momentum operator, µ is the mass of the

atom, â` (â†`) (` = 1, 2) are the annihilation (creation)
operators for the photon field mode under consideration
with frequencies Ω` and they satisfy the commutation

relation [â`, â
†
k] = δ`k. σ̂ij = |i〉 〈j| (i, j = 1, 2, 3) the

atomic flip operator for |j〉 → |i〉 transition between the
atomic states with energies ωj and the operators satisfy
the commutation relation[

σ̂ij , σ̂αβ
]
= σ̂iβδαj − σ̂αjδiβ .

Also, λ`(t) (` = 1, 2.) are the coupling parameters between
the field and atom where we consider it to be a time-
dependent parameters and it may take the form λ`(t) =
λ̄` cos(εt) where λ̄` is an arbitrary constant and ε is
the coupling variation parameter. m is the multi-photon
parameter. χ denotes the dispersive part of the third-
order nonlinearity of the Kerr-like medium, a similar
technique has been demonstrated experimentally which
the two lasers are coupled through a gas of 87Rb where
the photons interact with a Λ-type three-level system [52].
γ̄ and Γ̄ are the decaying rates in both the atom and field,
respectively, where we consider that the atomic level |1〉
is decaying with a rate γ̄ and the electromagnetic field
modes are dissipating with a rate Γ̄ through the cavity.
~κ` is the propagation vectors, and ~r is the position vector
and they satisfy the following relations [53].[

e±i~κ`.~r, ~̂p
]

= ∓~κ`e±i~κ`.~r,

e±i~κ`.~r |~p0〉 = |~p0 ± ~κ`〉 ,
~̂p |~p0〉 = ~p0 |~p0〉 .

Let us now consider the wave function |Ψ(t)〉 corre-
sponding to the system at any time t > 0 to be in the
form

|Ψ(t)〉 =
+∞∑
n1=0

+∞∑
n2=0

[
A1(n1, n2, t)e

−iγ1t |1; ~p0;n1;n2〉

+A2(n1, n2, t)e
−iγ2t |2; ~p0 −m~κ1;n1 +m;n2〉

+A3(n1, n2, t)e
−iγ3t |3; ~p0 −m~κ2;n1;n2 +m〉],

(2)
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where A1, A2 and A3 are the time-dependent probability
amplitudes that have to be evaluated, and

γ1 =
|~p0|2

2µ
+ ω1 +Ω1n1 +Ω2n2,

γ2 =
|~p0 −m~κ1|2

2µ
+ ω2 +Ω1(n1 +m) +Ω2n2,

γ3 =
|~p0 −m~κ2|2

2µ
+ ω3 +Ω1n1 +Ω2(n2 +m). (3)

By using the time-dependent Schrödinger equation
i ∂∂t |Ψ(t)〉 = Ĥ |Ψ(t)〉, we get the following coupled system
of differential equations:

Ȧ1(t) = ν1A1(t) + g̃1e
i∆1tA2(t) + g̃2e

i∆2tA3(t),

iȦ2(t) = g̃1e
−i∆1tA1(t) + ν2A2(t),

iȦ3(t) = g̃2e
−i∆2tA1(t) + ν3A3(t),

where ∆1 and ∆2 are special detuning parameters written
in terms of Doppler shift parameter ~p0.~κ`

µ and the recoil

energy
m2κ2

`

2µ such that

∆1 = ω1 − ω2 −mΩ1 +
m2κ21

2µ
− ~p0.~κ1

µ
,

∆2 = ω1 − ω3 −mΩ2 +
m2κ22

2µ
− ~p0.~κ2

µ
, (4)

g̃` = λ̄` cos(εt)

√
(n` +m)!

n`!
,

ν1 = χ[n1n2 + n1(n1 − 1) + n2(n2 − 1)]

−i γ̄
2
− i Γ̄

2
[n1 + n2],

ν2 = χ[(n1 +m)n2 + (n1 +m)(n1 +m− 1) + n2(n2 − 1)]

−i Γ̄
2

[(n1 +m) + n2],

ν3 = χ[n1(n2 +m) + n1(n1 − 1) + (n2 +m)(n2 +m− 1)]

−i Γ̄
2

[n1 + (n2 +m)]. (5)

The trigonometric function in g̃` can be written in an
exponential form. We note that there are two exponen-
tial terms in the differential equations e±i(∆1,2+ε)t and
e±i(∆1,2−ε)t. As an approximation we neglect the rapidly
oscillating (counter rotating) terms e±i(∆1,2+ε)t. This
approximation is quite similar to the RWA and has been
used extensively to solve such physical models e.g. [54].
So, the system of differential equations can be written as

iȦ1(t) = ν1A1(t) + z1e
i(∆1−ε)tA2(t) + z2e

i(∆2−ε)tA3(t),

iȦ2(t) = z1e
−i(∆1−ε)tA1(t) + ν2A2(t),

iȦ3(t) = z2e
−i(∆2−ε)tA1(t) + ν3A3(t), (6)

Fig. 1. Schematic diagram of a three-level Λ-type atom with
frequencies ωj (j = 1, 2, 3) interacting with two-mode electro-
magnetic field with frequencies Ω` (` = 1, 2) in a cavity suffers
a decay rates γ̄ and Γ̄ for atom and field, respectively.

where the parameter z` after the previous approximation

be equal to 1
2 λ̄`

√
(n`+m)!
n`!

. By considering the atom to be

initially prepared in the superposition of states and the
field to be initially prepared in the coherent states |α`〉
that correspond to a minimum uncertainty state whose
center oscillates classically in a harmonic well and retain
its shape, where

|α`〉 =

+∞∑
n`=0

qn`
|n`〉 , qn`

= exp

(
−|α`|

2

2

)
αn`

`√
n`!

where qn`
describes the amplitude of the state |n`〉 of

the field mode ` and n̄` = |α`|2 denote the mean photon
number (intensity of light) of mode `. So, the initial
probability amplitudes of the system can be assumed to
be A1(0) = qn1

qn2
cos θ cosφ, A2(0) = qn1

qn2
cos θ sinφ

and A3(0) = qn1
qn2

sin θ. Where θ and φ are arbitrary
constants that determines the state of the atom i.e. if
θ = φ = 0 we get the excited state, θ = φ = π

2 we get the
ground state. When 0 < θ ≤ π and 0 < φ ≤ π the atom
be initially in the superposition of states.

The system in equation (6) can be solved by the
help of Laplace transform after taking the following
transformation

A1(t) = B1(t), A2(t) = B2(t)e−i(∆1−ε)t,

A3(t) = B3(t)e−i(∆2−ε)t. (7)

where Bj(t)is an arbitrary function to be determined.
After some lengthy but straightforward procedure, the
probability amplitudes can be calculated as

A1(t) = i
3∑
j=1

Φ+
1 Φ
−
1 − µj

(
Φ+
1 + Φ−1

)
− µ2

j

(µj − µi)(µj − µk)
eµjt,

A2(t) = −ei(∆1−ε)t
3∑
j=1

Φ+
2 Φ
−
2 − µj

(
Φ+
2 + Φ−2

)
− µ2

j

(µj − µi)(µj − µk)
eµjt,

A3(t) = −ei(∆2−ε)t
3∑
j=1

Φ+
3 Φ
−
3 − µj

(
Φ+
3 + Φ−3

)
− µ2

j

(µj − µi)(µj − µk)
eµjt

(8)
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where

Φ±j =
−bj ±

√
b2j − 4ajcj

2aj
, (9)

and

µj = −R1

3
+

2

3

√
R2

1 − 3R2 cos

(
δ +

2π

3
(j − 1)

)
,

δ =
1

3
cos−1

(
9R1R2 − 3R2

1 − 27R3

2 (R2
1 − 3R2)

3/2

)
, (10)

s.t. the suffixes i, j and k ∈ {1, 2, 3}, and i 6= j 6= k.

a1 = −iqn1
qn2

cos(θ) cos(φ),

a2 = −qn1qn2 cos(θ) sin(φ),

a3 = −qn1
qn2

sin(θ), (11)

b1 = qn1qn2 cos(θ) cos(φ) (ν2 + ν3 −∆1 −∆2 + 2ε)

+qn1
qn2

z2 sin(θ)− qn1
qn2

z1 cos(θ) sin(φ),

b2 = i cos(θ) cos(φ)[qn1
qn2

z1

−qn1qn2 tan(φ)(ν1 + ν3 −∆2 + ε)],

b3 = iqn1
qn2

z2 cos(θ) cos(φ)

−iqn1
qn2

sin(θ)(ν1 + ν2 −∆1 − ε), (12)

c1 = iqn1
qn2

cos(θ) cos(φ) (ν3 −∆2 + ε) (ν2 −∆1 + ε)

−iqn1
qn2

z1 cos(θ) sin(φ) (ν3 −∆2 + ε)

−iqn1qn2z2 sin(θ)(ν2 −∆1 + ε),

c2 = − cos(θ){qn1
qn2

sin(φ)[z2
2 − ν1(ν3 −∆2 + ε)]

+qn1
qn2

z1 cos(φ)(ν3 −∆2 + ε)}
+qn1qn2z1z2 sin(θ),

c3 = −qn1
qn2

sin(θ)[z2
1 − ν1(ν2 −∆1 + ε)]

+z2 cos(θ){qn1qn2z1 sin(φ)

−qn1
qn2

cos(φ)(ν2 −∆1 + ε)}, (13)

and

R1 = i(ν1 + ν2ν3 −∆1 −∆2 + 2ε),

R2 = z2
1 + z2

2 − ν1(ν2 + ν3) + ν2ν3
+∆1(ν1 + ν3 −∆2 + ε)

+∆2(ν1 + ν2 + ε)− ε(ε+ 2ν1 + ν2 + ν3),

R3 = iz2
2(ν2 −∆1 + ε) + i(ν3 −∆2 + ε)

×{z2
1 − ν1(ν2 −∆1 + ε)}. (14)

The reduced density operator of the atom ρ̂A(t) is
given by

ρ̂A(t) = TrF (|Ψ(t)〉 〈Ψ(t)|) =

(
%11 %12 %13
%21 %22 %23
%31 %32 %33

)
(15)

where the elements of this matrix are:

%jj(t) =
+∞∑
n1=0

+∞∑
n2=0

Aj(n1, n2, t)A
∗
j (n1, n2, t), j = 1, 2, 3.

(16)

%12(t) = e−i∆1teim~κ1.~r

×
+∞∑
n1=0

+∞∑
n2=0

A1(n1 +m,n2, t)A
∗
2(n1, n2, t)

= %∗21(t), (17)

%13(t) = e−i∆2teim~κ2.~r

×
+∞∑
n1=0

+∞∑
n2=0

A1(n1, n2 +m, t)A∗3(n1, n2, t)

= %∗31(t), (18)

%23(t) = ei(∆1−∆2)teim(~κ2−~κ1).~r

×
+∞∑
n1=0

+∞∑
n2=0

A2(n1, n2 +m, t)A∗3(n1, n2 +m, t)

= %∗32(t). (19)

The reduced density operator of the field ρ̂F (t) is
given by

ρ̂F (t) = TrA
(
|Ψ(t)〉 〈Ψ(t)|

)
. (20)

Once the density matrix and the wave function are
obtained, we can discuss different physical phenomena. In
all next numerical calculations we set the value of m = 1
i.e. the one-photon transition. Many authors have stud-
ied the multi-photon transition in JC-model for example
[55]. Some of experiments that demonstrates the quan-
tum behavior of light in an undergraduate laboratory has
been described in [56]. There are many physical situa-
tions where such models may find applications [57] and
[58]. Moreover it is worthwhile to remark that investi-
gating such models goes beyond an intrinsic theoretical
interest in condensed matter systems too, because the
development of new and improved materials is expected
to lead to the fabrication of three dimensional pho-
tonic band gap systems possessing few isolated high-Q
resonant field modes [59]. It is worth mentioning that
two-photon transitions may occur, for example, in atom-
field diamagnetic interactions. It has been shown that such
transitions contribute in dispersion interactions in lower-
order perturbative calculations [60] when compared to the
single-photon transitions. The process of non-degenerate
two-photon transition can be physically demonstrated via
making an atomic transition from the ground (excited)

https://epjd.epj.org/


Eur. Phys. J. D (2017) 71: 338 Page 5 of 13

Fig. 2. The evolution of Shannon entropy SH(t) vs. the scaled time λ̄t with n̄` = 25, ` = 1, 2, ∆1 = ∆2 = ∆, θ = φ = 0 and
m = 1 (one-photon process).

state to an excited (ground) state by simultaneously
absorbing (emitting) two laser photons. Particularly, in
the case of two-photon absorption, the atom first absorbs
one photon and jumps from a real level to a higher virtual
one, and then by the absorption of a second photon jumps
to the nearest real level.

3 Shannon entropy

Shannon’s entropy has played an important role in the
study of quantum-mechanical systems and clarifying some
fundamental concepts. In an analogous way, Shannon
information entropy corresponding to the photon number
distribution [61]. Shannon information is defined to solve
the problem of the most efficient coding of a set of signals.
In the context of probability distribution, it is defined as

SH(t) = −
+∞∑
n1=0

+∞∑
n2=0

ln
{
P(n1,n2, t)

P(n1,n2,t)
}

(21)

where

P(n1, n2, t) = 〈n1, n2| ρ̂F |n1, n2〉

which is the photon number distribution, where ρ̂F is the
field reduced density operator for the considered system.
Therefore, we can state that

P(n1, n2, t) = [|A1(n1, n2, t)|2 + |A2(n1 +m,n2, t)|2

+|A3(n1, n2 +m, t)|2]. (22)

It is noted that the Shannon information entropy for
photon number operator is given by using the diagonal
elements of density operator and contains no phase infor-
mation, but it provides some useful information about the
behavior of photon number distribution (i.e., entropy is
the amount of random information in a system).

In Figure 2, we plot the results obtained numerically by
considering the atom to be initially prepared in the upper
most state (i.e. θ = 0, φ = 0) and the to be initially in the
coherent states. Generally, we note that the upper bound
of SH(t) here is 6.1 and by comparing this result with
[6,62], we may conclude that the upper bound of Shannon
entropy is related to the initial number of photons n̄ by the
relation SMax ≤ ln(n̄) s.t. n̄ > 1. In Figure 2a we set three
different values of the detuning parameter ∆1 = ∆2 = ∆
and fixed all other parameters to be zero i.e. χ = 0, ε = 0
and γ̄ = Γ̄ = 0. We note here that in the absence of ∆,

https://epjd.epj.org/


Page 6 of 13 Eur. Phys. J. D (2017) 71: 338

the entropy has an envelope oscillation as the interac-
tion time goes on and the envelope oscillation is periodic.
By considering the presence of a detuning parameter ∆,
we note that entropy increases, collapse time increases,
the oscillation is squeezed and periodicity decreased. In
Figure 2b, we set three different values of the third-order
non-linearity of the Kerr-like medium and fixed all other
parameters to be zero i.e. ∆ = 0, ε = 0 and γ̄ = Γ̄ = 0. We
note that the small value of χ as shown in the black-solid
curve of Figure 2b by comparing it with the black-solid
curve of Figure 2a, there is no change in the oscillation of
Shannon entropy. But for large values of χ, we note that
entropy increases, collapse time decreases and the period-
icity increases. So, the high-value of χ affected on SH(t)
to be sustainable for along time, in its high degree. In
Figure 2c, we set three different values of the parameter ε
that controls the variation of the coupling parameter λ(t)
and fixed all other parameters to equal zero i.e. χ = 0,
∆ = 0 and γ̄ = Γ̄ = 0. We note that the collapse time in
the presence of the parameter ε is increased to be more
than the collapse time in the case of ε = 0. In Figure 2d,
we set three different values of the atomic damping fac-
tor γ̄ and fixed all other parameters to be zero i.e. χ = 0,
ε = 0 and ∆ = 0. We note that for a weak damping fac-
tor the entropy decreases and for larger values of γ̄ we
note that entropy is pulled down rapidly to reach zero. In
Figure 2e, we set three values of the field damping factor
Γ̄ . We note that the general behavior of Shannon entropy
is similar to the case of atom-damping but it takes much
less interaction time to reach zero entropy compared with
atomic case.

4 Concurrence

Despite the fact that the possibility of quantum entan-
glement, between the field and atom, was acknowledged
almost as soon as quantum theory was discovered [4], it is
only in the last few decades that consideration has been
given to finding mathematical methods to quantify entan-
glement. The first point to note is that no measure of
entanglement can be linear in the system state. This fol-
lows directly from the fact that entanglement be invariant
under local unitary transformations. In the case of pure
quantum states for two subsystems, a number of physi-
cally intuitive measures of entanglement have been known
for some time, however for general mixed states of an
arbitrary number of subsystems, entanglement measures
are still under development. Several measures are pro-
posed to quantify the degree of entanglement (DEM) [63].
The DEM is investigated by using von Neumann entropy
for a three-level atomic system with arbitrary forms of
non-linearity is studied in [34,35].

The concurrence is presented by Hill and Wootters
[64,65] as a suitable measure of entanglement of any state
of two qubits, mixed or pure. For a pure state |Ψ(t)〉 on
(M ×N)-dimensional Hilbert space R = RM

⊗
RN . The

concurrence can be defined as [66]

C(t) =

√
2

(
| 〈Ψ(t)|Ψ(t)〉 |2 − Tr (ρ2N (t))

)
(23)

such that ρ̂N (t) = TrM (|Ψ(t)〉 〈Ψ(t)|) is the reduced den-
sity operator of the subsystem with dimension N and TrM
is the partial trace over RM . The concurrence as a mea-
sure of entanglement degree ensures the scale between 0
for a separable (disentangled) state and

√
2(N − 1)/N

for the maximally entangled state, and monotonically
increases as entanglement grows. To investigate the con-
currence we calculated the atomic reduced density matrix
in (15), so we can rewrite concurrence in the following
form

C(t) =

√√√√2
∑

i,j=1,2,3,i6=j

(
%ii%jj − %ij%ji

)
. (24)

In Figure 3, we plot the evolution of concurrence C(t) vs.
the scaled time λ̄t when n̄` = 25, (` = 1, 2). In Figure 3a,
we set three different values of the detuning parameter ∆
and fixed all other parameters to zero i.e. χ = 0, ε = 0
and γ̄ = Γ̄ = 0. We note that when ∆ = 0, black-solid
line, the oscillation of the envelope curve is periodic and
as time goes on the lower points of the concurrence goes
up and by taking into account the presence of the detuning
parameter we note that the almost stable period increased
and the periodicity decreased and the DEM is pulled down
as ∆ increases. So, The detuning parameter makes the
atom-field interaction weak. In Figure 3b, we take into
account the presence of Kerr medium parameter χ and
fixed all other parameters to be equal zero i.e. ∆ = 0,
ε = 0 and γ̄ = Γ̄ = 0. We note that for a small effect of
χ, the stable period of DEM, increases and revival times
spread wide as time goes on. While by increasing the value
of χ the periodicity increases and DEM is pulled down. In
Figure 3c, we set three different values of ε that controls
the time dependence of the atom-field coupling function
and fixed all other parameters to be equal zero i.e. χ = 0,
∆ = 0 and γ̄ = Γ̄ = 0. We note that its effect is increasing
the collapse time to be doubled compared by the case
where we ignore ε (black-solid line in Fig. 3a). As the value
of ε grows up, the collapse time increases and the DEM
decreases. In Figures 3d and 3e, we study and compare
the behavior of DEM evolution of the considered system
where atom and the field are suffering decay rates γ̄ and Γ̄ ,
respectively. We note that the disentangled state (death
of entanglement) in different periods and it is obvious that
the disentangled state is reached much rapidly for the field
dissipation more than the case of the atomic decay.

In Figure 4, we plot the concurrence C(n̄) vs. the mean
photon number (intensity of light) n̄ = |α|2, at a certain
time-point λ̄t = π

4 . Generally, we note that concurrence

decreases as n̄ grows and the effect of χ, γ̄ and Γ̄ on
the concurrence not change the initial value (when n̄ = 0)
of the concurrence. In Figure 4b, we noticed that when
C u 0.58, there is a reverse relation between the initial
number of photons and the value of Kerr parameter, that
would help us to control the degree of entanglement. In
Figure 4d, we set three different values of the atomic decay
rate γ̄ and we note that the relation between concurrence
and the mean photon number is not affected by γ̄. However
it decreases sharply by increasing t as shown in Figure 4e.

https://epjd.epj.org/
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Fig. 3. The evolution of concurrence C(t) vs. the scaled time λ̄t with n̄` = 25, ` = 1, 2, ∆1 = ∆2 = ∆, θ = φ = 0 and m = 1
(one-photon process).

Generally, we note that the best degree of entanglement
is obtained when the atom-field interaction is surrounded
by a weak non-linear Kerr like medium as we see in
Figure 3b the curves of concurrence are sustainable and be
near to its maximal when χ = 0.01 or 0.1, while the degree
of entanglement decreases if χ grows more. This result
agrees with [36,67]. We note that in Figure 4b, the best
values of concurrence be when χ = 0.1 and that occurs
when n̄ = |α|2 = 10 and 30.

5 Husimi Q-function

The quasi-probability distribution functions have become
a main tool to investigate experimental results in detect-
ing quantum states of systems. These functions can
be detected in homodyne experiments [68]. The quasi-
probability distribution functions are c-number functions
and not necessary to be positive, that allows us to cal-
culate the expectation values of a quantum state. The
calculations of quasi-probability distribution functions,
given a density matrix, are often a tedious task that

involves integration over phase space variables. The Q-
function is simply expressed as the coherent expectation
value of the reduced field density matrix, so it is widely
used to investigate the field dynamics. It has no singu-
larity problems at all. It exists for any density matrix, is
bounded and even is greater than or equal to zero. More-
over, the width of the Q-function gives a measure for the
light squeezing. Therefore, it is interesting to investigate
the behavior of Q-function (Fig. 5). It is defined by [69]

Q(α1, α2, t) =
1

π2
〈α1, α2| %̂F |α1, α2〉

=
1

π2

3∑
j=1

|ψj(α1, α2, t)|2, (25)

where %̂F is the reduced field density operator and |α`〉 is
the coherent state defined by

|α`〉 = e−
1
2 |α`|2

+∞∑
n`=0

αn`

`√
n`!
|n`〉, α` = x` + iy`, (26)

https://epjd.epj.org/
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Fig. 4. The evolution of concurrence C(n̄) vs. the mean photon number (intensity of light) n̄, ∆1 = ∆2 = ∆, θ = φ = 0 and
m = 1 (one-photon process).

and ψj(α1, α2, t) are given by

ψ1(α1, α2, t) = e−
1
2 (|α1|2+|α2|2)

+∞∑
n1=0

+∞∑
n2=0

qn1qn2

× α
∗n1

1√
n1!

α∗
n2

2√
n2!

A1(n1, n2, t),

ψ2(α1, α2, t) = e−
1
2 (|α1|2+|α2|2)

+∞∑
n1=0

+∞∑
n2=0

qn1qn2

× α∗
n1+m

1√
(n1 +m)!

α∗
n2

2√
n2!

A2(n1 +m,n2, t),

ψ3(α1, α2, t) = e−
1
2 (|α1|2+|α2|2)

+∞∑
n1=0

+∞∑
n2=0

qn1qn2

α∗
n1

1√
n1!

× α∗
n2+m

2√
(n2 +m)!

A3(n1, n2 +m, t). (27)

In Figures 6–9, we sketch the shape of the Husimi Q-
function in the subspace α1 = α2 = α in the complex
α-plane where x = Re(α) and y = Im(α) when the Kerr-
like parameter χ = 1.0λ̄. It is noted that by applying a

strong Kerr medium (χ = 1λ̄) to the system, Q-function is
split into eight fully-separated peaks, if a quasi-probability
distribution function exhibits different peaks around dif-
ferent system variables the system is expected to spend a
relatively large amount of time in the vicinity of these vari-
ables and a short amount of time between the peaks. In
many cases in the context of quantum optics this is linked
to multi-stability. Examples of papers where this kind of
behavior is studied [70–73]. We take into consideration the
effect of the time varying coupling parameter ε, the atom
and field decay rates γ̄ and Γ̄ , respectively. In Figure 6, we
set three different values of the parameter ε, we note that
there is no effect on the distribution of Husimi Q-function
by the parameter ε. Nor the shape and the peak height are
changed. In Figure 7, we set three different values for the
atom decay rate γ̄, we note that the shape of Husimi Q
function is not changed but the peaks height is decreasing
by the growing in the decay rate γ̄. In Figures 8 and 9,
we sketch the 3D and contour plots of Husimi Q-function
and we set three different values for the field decay rate Γ̄ .
We note that the shape and the peaks height of Husimi Q
function are changed. When we set Γ̄ = 1

2 λ̄, we note that

the height is decreased from 1.4× 10−3 (as in Fig. 6a) to
1.2× 10−10 (as in Fig. 8a) and the contour shape is very
slightly changed. By increasing the value of Γ̄ , the peak

https://epjd.epj.org/
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Fig. 5. The sketch of Husimi Q-function in the subspace α1 = α2 = α in the complex α-plane when t = π
4
λ̄ with n̄` = 25,

` = 1, 2, χ = 0, ∆ = 0, ε = 0, m = 1 (one-photon process), γ̄ = 0 and Γ̄ = 0.

Fig. 6. The 3D sketch of Husimi Q-function in the subspace α1 = α2 = α in the complex α-plane when t = π
4
λ̄ with n̄` = 25,

` = 1, 2, χ = 1λ̄, ∆ = 0, θ = φ = 0, γ̄ = 0 and Γ̄ = 0.

Fig. 7. The 3D sketch of Husimi Q-function in the subspace α1 = α2 = α in the complex α-plane when t = π
4
λ̄ with n̄` = 25,

` = 1, 2, χ = 1λ̄, ∆ = 0, ε = 0, θ = φ = 0, m = 1 (one-photon process) and Γ̄ = 0.

height decreases and the number of peaks decreases also
besides squeezing effect is shown. It decreased from 8 fully-
separated peaks to 5 semi-separated peaks in Figures 9b
and 9c with squeezing pattern being observed. So, if the
system suffers a field decay rate, its stability decreases.

6 Momentum increment and diffusion

Cooling atoms by laser is based on the momentum
exchange between the particles and the electromagnetic

field via the connection between the photon absorption
and emission. Laser cooling is generally limited by the
random fluctuations in the exchanged momentum between
photons and atoms, that give rise to atomic momentum
diffusion. Momentum increment and momentum diffusion
are defined respectively as [74]

〈(∆~p)〉 = 〈~p〉 − ~p0,
〈(∆~p)2〉 = 〈~p2〉 − 〈~p〉2. (28)

https://epjd.epj.org/
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Fig. 8. The 3D sketch of Husimi Q-function in the subspace α1 = α2 = α in the complex α-plane when t = π
4
λ̄ with n̄` = 25,

` = 1, 2, χ = 1λ̄, ∆ = 0, θ = φ = 0, ε = 0, m = 1 (one-photon process) and γ̄ = 0.

Fig. 9. The contour plots of Husimi Q-function as in Figure 8.

The expectation values of the momentum increment and
momentum diffusion for the considered model, respec-
tively are given by (considering ~κ1 = ~κ2 = ~κ.)

〈(∆~p)〉 = ~p0(%11(t) + %22(t) + %33(t)− 1)

−m~κ(%22(t) + %33(t)),

〈(∆~p)2〉 = |~p0|2(%11(t) + %22(t) + %33(t))

+|~p0 −m~κ|2(%22(t) + %33(t))− 〈~p〉2. (29)

In Figure 10, we plot the evolution of scaled momen-

tum increment 〈(∆~p)〉.~κ|~κ|2 (black-dotted curve) and scaled

momentum diffusion 〈(∆~p)2〉
|~κ|2 (black-solid curve) vs. the

scaled time λ̄t and we focus only on the effects of the decay
rates γ̄ and Γ̄ and the parameter ε of the time-varying cou-
pling between the atom and field. In Figure 10a, we set
all parameters equal to zero and we note that increment
base line oscillates around −1

2 and the diffusion started
from zero as the initial point and doesn’t exceed the value
1
4 . In Figures 10b and 10c, we set the atomic decay rate

γ̄ = 0.01λ̄ and 0.1λ̄, respectively. We note that the rate
of diffusion decreased to reach zero after a proper time
period which means that momentum exchange between
the field and atom is harmed due to the atomic decay
rate which is better results from that appear in applying
a field decay rate to the system as in Figures 10d and 10e.

In Figure 10f, we set ε = 3π, we note that the diffusion
rate decreased and revival times delayed.

7 Results and conclusion

In the previous sections of this paper, we studied the
interaction between a moving three-level atom in Λ con-
figuration and a two-mode electromagnetic field in a
dissipative cavity, surrounded by a nonlinear Kerr-like
medium. We have obtained the form of the corresponding
wave function, considering the atom initially in the super-
position of states and the field in the coherent state, and
solved the time-dependent Schrödinger equation by using
Laplace transformations to the coupled system of differ-
ential equations after taking a RWA-like approximation.
We studied the effects of detuning, Kerr-like medium, the
coupling time varying and the decay rates parameters on
some non-classical statistical aspects. We studied Shan-
non information entropy, the DEM through concurrence,
Husimi Q-function, momentum increment and diffusion.
The results of this paper may be summed as follows:

– The effects of both the detuning parameter ∆ and
the time-varying coupling parameter ε are quite sim-
ilar. We note that they reduce the DEM, increase
the collapse times, reduce the peak-height of Husimi
Q-function but preserve its geometrical shape.

https://epjd.epj.org/
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Fig. 10. The evolution of scaled momentum increment 〈(∆~p)〉.~κ
|~κ|2 (black-dotted line) and scaled momentum diffusion 〈(∆~p)2〉

|~κ|2

(black-solid line) vs. the scaled time λ̄t with n̄` = 25, ` = 1, 2, θ = φ = 0, ∆1 = ∆2 = ∆ = 0, χ = 0, m = 1 (one-photon process)

and ~p0 = ~0.

– We note that the best degree of entanglement
is obtained when the atom-field interaction is
surrounded by a weak non-linear Kerr like medium
as we see in Figure 3b the curves of concurrence
are sustainable and be near to its maximal when
χ = 0.01 or 0.1, while the degree of entanglement
decreases if χ grows more. This result agrees with
[36,67]. We note that in Figure 4b, the best values
of concurrence be when χ = 0.1 and that occurs
when n̄ = |α|2 = 10 and 30.

– In Figure 4b, we noticed that when C u 0.58, there
is a reverse relation between the initial number
of photons and the value of Kerr parameter, that
would help us to control the degree of entanglement.

– The atomic decay rate γ̄ is not effective in the
evolution of concurrence vs. the mean photon
number n̄, as in Figure 4d, while it reduces the
peak-height of Husimi Q-function but preserves its
geometrical shape.

– The effect of the field decay rate Γ̄ is to bring
the DEM to zero more quickly than the effect of
γ̄, it destroys the geometrical shape of Husimi
Q-function, which reduces the system stability.

– The sensitivity of entanglement to the field decay is
much greater than the atomic decay.

– The upper bound of SH(t) is 6.1 and by compar-
ing this result with [6,62], we may conclude that
the upper bound of Shannon entropy is related to
the initial number of photons n̄ by the relation
SMax ≤ ln(n̄) =

∑$
`=1 ln n̄` s.t. n̄` > 1 and $ is

the number of field modes. So, we may reformu-
late the definition of Shannon information entropy as

SH(t) =
1∑$

`=1 ln n̄`
ln
{
P(n1, n2, t)

P(n1,n2,t)
}

. With

this reformulation of the definition we get a
bounded evolution between 0 and 1 which may
be used as an indicator to the degree of
entanglement.

https://epjd.epj.org/


Page 12 of 13 Eur. Phys. J. D (2017) 71: 338

The authors would like to thank the anonymous referees for
their objective comments that improved the text in many
points.

Author contribution statement

Profs. A.-S.F. Obada and M.M.A. Ahmed supervised the
project. Ahmed M. Farouk performed the mathematical
analysis, numerical calculations and wrote the manuscript.
Ahmed Salah developed the mathematical analysis. All
Authors shared equally in discussing the results.

Appendix A

In this Appendix, we show the detailed derivation of the
probability amplitudes in equation (8) by using Laplace
transformations. The system of differential equations in
(6) can written by using equation (7) as:

iḂ1(t) = ν1B1(t) + z1B2(t) + z2B3(t),

iḂ2(t) = z1B1(t) + (ν2 −∆1 + ε)B2(t),

iḂ3(t) = z2B1(t) + (ν3 −∆2 + ε)B3(t). (A.1)

By introducing Laplace transform of the probability
amplitudes Bj(t)

Yj(s) =

∫ ∞
0

dtBj(t)e
−st, j = 1, 2, 3, (A.2)

then the differential equations in (A.1) obey the following
algebraic system:

i(sY1(s)− qn1
qn2

cos(θ) cos(φ)) = ν1Y1(s) + z1Y2(s)

+z2Y3(s),

i(sY2(s)− qn1+mqn2
cos(θ) sin(φ)) = z1Y1(s) + (ν2

−∆1 + ε)Y2(s),

i(sY3(s)− qn1qn2+m sin(θ)) = z2Y1(s) + (ν3
−∆2 + ε)Y3(s).

(A.3)

The solution of the algebraic system is given by

Y1(s) = i
a1s

2 + b1s+ c1
s3 + R1s2 + R2s+ R3

= i

(
s− Φ+

1

) (
s− Φ−1

)
(s− µ1) (s− µ2) (s− µ3)

,

Y2(s) = − a2s
2 + b2s+ c2

s3 + R1s2 + R2s+ R3

= −
(
s− Φ+

2

) (
s− Φ−2

)
(s− µ1) (s− µ2) (s− µ3)

,

Y3(s) = − a3s
2 + b3s+ c3

s3 + R1s2 + R2s+ R3

= −
(
s− Φ+

3

) (
s− Φ−3

)
(s− µ1) (s− µ2) (s− µ3)

, (A.4)

where φ±j and µj are defined in equations (9) and (10),
respectively. By applying the partial-fraction decomposi-
tion method to the last three equations and performing
the inverse Laplace transform on the resulting equations,
we get the probability amplitudes in equation (8).
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