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Abstract. The problem of variable cell survival probability along the spread-out Bragg peak is one of the
long standing problems in planning and optimisation of ion-beam therapy. This problem is considered
using the multiscale approach to the physics of ion-beam therapy. The physical reasons for this problem
are analysed and understood on a quantitative level. A recipe of solution to this problem is suggested using
this approach. This recipe can be used in the design of a novel treatment planning and optimisation based
on fundamental science.

The ion-beam cancer therapy has been developed in the
1990s as a hopeful improvement of a conventional radia-
tion therapy with X-rays. The possibility of employment
of a physical behaviour of ionization cross section of ions
at decreasing energies giving rise to the Bragg peak in the
depth-dose curve for better focusing the locus of radiation
damage and sparing healthy tissues is the main attrac-
tion of this endeavour [1–8]. Proton-beam therapy is the
most proliferated type of ion-beam therapy, and this pa-
per is more linked with protons, however, the results can
be easily extended to include heavier ions.

When proton-beam therapy is used, a beam comprised
of protons of a given energy enters a patient’s tissue. Typi-
cal initial energies are in the range of 70–230 MeV. Having
entered the tissue, protons gradually slow down until their
energy is above ∼1 MeV; at a high speed the probability
of interaction with the medium is small and the depth-
dose curve exhibits a plateau. When protons energy drops
below 1 MeV (1 MeV/u for heavier ions), this probabil-
ity (related to the cross section of inelastic collisions with
molecules of tissue) increases rapidly. As a result projec-
tiles lose most of their remaining energy within a short
length segment referred to as the pristine Bragg peak. The
position of the pristine Bragg peak for a given medium
(such as tissue) and type of ions solely depends on their
initial energy. Then, tuning the initial energy so that the
position of the Bragg peak overlaps with a tumour loca-
tion seems to be the next logical step. However, typical
tumour sizes exceed the 1-mm size of the Bragg peak by
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at least an order of magnitude. Then one have to scan the
tumour with beams of different energies; this creates an-
other phenomenon, the spread-out Bragg peak (SOBP).
Images of pristine and spread out Bragg peaks are shown
in Figure 1.

Radiation oncologists or medical physicists involved in
planning and optimisation of irradiation of patients base
their protocols on a relation of a necessary dose to be de-
livered to a given voxel to the desired probability of cell
survival in that volume. The dependence of this probabil-
ity on dose is determined by the so-called survival curves.
In general, the survival curves depend on the type of pro-
jectiles, type of cells, phase of cells in their cycle, degree of
oxygenation, and other possible conditions [7]. In the case
of X-ray radiation, the only radiation parameter that de-
scribes the irradiation of a voxel is the dose, even though
the mechanisms of radiation damage are rather complex.
The target dose for treatment planning can be determined
given the experimentally known survival curve for given
cells and conditions [7,9].

In the case of irradiation with ions, there are at least
two major issues. They originate from the fact that the
dose, which physically corresponds to energy, loses its uni-
queness in predicting biodamage. It becomes inevitable to
address the fact that the damage is not done by energy; in-
stead, it is due to physical and chemical processes caused
by agents such as electrons ejected by ions, free radicals
(also formed as a result of the action of ions), other reac-
tive species, and possibly other physical effects. This is
reflected in the introduction of such macroscopic parame-
ters as relative biological effectiveness (RBE) and oxygen
enhancement ratio (OER). The abundance and spatial dis-
tribution of the above reactive species depend on dose and
linear energy transfer (LET), the medium, etc., but this

http://www.epj.org
https://doi.org/10.1140/epjd/e2017-80120-0


Page 2 of 6 Eur. Phys. J. D (2017) 71: 210

0 5 10 15 20 25
0

1

2

3

4

5

6

7

x(mm)

S
e
(keV

/μm)

Fig. 1. The dependence of LET for protons as a function of
distance from the distal side of depth-dose curve. The dashed
line shows a pristine Bragg peak calculated for protons with
an initial energy of 200 MeV. The solid line shows a SOBP
obtained as a superposition of proton beams of initial ener-
gies from 194.5 to 200 MeV with fluences chosen so that the
physical dose profile along the SOBP is uniform.

dependence is not trivial; the understanding of radiation
biodamage on a fundamental level is necessary in order to
establish this dependence and bring therapy optimisation
and planning to a higher scientific level.

The radiation quality, a term related to the value of
LET, of the delivered dose depends on the position along
the SOBP. The cell survival depends on both the dose
and the LET. The distal end is irradiated with protons
at their pristine Bragg peak while the proximal end is
irradiated with a superposition of protons with different
values of LET; only a few of them are at the Bragg peak
energies. This introduces a difference between the quality
of different parts of the SOBP leading to different values
of both relative biological effectiveness (RBE) and oxygen
enhancement ratio (OER). The existence of this problem
has been recognised a long time ago and there have many
studies devoted to this. A thorough experimental analysis
has been done and discussed, e.g., in reference [10].

The currently accepted model for relating the dose
with cell survival probability for ions is the local effect
model (LEM) [4,11–13], which associates the dose deliv-
ered to a voxel calculated probabilistically with the prob-
ability of cell survival taken from X-ray survival curves.
This model only accounts for the effects of dose deposited
in cell nuclei without analysing physical, chemical or bio-
logical effects. Although this model claims predictive re-
sults on the basis of well known X-ray survival curves,
there are serious doubts that these survival curves are rel-

evant in the case of ions [14,15]. More recent versions of
the LEM model are available [16,17], but they account for
quality only empirically, again tailoring the radiation qual-
ity effects with X-ray curves. On top of this, there is no
solid scientific assessment of radiation damage inside the
SOBP, since the cell survival depends on LET and, hence,
on the position in the SOBP [10]. In this paper we will
argue that the lack of understanding of this dependence
on LET is the main reason for the problem of varying cell
survival along the SOBP has not yet been solved [18]. This
topic is discussed at numerous conferences, such as Radia-
tion Research Society (RRS), Application of Accelerators
in Research and Industry (CAARI), Particle Therapy Co-
operative Group (PTCOG), to name a few.

The problem of varying cell survival along the SOBP
is vexing for proton-beam therapy and it is important
to solve it. In this paper, we present a recipe of solu-
tion to this problem using the developed multiscale ap-
proach (MSA) to the physics of radiation damage with
ions [15,19]. The MSA relies directly on the physical,
chemical, and biological effects that underlie the observed
biological damage. In this approach, a target cell nucleus
is irradiated with ions having different LET. Then the av-
erage number of lethal lesions per cell is calculated taking
into account the LET, cell properties, and external con-
ditions such as degree of oxygenation. This way, the dose
and the radiation quality are directly associated with a
predicted radiation damage. The predictability of cell sur-
vival by the MSA has been successfully tested on a variety
of cell lines with different values of LET and oxygenation
conditions [20]. It is tempting to use the technique vindi-
cated by that work to develop an algorithm of obtaining
a flat profile for the cell survival along the SOBP.

The goal of this work is to develop such an algorithm,
but in order to reach this goal, we first need to calculate
the survival probability at an arbitrary position within the
SOBP. After this is achieved, we will calculate the profile
of cell survival probability along the SOBP for a uniform
profile of physical dose. Then, the profile of physical dose
that makes the cell survival probability along the SOBP
uniform will be found.

In references [15,20] the cell survival probabilities were
calculated as function of dose, LET, and oxygen concen-
tration. A clustered DNA lesion is defined as the number
of DNA lesions, such as DSBs, SSBs, abasic sites, and
damaged bases, that occur within about two helical turns
of a DNA molecule so that, when repair mechanisms are
engaged, they treat a cluster of several of these lesions as
a single damage site [21–27]. In reference [15], a criterion
for lethality of damage was suggested and implemented for
the calculation of survival curves. This criterion is based
on the idea that among different DNA lesions caused by in-
teraction with reactive species the multiply damaged sites
with a sufficient complexity may not be repaired (this fol-
lowed Ref. [28]). Namely, it was postulated [15] that a
lesion consisting of a DSB and at least two other simple
lesions such as SSB within two DNA twists is lethal. Then
in reference [20] this criterion was applied and justified for
a number of cell types.
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The first step after the justification of the criterion of
lethality is to calculate the number of lethal damage sites,
produced by an ion (with a given energy and, hence, LET)
per length of a segment of its trajectory, dNl

dx (where dx is a
length of this segment) [15]. That calculation relies on the
transport of reacting species that included a collective flow
due to the shock waves around ions’ paths predicted by the
MSA [15,29]. The strength of shock waves and radius of
propagation of reactive species depend on the LET. The
collective transport of radicals by shock waves has been
most recently demonstrated by MD simulations [30]; for
these simulations, the MBN Explorer with reactive force-
field [31,32] has been employed. In principle, the value of
dNl

dx can be studied experimentally by the analysis of repair
foci [33] and we hope that a more thorough comparison
with experimental results will be done, but this is only a
side issue for this work.

The value of dNl

dx is proportional to the number den-
sity of chromatin, ns, and cross section of lethal damage
σl(Se),

dNl

dx
= nsσl(Se). (1)

This cross section is discussed in much detail in refer-
ences [15,20], where it is derived along with the crite-
rion of lethality. The main idea of its derivation is briefly
outlined in the appendix. Strictly speaking, besides LET
(so-called restricted LET, Se, that excludes nuclear frag-
mentation effects), σl(Se) depends on the concentration
of oxygen [20]. The oxygen concentration influences the
effectiveness of reactive species. In this work, we assume
that this concentration does not vary along the SOBP,
but in principle it may and this can be included in the
method suggested below. Then the average yield of lethal
DNA lesions in the cell nucleus is given by the product of
dNl

dx in (1) and the average length of traverse of all ions
passing through a cell nucleus for a given dose [15,20],

Yl =
dNl

dx
z̄ Nion(d), (2)

where the length of traverse is presented by a product of
average length of traverse by a single ion z̄ and the number
of ions that pass through the cell nucleus Nion. The latter
depends on dose d as

Nion = An d/Se, (3)

where An is the cross sectional area of the cell nucleus.
Equations (2) and (3) can be combined:

Yl =
dNl

dx
z̄ Nion(d) =

π

16
σl(Se)Ng

d

Se

=
π

16
σl(Se)Ng

Nion

An
=

π

16
σl(Se)NgF, (4)

where Ng is the genome size, i.e., a constant number and
Nion
An

= F is the ions’ fluence in the beam.
Since the probability of cell inactivation is obtained

by subtracting the probability of zero lethal lesions occur-
rence from unity (1 − exp [−Yl]), and that of cell survival

is given by unity less the probability of cell inactivation,
the logarithm of cell survival probability is simply given
by equation (4) with a negative sign, i.e.,

ln Πsurv = −Yl = − π

16
σl(Se)NgF. (5)

This formula, verified in reference [20], is remarkable: it
suggests that cell survival at a given place depends only
on LET, oxygen concentration (both contained in σl(Se)),
and the ions’ fluence.

If the Bragg peak is not pristine, equation (3) has to
be modified, because the ion’s fluence is not a number any
more, but rather a superposition of fluences of ions with
different energies. Instead, there will be a superposition
of numbers of ions traversing a cell nucleus at different
energies with different LET. Equation (5) will change as
well:

ln Πsurv = − π

16
Ng

∑

j

σl(Sj)Fj , (6)

where index j corresponds to a given fraction of ion’s flu-
ence corresponding to a certain energy and LET within a
SOBP.

In order to reproduce the problem with nonuniform
survival probability along the SOBP, we need to construct
the SOBP, i.e., find such a linear combination,

∑
j fjF

(where fj are coefficients corresponding to ions with initial
kinetic energy E0,j), that will produce a uniform dose dis-
tribution along the SOBP. In order to do this, the depth-
dose curve for protons (in this case) has to be known.
There are many more or less sophisticated ways to obtain
these curves, e.g., based on Monte Carlo simulations of
ions’ transport [34,35]. However, this work is methodolog-
ical, and we use a calculation scheme [15,36,37], where
the shape of a Bragg peak including energy straggling
and charge transfer has derived from a semi-empirical
model [38]. The result is the dose-depth distribution for a
pristine Bragg peak. Then stepping down in protons ini-
tial energy by 0.5 MeV, we can calculate what fraction of
a beam of this energy is needed in order to achieve a uni-
form dose distribution. This procedure lasts through the
full length of the SOBP.

The dose at a given depth x is proportional to the net
LET:

Se(x) =
∑

j

fjSj(x)dx = S0, (7)

where S0 is a constant. The stopping power at a distal
side of the SOBP is equal to the S(Emax), therefore S0 =
S(Emax). We can start the construction from the distal
side:

Se(x0) = S0(E0, x0)
Se(x1) = S0(E0, x1) + f1S1(E0 − ΔE, x1)
Se(x2) = S0(E0, x2) + f1S1(E0 − ΔE, x2)

+ f2S2(E0 − 2ΔE, x2)
...

Se(xN ) =
∑

fjSj(E0 − NΔE, xN ), (8)
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Fig. 2. The solid line shows the profile of dependence of
yield of lethal lesions in cells along the SOBP as a function
of distance on the distal end of the SOBP. The dashed line
shows the profile of the depth-dose curve that produced the
above result. The algorithm (8) has been used.

where xj is the coordinate of the Bragg peak correspond-
ing to initial energy E0,j = E0 − jΔE, for each j, the
coefficient fj is determined from equation j. The length
of the SOBP, xp, is equal to the difference x0 − xN . This
condition determines N . The example of such a construc-
tion is given in Figure 1, where the SOBP is constructed
for xp = 12 mm with ΔE = 0.5 MeV (this number is used
in current clinical protocols).

Then, the value of σl(Sj) can be calculated using the
parameters employed in reference [20]. The results for sur-
vival probabilities calculated using equation (6) are shown
in Figure 2. The dose profile is shown with a dashed curve
in order to better illustrate the problem: a uniform dis-
tribution of the physical dose along the SOBP yields a
nonuniform distribution of cell survival. A simple expla-
nation of this problem is that (as has been stated above)
the radiation damage with ions is not just the product
of dose, but the LET and physical consequences of high
LET in particular. Mathematically, the effect due to the
σl(Sj) dependence on LET. Largely, there two effects de-
fine σl(Sj). One is the number of reactive species including
secondary electrons. This number is roughly proportional
to the LET. If this would be the only effect, then, ac-
cording to equation (4), the average yield of lethal DNA
lesions would be proportional to the dose only. If the uni-
form physical dose is delivered using the corresponding
choice of coefficients fj , as the dashed line shows in Fig-
ure 2, the yield would be uniform (as the solid line shows
in Fig. 3). The other effect is the effective spreading of the
reactive species, discussed in relation with the predicted
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Fig. 3. The solid line shows the profile of dependence of
yield of lethal lesions in cells along the SOBP as a function
of distance on the distal end of the SOBP. The algorithm (9)
has been used. The dashed line shows the profile of the depth-
dose curve that produced the above result.

shock waves [15,39,40] and demonstrated in reference [30].
This effect is more complex, but is linear in the first or-
der with respect to LET. This argument explains why this
problem has not been solved by the track structure com-
munity. Since all their radiation damage estimates are
based on the deposited energy and the collective trans-
port by the shock wave is missing, the predicted damage
is proportional to the dose while the LET dependence is
missing.

Now we can solve an inverse problem: aiming at a given
uniform survival probability, find the coefficients fj for ini-
tial ions’ fluences distribution. For that, we need to keep∑

j fjσl(Sj) constant along the SOBP and find the coeffi-
cients fj from this condition. Similarly to equation (8) we
write:

σl(Se(x0)) = σl(S0(E0, x0))
σl(Se(x1)) = σl(S0(E0, x1)) + f1σl(S1(E0 − ΔE, x1))
σl(Se(x2)) = σl(S0(E0, x2)) + f1σl(S1(E0 − ΔE, x2))

+ f2σl(S2(E0 − 2ΔE, x2))
...

σl(Se(xN )) =
∑

fjσl(Sj(E0 − NΔE, xN )), (9)

similarly, for each j, the coefficient fj is determined from
equation j. The results of application of this algorithm are
shown in Figure 3; again, the dose profile is shown with
a dashed curve for guidance, while the solid line shows a
profile of the yield of lethal lesions. In addition to this, we
want to add, that the oxygen effect can also be added to
the calculation of σl(Sj) on the local basis. Then it may
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also affect the choice of fjs. Thus, the problem has been
solved.

In conclusion, the problem of varying cell survival
along the SOBP has been investigated using the MSA.
Its origin has been related to the physical effects such
as propagation of reactive species by collective flows in-
duced by ion-induced shock waves that take place at high
LET. The solution to this problem is suggested and it may
lead to a substantial improvement of treatment planning.
The suggested method calls for further investigations, es-
pecially experimental ones. A thorough study of cell sur-
vival along the SOBP is strongly desirable. Theoretically,
better depth-dose curves should be used for practical ap-
plications, however, as it has been explained, the cause of
the effect has nothing to do with the shape of these curves.

The suggested algorithm can be implemented in novel
treatment planning and optimisation codes. Differences
in cells and conditions can be included in the existing
method. Manifestations of other biological phenomena,
such as DNA repair beyond linear effect [20], bystander
effect, etc. can be included empirically until a fundamen-
tal understanding is achieved.
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Appendix A: Calculation of σ(Se)

As is explained in the main text,

σ(Se) =
1
ns

dNc

dx
, (A.1)

is the cross section of inducing a lethal damage in a cell
nucleus. Its calculation has been discussed in detail in ref-
erences [15,20] and we are only briefly go over it.

The calculation starts with the determining a number
of secondary electrons incident on a target, defined as a
site on which a lethal damage can be induced. Lethality is
introduced as a criterion of minimal complexity/multipli-
city of lesions within a site that make it irreparable bi-
ologically. The number of lesions is proportional to the
number of incident electrons, while the latter is propor-
tional to LET. Then, the concentration of reactive species
multiplied by their effectiveness is introduced. Both the
number and effectiveness depend on the chemical proper-
ties of the medium that include the abundance of oxygen
(both increase with increasing concentration of oxygen).

The average number for multiply damage sites (per
target) containing clustered damage at a distance r from
the ion’s path is given by

Nc(r) = Ne(r) + Nr(r) = ΓeFe(r) + ΓrFr(r), (A.2)

where the functions Ne(r) and Nr(r) define the average
number of lesions like SSBs, base damages, abasic states,
etc., induced by secondary electrons and other reactive
species (free radicals, pre-solvated and solvated electrons,
etc.), respectively. Fe(r) is the number of secondary elec-
trons incident in the target at a distance r from the ion’s
path. Fr(r) is that for other reactive species. Γe and Γr

are the probabilities of inducing simple lesions to a DNA
molecule by the corresponding species on impact.

The criterion of lethality described above is introduced
as follows. The probability of lethal damage, Pl(r), is
given by

Pl(r) = λ

∞∑

ν=3

N ν
c

ν!
exp [−Nc]. (A.3)

The sum starts from ν = 3, which makes the minimum
order of lesion complexity at a given site larger or equal to
three. The factor λ indicates that one of the simple lesions
is converted to a DSB. This implies that in the current
model the DSBs occur via SSB conversion; in principle,
other mechanisms can also be taken into account.

Then the cumulative effect of secondary electrons and
reactive species have to be integrated over the volume for a
given segment of ion’s trajectory. At this point, the radial
range to which the reactive species can propagate becomes
quite important. This range is determined by the strength
of the shock wave whose collective flow is mainly respon-
sible for the propagation of reactive species. According
to this, Nr(r) = Nrθ(R(Se) − r), where θ is a Heaviside
function. The integral,

dNl

dx
= ns

∫ ∞

0

Pl(r)2πrdr = nsσl(Se), (A.4)

where ns is the number density of sites, gives the number
of clustered damage sites per unit length of the ion’s tra-
jectory, defines σl. The number density of targets, ns, is
proportional to the ratio of base pairs accommodated in
the cell nucleus to the nuclear volume, ns ∼ Nbp/Vn [20].

Further detail of calculation of Fe(r), Γe, etc. can be
found in reference [15]. The latest on the study of R(Se)
is in reference [30].
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