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Abstract. We study effects of tight harmonic-oscillator confinement on the electromagnetic field in a
laser cavity by solving the two-dimensional Lugiato-Lefever (2D LL) equation, taking into account self-
focusing or defocusing nonlinearity, losses, pump, and the trapping potential. Tightly confined (quasi-zero-
dimensional) optical modes (pixels), produced by this model, are analyzed by means of the variational
approximation, which provides a qualitative picture of the ensuing phenomena. This is followed by system-
atic simulations of the time-dependent 2D LL equation, which reveal the shape, stability, and dynamical
behavior of the resulting localized patterns. In this way, we produce stability diagrams for the expected
pixels. Then, we consider the LL model with the vortical pump, showing that it can produce stable pixels
with embedded vorticity (vortex solitons) in remarkably broad stability areas. Alongside confined vortices
with the simple single-ring structure, in the latter case the LL model gives rise to stable multi-ring states,
with a spiral phase field. In addition to the numerical results, a qualitatively correct description of the
vortex solitons is provided by the Thomas-Fermi approximation.

1 Introduction

The Lugiato-Lefever (LL) equation [1] in one and two di-
mensions (1D and 2D) is a fundamental model govern-
ing the dynamics of optical fields in pumped lossy laser
cavities with the intrinsic Kerr nonlinearity, which may
have self-focusing or defocusing sign. This equation is well
known as an important tool for the analysis of pattern for-
mation, with various applications in nonlinear optics [2,3].
The progress in theoretical and experimental studies has
recently drawn a great deal of renewed interest to the use
of the LL equation in diverse settings [4–13]. A natural
extension of these studies is incorporation of external po-
tentials into the LL equation, which can be easily fab-
ricated in laser cavities as transverse landscapes of the
refractive-index inhomogeneity, and may be used as an
efficient means for the control of optical fields [7].

One of essential applications of the LL equation is
its use for modeling well-localized pixels (i.e., sharply
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bounded bright spots) in the cavity [3]. In most cases, pix-
els are considered as anti-dark solitons, i.e., bright objects
created on top of a uniformly pumped background field.
In this work, we aim to demonstrate a possibility to cre-
ate completely localized robust pixels (i.e., bright solitons
with zero background), by adding to the model a confining
potential corresponding to an isotropic 2D harmonic os-
cillator. Furthermore, we demonstrate that the same set-
ting makes it possible to create stable vortex pixels, by
applying a vortically structured pump. The consideration
reported below combines an analytical approach, chiefly
based on the variational and Thomas-Fermi approxima-
tions (VA and TFA), and systematic direct simulations,
in imaginary and real time alike, with the purpose to cre-
ate confined modes and test their stability.

The paper is organized as follows. The model, based
on the 2D LL equation with the harmonic-oscillator trap-
ping potential, is formulated in Section 2. Analytical treat-
ment, which makes use of the VA, power-balance equa-
tion, and TFA, is presented in Section 3. Numerical results
for the existence and stability of the fundamental (zero-
vorticity) and vortical trapped modes are reported in Sec-
tions 4 and 5, respectively. The latter section also reports
simple analytical results for the vortex states, obtained by
means of the TFA. The paper is concluded by Section 6.
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2 The model
The 2D LL equation for the amplitude φ(x, y, t) of the
electromagnetic field in a pumped lossy laser cavity is (see,
e.g., Ref. [7])

i

(
γ +

∂

∂t

)
φ =

[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+ Δ

+
Ω2

2
(x2 + y2) + σ|φ|2

]
φ + E, (1)

where E is the pump field, γ > 0 the dissipation rate,
Δ ≷ 0 detuning of the pump with respect to the cavity,
and Ω2 the strength of the confining potential, while σ =
−1 and +1 correspond to the self-focusing and defocusing
nonlinearity, respectively. By means of rescaling, one may
fix γ = 1, although it may be convenient to keep γ as a
free parameter, as shown below.

Stationary solutions to equation (1) have a simple
asymptotic form at r ≡

√
x2 + y2 → ∞:

φ(r) ≈ − 2E

(Ωr)2
+

4 (Δ − iγ)E

(Ωr)4
. (2)

We also note that the following exact power-balance equa-
tion ensues from equation (1):

dP

dt
= −2γP − 2

∫ ∫
Im{E∗φ(x, y, t)}dxdy, (3)

where power P (alias norm) of the solitary wave is de-
fined as

P =
∫ ∫

|φ(x, y, t)|2dxdy. (4)

The objective is to reduce the 2D LL equation (1) to
a quasi-zero-dimensional limit (a dynamical system for
a pixel, similar to those realized by theoretically pre-
dicted [3] and experimentally created [13] spatial solitons)
in the case of tight confinement, represented by large Ω2.
First, we do it by means of the VA, defining

φ(x, y, t) ≡ Φ(x, y, t) exp (−γt) , (5)

and thus casting equation (1) in the form of

i
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)
+ Δ

+
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2
(x2 + y2) + σe−2γt|Φ|2

]
Φ + Eeγt. (6)

Unlike the original LL equation (1), the transformed
one (6) can be directly derived from a real time-dependent
Lagrangian,

L =
∫ ∫

dxdy

{
i

2
(Φ∗

t Φ − Φ∗Φt) +
1
2

(|Φx|2 + |Φy|2
)

+
[
Δ +

Ω2

2
(x2 + y2)

]
|Φ|2 +

σ

2
e−2γt |Φ|4

+ eγt (EΦ∗ + E∗Φ)

}
. (7)

3 Analytical considerations

3.1 The variational approximation

For the 1D LL equation without trapping potentials, the
VA was developed in reference [14]. To derive this ap-
proximation in a form appropriate for the present model,
we note that, in the lowest approximation, equation (6)
gives rise to the following asymptotic form of solutions at
r → ∞: Φ = −2E (Ωr)−2

eγt, cf. equation (2). This form
suggests us to adopt an ansatz based on the fractional ex-
pression, with real variables f(t) and χ(t), which may be
combined into a complex one, F (t) = f(t) exp (iχ(t)):

Φ (x, y, t) = −2E

Ω2
eγt F (t)

1 + r2F (t)
≡ ε eγt f(t) eiχ(t)

1 + r2f(t) eiχ(t)
,

(8)

ε ≡ −2E

Ω2
. (9)

The insertion of ansatz (8) in equation (7) and subsequent
integration gives rise to an effective Lagrangian,

e−2γt

πε2
Leff =

1
2
fq1(χ)

dχ

dt
− 1

2
q2(χ) sin χ

df

dt
+ f2q2(χ)

+ Δfq1(χ) +
σε2

8
f3q3(χ) − Ω2q1(χ) cosχ

− Ω2

4

∫
dχ[q3(χ) sin χ] , (10)

with q1(χ) ≡ χ/ sinχ, q2(χ) ≡ [(sin χ − χ cosχ) / sin3 χ,
and q3(χ) ≡ [2χ − sin (2χ)]/ sin3 χ. The last term in
equation (10) is cast in the integral form as a result
of “renormalization”: the respective term in the original
Lagrangian formally diverges logarithmically at R → ∞,
but the diverging part actually does not depend on f and
χ, and it may be cancelled by means of the differentiation
with respect to χ and subsequent integration, also with
respect to χ.

The Euler-Lagrange equations following from
Lagrangian (10) are (taking into account that the
Lagrangian must be substituted into the action,

∫
Ldt,

and then the action must be subjected to the variation;
this makes it necessary to apply the time differentiation
to e2γt):

1
2

[q2(χ) cosχ + q′2(χ) sin χ + q1(χ)]
df

dt

+
(
γf − Ω2 sinχ

)
q1(χ) +

(
Ω2 cosχ − Δf

)
q′1(χ)

− f2 q′2(χ) − g

8
f3q′3(χ) +

Ω2

4
q3(χ) sin χ = 0, (11)

Δq1(χ) + 2 f q2(χ) +
3g

8
f2 q3(χ) + γq2(χ) sin χ

+
1
2

[q2(χ) cos χ + q′2(χ) sin χ + q1(χ)]
dχ

dt
= 0, (12)

where a renormalized nonlinearity coefficient is (see
Eq. (9))

g = σε2 ≡ 4σE2/Ω4. (13)
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Note that, although it may seem that equations (11)
and (12) are singular at χ = 0, in reality all the singu-
larities cancel. A singularity is instead possible at χ = π.

We consider stationary (fixed-point) solutions of equa-
tions (11) and (12) by setting df/dt = dχ/dt = 0, which
yields(

Ω2 sin χ − γf
)
q1(χ) +

(
Δf − Ω2 cosχ

)
q′1(χ)

+ f2 q′2(χ) +
g

8
f3q′3(χ) − Ω2

4
q3(χ) sin χ = 0, (14)

Δq1(χ)+2 f q2(χ)+
3g

8
f2 q3(χ)+ γq2(χ) sin χ = 0. (15)

Further, it is possible to find approximate solutions of
equations (14) and (15), assuming that they have

|χ| � π. (16)

In this case, equation (15), in the first approximation, as-
sumes the form of

Δ +
2
3
f +

g

2
f2 +

γ

3
χ = 0. (17)

Similarly, in the lowest approximation equation (14) yields
an expression for χ:

χ =
30γf

10Ω2 + f [10Δ + 8f + 3gf2]
. (18)

The assumption (16) may be then secured by a natural as-
sumption of the strong confinement, i.e., considering large
values of Ω. In this case, equations (17) and (18) can be
further simplified to

f ≈ −2 ±√
4 − 18gΔ

3g
, (19)

χ ≈ γ
(−2 ±√

4 − 18gΔ
)

gΩ2
. (20)

Obviously, equations (19) and (20) produce a physically
relevant result under condition gΔ < 2/9.

One can construct another approximate solution for
large detuning Δ:

f ≈
√
−2Δ/g − 2/ (3g) , (21)

χ ≈ (15/2)γ/Δ. (22)

In the general case, stationary solutions of equations (14)
and (15), where, as said above, we may fix γ = 1, depend
on three parameters: Δ ≷ 0, g ≷ 0 (see Eq. (13)), and
Ω2 > 0.

In addition to the consideration of the stationary so-
lutions (fixed points), the full dynamical version of the
VA, based on equations (11) and (12), can be also used
to analyze their stability, as well as evolution of unstable
solutions. However, in practical terms such a dynamical
analysis turns out to be quite cumbersome, direct numer-
ical simulations being actually more efficient, as shown
below.

Fig. 1. Lines in the parameter plane of (Δ, g), along which
solutions of the overdetermined system (27), (28) exist. Here,
solid red, dashed gray, and dotted black lines correspond, re-
spectively, to Ω = 2, 4, and 6. The inset displays a zoom of
the curve for Ω = 10.

3.2 The power-balance condition

The substitution of ansatz (8) in the definition of
power (4) and power-balance equation (3) yields

P =
4πE2f

Ω4

χ

sin(χ)
, (23)

dP

dt
= −8πγE2f

Ω4

χ

sin(χ)
+

4πE2

Ω2
χ (24)

(in these expressions, f > 0 is implied). Equation (24)
predicts the equilibrium condition, dP/dt = 0, at

sin(χ) =
2γ

Ω2
f. (25)

Note that E drops out from equation (25), and condition
sin(χ) ≤ 1, following from equation (25), imposes a re-
striction on f ,

f ≤ Ω2/(2γ). (26)

Finally, for |χ| � π equation (25) simplifies to χ ≈(
2γ/Ω2

)
f . Using this to eliminate f in favor of χ, equa-

tions (17) and (18) give rise to the following system of
equations:

gΩ4χ3

80γ3
+

Ω2χ2

15γ2
+

Δχ

6γ
− 1

6
= 0, (27)

gΩ4χ2

8γ2
+

1
3γ

(
Ω2 + γ2

)
χ + Δ = 0. (28)

Of course, the system of two equations (27) and (28) for
the single unknown χ is overdetermined, and a solution of
this system may exist only if a special restriction is im-
posed on parameters, as shown in Figure 1, in the plane
of (Δ, g), for γ = 1 and three different fixed values of the
confinement strength, Ω = 2, Ω = 4, and Ω = 10. Note
that these curves do not depend on the pumping strength,
E. Indeed, this parameter is related only to the power
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Fig. 2. Power P versus pumping strength E. Variational re-
sults for the defocusing case (σ = +1), produced by simpli-
fied equations (19) and (20), are shown in (a), with g = 1,
by curves with circles (yellow), boxes (red), and diamonds
(green), for Δ = −1, −4, and −10, respectively. The self-
focusing case (σ = −1) is shown in (b), with g = −1, by
curves with hexagons (cyan), down triangles (magenta), and
up triangles (gray), for Δ = 1, 4, and 10, respectively. In (c)
we compare the analytical and numerical results for the defo-
cusing case (g = 1 and Δ = −10), shown, severally, by curves
with diamonds (green) and stars (orange), and analytical re-
sults for the self-focusing case (g = −1 and Δ = 10, shown by
the curve with up triangles (gray)). The solutions numerically
found in the case of the self-focusing are unstable. In all the
plots, Ω = 10 and γ = 1 are fixed here.

of the solution, see equation (23) and Figure 2. The mean-
ing of the overdetermined system is that, realizing the VA
and power-balance condition simultaneously, its solution
has a better chance to produce an accurate approximation.
This expectation is qualitatively corroborated below, see
Figure 9 and related text in the next section.

Generic properties of the modes predicted by
ansatz (8) are characterized by the corresponding depen-
dence of power P on the pumping strength, E. Using, for
this purpose, the simplified approximation given by equa-
tions (19) and (20), we display the dependences for the de-
focusing nonlinearity (g = 1) in Figure 2a, at fixed values
of the detuning, Δ = −1, −4, and −10. Figure 2b displays
the same dependences in the case of the self-focusing non-
linearity (g = −1), for Δ = 1, 4, and 10. Note that power
P is not symmetric with respect to the reversal of the signs
of nonlinearity g and detuning Δ.

In Figure 2c we compare the VA results for the self-
defocusing (g = 1 and Δ = −10) and focusing (g = −1
and Δ = 10) cases. In addition, Figure 2c includes full
numerical results (for details see the next section). It is
seen that the simplified VA produces a qualitatively cor-
rect prediction, which is not quite accurate quantitatively.
Below, we demonstrate that the VA is completely accurate
only in small black regions shown in Figure 9.

3.3 The Thomas-Fermi approximation (TFA)

In the case of the self-defocusing sign of the nonlinearity,
and positive mismatch, Δ > 0, the ground state, corre-
sponding to a sufficiently smooth stationary solution of
equation (1), φ = φ(r), may be produced by the TFA,
which neglects derivatives in the radial equation [15]:

(
Δ − iγ +

Ω2

2
r2 + σ|φ|2

)
φ = −E . (29)

In particular, the TFA is relevant if Δ is large enough.
The TFA-produced equation (29) for the ground-

states’s configuration is not easy to solve analytically, as
it is a cubic algebraic equation with complex coefficients.
The situation greatly simplifies in the limit case of a very
large mismatch, viz., Δ 	 γ and Δ3 	 σE2. Then, both
the imaginary and nonlinear terms may be neglected in
equation (29), to yield

φ(r) ≈ −E

(
Δ +

Ω2

2
r2

)−1

. (30)

This simple approximation, which may be considered as a
limit form of ansatz (8), can be used to produce estimates
for various characteristics of the ground state (see, in par-
ticular, Fig. 5 below). In fact, the TFA will be the most
relevant tool in Section 5, as an analytical approximation
for trapped vortex modes, for which the use of the VA,
even in its stationary form, is too cumbersome.

The TFA cannot be applied to nonstationary solutions,
hence it does not provide direct predictions for stability
of stationary modes. However, it usually tends to produce
ground states, thus predicting stable solutions. This ex-
pectation is corroborated by results produced below.

4 Numerical results for fundamental modes

4.1 Stationary trapped modes

To obtain accurate results, and verify the validity of the
VA predictions which are presented in the previous sec-
tion, we here report results obtained as numerical solu-
tions of equation (1). First, we aim to find ground-state
localized states by means of imaginary-time propagation.
In the framework of this method, one numerically inte-
grates equation (1), replacing t by −it and normalizing the
solution at each step of the time integration to maintain a
fixed total power [16–18]. For testing stability of station-
ary states, equation (1) was then simulated in real time, by
means of the fourth-order split-step method implemented
in a GNU Octave program [19] (for a details concern-
ing the method and its implementations in MATLAB, see
Ref. [20]).

In Figure 3 we show 1D integrated intensity profiles
�(x), defined as

�(x) ≡
∫ +∞

−∞
|φ(x, y)|2dy, (31)
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Fig. 3. Profiles of fundamental trapped modes, �(x), obtained
via imaginary-time simulations of equation (1), are shown by
yellow circles. Black solid lines display counterparts of the same
profiles produced by the variational approximation based on
ansatz (8). The parameters are (a) Δ = −1, (b) Δ = −4,
(c) Δ = −10, others fixed as Ω = 10, γ = 1, E = 10, and g = 1
(the self-defocusing nonlinearity).

Fig. 4. The same as in Figure 3, for parameters (a) Δ = 1,
(b) Δ = 4, (c) Δ = 10, with Ω = 10, γ = 1, E = 10, and
g = −1 (the self-focusing nonlinearity).

and obtained from the imaginary-time solution of equa-
tion (1), along with their analytical counterparts produced
by the VA based on equation (8), for three different val-
ues of detuning Δ, viz., (a) Δ = −1, (b) Δ = −4, and (c)
Δ = −10, for g = 1 (the self-defocusing nonlinearity) and
Ω = 10 and E = 10. We used equations (19) and (20) to
produce values of the parameters f and χ in ansatz (8),
which was then used as the initial guess in direct numerical
simulations.

In Figure 4 we display results similar to those shown in
Figure 3, but for the self-focusing nonlinearity (g = −1)
and three different (positive) values of Δ, viz., (a) Δ =
1, (b) Δ = 4, and (c) Δ = 10, with fixed Ω = 10 and
E = 10. In both cases of g = ±1, the VA profiles show

ϱ(
x)

0

0.2

0.4

0.6

0.8

x
-4 -2 0 2 4

(a)

ϱ(
x)

0
0.05
0.1
0.15
0.2
0.25

x
-4 -2 0 2 4

(b)

Fig. 5. Following Figures 3 and 4, chains of yellow circles
depict profiles of fundamental trapped modes, �(x), obtained
via imaginary-time simulations of equation (1), for the self-
defocusing nonlinearity, g = 1, and large positive values of the
mismatch: Δ = 10 in (a) and Δ = 20 in (b). Black solid lines
display the same profiles, as produced by the simplest version
of the Thomas-Fermi approximation, given by equation (32).
Other parameters are Ω = 10, γ = 1, and E = 10.

good match to the numerical ones, although the accuracy
slightly deteriorates with the increase of |Δ|.

Note that the results displayed in Figure 4, for the situ-
ations to which the TFA does not apply, because the non-
linearity is self-focusing in this case, demonstrate the
growth of the maximum value, �(x = 0), with the in-
crease of mismatch Δ. In the case of self-defocusing it is
natural to expect decay of �TFA(x = 0) with the increase
of Δ. As shown in Figure 5, this expectation is confirmed
by the numerical results and the TFA alike. In particu-
lar, for the integrated intensity profile defined by equa-
tion (31), the simplest version of the TFA, produced by
equation (30), easily gives

�TFA(x) =
2πE2

Ω4

(
2Δ

Ω2
+ x2

)−3/2

. (32)

Figure 5 also corroborates that the TFA, even in its sim-
plest form, becomes quite accurate for sufficiently large
values of Δ > 0.

4.2 Stability of the stationary modes

The stability of the trapped configurations predicted by
ansatz (8) was tested in real-time simulations of equa-
tion (1), adding 5% random noise to the input. We dis-
play the results, showing the evolution of the solution’s
norm (total power) in the case of the defocusing nonlin-
earity (g = 1), for Δ = −1 and −10, in Figures 6a and 6b,
respectively. The insets show the asymptotic behavior at
large times. In the case of the defocusing nonlinearity, the
solution quickly relaxes to a numerically exact stationary
form, and remains completely stable at t > 10 (in fact,
real-time simulations always quickly converge to stable so-
lutions at all values of the parameters). However, in the
case of the self-focusing with Ω = 10, the solutions are un-
stable, suffering rapid fragmentation, as seen in Figure 8
below. This behavior is also exemplified in results shown
in Figures 6c and 6d for the temporal evolution of the
solution’s total power in the case of the self-focusing non-
linearity (g = −1), for Δ = 1 and for Δ = 10, respectively.
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Fig. 6. The evolution of the norm [total power (4)] of the so-
lution starting from ansatz (8) perturbed by 5% random noise,
as produced by real-time simulations of equation (1). Here the
results are presented for the defocusing nonlinearity, i.e., g = 1,
with (a) Δ = −1 and (b) Δ = −10, and for the focusing non-
linearity, i.e., g = −1, with (c) Δ = 1 and (d) Δ = 10. Other
parameters are E = 10, Ω = 10, and γ = 1. The evolution of
the norm at large times is shown in the insets.

Fig. 7. Density profile |φ|2 obtained via direct numerical sim-
ulations of equation (1) in the case of the self-defocusing non-
linearity (g = 1). Inputs, represented by ansatz (8) with the
addition of 5% random noise, are displayed in panels (a) for
Δ = −1 and (c) for Δ = −10. The corresponding profiles pro-
duced by the simulations at t = 1000 are shown in (b) and (d),
respectively. Other parameters are the same as in Figure 6.

The instability of the fundamental modes in this case is
a natural manifestation of the modulational instability in
the LL equation [9,21,22]. Note that the large size of local
amplitudes in small spots, which is attained in the course
of the development of the instability observed in Figure 8,
implies the trend to the onset of the 2D collapse driven
by the self-focusing cubic nonlinearity [23,24].

In Figures 7 and 8 we display the time evolution
of density profiles |φ|2 produced by the simulations of

Fig. 8. The same as in Figure 7, but in the case of the self-
focusing nonlinearity (g = −1). Panels (a, b) and (c, d) are
drawn for Δ = 1 and Δ = 10, respectively. Here, the profiles
shown in (b) and (d) are outputs of the simulations obtained
at t = 10.

equation (1) with the self-defocusing and focusing non-
linearity, respectively. The input profiles are again taken
as per the VA ansatz (8) with the addition of 5% ran-
dom noise. In Figures 7a and 7c we show the perturbed
input profiles in the case of self-defocusing, for Δ = −1
and Δ = −10, respectively, while the corresponding pro-
files at t = 1000 are displayed in Figures 7b and 7d. Note
that the agreement between the variational and numerical
profiles tends to deteriorate with the increase of |Δ| (the
same trend as observed in Fig. 2c).

Further, in Figures 8a and 8c we display the perturbed
input profiles in the case of the self-focusing nonlinearity
for Δ = 1 and Δ = 10, respectively, with the correspond-
ing profiles at t = 1000 displayed in Figures 8b and 8d.
These results clearly confirm the instability of the per-
turbed solutions, as suggested by the evolution of the total
power depicted in Figures 6c and 6d. Strong instability is
observed for all values of g < 0, which corresponds to the
self-focusing.

The findings for the existence and stability of the lo-
calized pixels are summarized by diagrams displayed in
Figure 9. To produce them, we analyzed the temporal
evolution of total power (4), parallel to monitoring the
spatial profile of each solution at large times (t = 100 and
t = 1000). In Figure 9, we address three different values of
strength Ω of the trapping potential: (a) Ω = 2, (b) Ω = 4,
and (c) Ω = 10. The stability area is represented by gray
and white boxes, which correspond, respectively, to robust
static outputs and those which feature small residual os-
cillations, while the parameter area not covered by boxes
corresponds to unstable solutions. This includes the area
of g ≤ 0 (self-focusing), where the modes suffer strong in-
stability observed in Figures 8b and 8d at Ω = 10, but
may be stable at Ω = 2 and 4 (in the latter case, the sta-
bility domain for g > 0 is very small, as seen in Fig. 9b).
On the other hand, at g > 5 and Ω = 10, the solution

http://www.epj.org
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Fig. 9. The existence area of stable modes obtained by means
of real-time simulation of equation (1). To generate the area,
we used the input in the form of ansatz (8) with parameters
predicted by the VA, adding random noise at the 5% amplitude
level. We here consider (a) Ω = 2, (b) Ω = 4, and (c) Ω =
10. In all the cases, the norm (total power) of the solution
undergoes variations. For parameter values corresponding to
the gray boxes it stabilizes after a short relaxation period. In
the white boxes, the norm keeps oscillating, while the solution
maintains the localized profile, avoiding onset of instability.
The simulations in the region not covered by boxes feature
instability scenarios: in the case of g ≤ 0 the solution suffers
fragmentation, like in Figures 8b and 8d, while in the case of
self-defocusing the solution is subject to fragmentation due to
the strong nonlinearity (e.g., at g > 5 in (c)). In the black
region, the output states are very close to the input. Other
parameters are E = 10, and γ = 1. The data for the linear
system, corresponding to g = 0, are not included, as in the
linear system all the stationary solutions are obviously stable.

undergoes fragmentation under the action of the strong
self-defocusing nonlinearity, for all values of −10 ≤ Δ ≤
+10. An example of that is displayed in Figure 10 for
g = 10 and two extreme values of the mismatch, Δ = −10
and +10.

In the stability area, black spots highlight values of the
parameters at which the output profiles of the static solu-
tions, observed at t = 1000, are very close to the respective
input profiles, i.e., the VA provides very accurate predic-
tions. Generally, the shape of the stability area in the form

Fig. 10. The same as in Figure 8, but for g = 10. Panels (a, b)
and (c, d) pertain to Δ = −10 and Δ = 10, respectively. The
unstable output profiles are displayed at t = 10.

of the vertical stripe, observed in Figure 9c, roughly fol-
lows the vertical direction of the dotted black line in Fig-
ure 1, which pertains to the same value of Ω = 10. On the
other hand, the expansion of the stability area in the hor-
izontal direction for Ω = 2 and Ω = 4, which is observed
in Figures 9a, 9b, qualitatively complies with the strong
change of the curves in Figure 1 for the same values of Ω.
Looking at Figure 9, one can also conclude that large pos-
itive values of Δ help to additionally expand the stability
region.

We stress that the results shown in Figure 9 are ex-
tremely robust: real-time simulations lead to them, even
starting with zero input. The input provided by the VA
ansatz (8) is used above to explore the accuracy of the
VA, which is relevant, as similar approximations can be
applied to similar models, incorporating the pump, linear
loss, and Kerr nonlinearity (self-defocusing or focusing).

5 Vortex solitons

5.1 Analytical considerations: the Thomas-Fermi
approximation

In the previous sections, we considered uniform pump
field E, which generates fundamental modes without vor-
ticity. Here we explore the confined LL model with space-
dependent pump carrying the vorticity. It is represented
by the driving term

E = E0re
iθ (33)

in equation (1), where θ is the angular coordinate and
E0 = const. This term naturally corresponds to the pump
supplied by a vortex laser beam (with vorticity 1) [25–27].
In the case of multiple vorticity m > 1 (which will be
considered elsewhere), equation (33) is replaced by E =
E0r

meimθ.
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Patterns supported by the vortex pump correspond
to factorized solutions of the stationary version of equa-
tion (1), taken as

φ (r, θ) = eiθA(r), (34)

with complex amplitude A satisfying the following radial
equation:

[
1
2

(
d2

dr2
+

1
r

d

dr
− 1

r2

)
− Δ + iγ − Ω2

2
r2 − σ|A|2

]
A

= E0r .

As an analytical approximation, the TFA for vortex soli-
tons may be applied here, cf. references [28–32]. In the
general case, the TFA implies dropping the derivatives in
the radial equation, which leads to a complex cubic equa-
tion for A, cf. equation (29), under the conditions σ > 0
(self-defocusing) and Δ > 0 (positive mismatch):

[
Δ − iγ +

1
2

(
1
r2

+ Ω2r2

)
+ σ|A|2

]
A = −E0r. (35)

Equation (35), as well as its counterpart (29) for the zero-
vorticity states, strongly simplifies in the limit of large
Δ > 0, when both the imaginary and and nonlinear terms
may be neglected:

A(r) = −E0r

[
Δ +

1
2

(
1
r2

+ Ω2r2

)]−1

. (36)

In particular, the simplest approximation provided by
equation (36) makes it possible to easily predict the ra-
dial location of maximal intensity in the ring-shaped vor-
tex mode:

r2
max =

(√
Δ2 + 3Ω2 + Δ

)
/Ω2. (37)

Comparison of values given by equation (37) with their
counterparts extracted from numerically found vortex-
ring shapes, which are displayed below in Figures 12a
and 12b for Δ ≥ 0, demonstrates that the analytically
predicted values are smaller than the numerical counter-
parts by 11% for Δ = 0, and by 6% for Δ = 10. Natu-
rally, the TFA provides better accuracy for large Δ, but
even for Δ = 0 the prediction is reasonable. Furthermore,
equation (36) predicts a virtually exact largest intensity,
|A(r = rmax)|2, for the small-amplitude mode displayed in
Figure 12b.

5.2 Numerical results

Equation (1) with vortex pump profile (33) was numeri-
cally solved with zero input. This simulation scenario is
appropriate, as vortex states, when they are stable, are
sufficiently strong attractors to draw solutions developing
from the zero input.

The results, produced by systematic real-time simula-
tions, are summarized in Figure 13 below for Ω = 2 in

Δ
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Fig. 11. The stability area in the plane of (Δ, σ) for vor-
tex solutions numerically generated by real-time simulations
of equation (1) with vortex pump (33). Other parameters are
Ω = 2, γ = 1, and (a) E0 = 1 or (b) E0 = 2. Simple sta-
ble vortices are found in the gray area, while the yellow one
represents stable modes with the spiral phase structure which
features a full turn, and a multi-ring radial structure, see a
typical example in Figure 14. No stable vortices were found in
the white area.
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Fig. 12. Output profiles |φout(x, 0)|2 of stable ring-shaped vor-
tices, produced by real-time integration of equation (1) with
pump profile (33), for two different values of |σ| (the absolute
value of the nonlinearity coefficient). The radial shapes ob-
tained with the self-defocusing (σ = 5) and focusing (σ = −5)
nonlinearities are displayed by solid black and dashed red lines,
respectively, for Δ = 0 (a) and Δ = 10 (b). Other parameters
are γ = 1, Ω = 2 and E0 = 1.

equation (1) and E0 = 1 or 2 in equation (33). The figure
displays stability areas for the vortex modes in the plane
of free control parameters (Δ, σ) (the mismatch and non-
linearity strength). It is worthy to note that the stability
domain for the self-focusing nonlinearity (σ < 0) is es-
sentially larger than in the diagram for the fundamental
(zero-vorticity) modes, which is displayed, also for Ω = 2,
in Figure 9. This fact may be naturally explained by the
fact that the vanishing of the vortex drive (33) at r → 0,
in the combination with the intrinsic structure of the vor-
tex states, makes the central area of the pattern nearly
“empty”, thus preventing the onset of the modulational
instability in it.

In the gray areas in Figure 11, the stable vortex modes
have a simple ring-shaped structure, with typical radial
profiles shown in Figure 12. In the case of zero mismatch,
Δ = 0 (Fig. 11a), the vortex state naturally acquires a
higher amplitude under the action of the self-focusing. On
the other hand, in the case of large positive mismatch
(Fig. 11b), the small amplitude is virtually the same un-
der the action of the focusing and defocusing, which is
explained, as mentioned above, by the TFA that reduces
to equation (36).

In unstable (white) areas in Figure 11, direct simu-
lations lead to quick fragmentation of vortically driven
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Fig. 13. (a) Local-intensity |φ (x, y) |2 and (b) phase profiles
of an unstable pattern, produced by the simulations of equa-
tion (1) with vortex pump (33) and the strong self-focusing
(σ = −5) at t = 20. Other parameters are Δ = −8, γ = 1,
Ω = 2, and E0 = 1.
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Fig. 14. A stable multi-ring vortex with the spiral phase field.
Panels (a–c) display, respectively, the 2D local-intensity pat-
tern, phase field, and the radial structure. Parameters are the
same as in Figure 13, except for a weaker self-focusing strength,
σ = −1.

patterns into small spots, that feature a trend to devel-
oping the above-mentioned critical collapse [23]. A typ-
ical example of the unstable evolution is displayed in
Figure 13.

More sophisticated stable vortex profiles are observed
in yellow areas in Figure 13. They are characterized by
a multi-ring radial structure, and a spiral shape of the
vorticity-carrying phase distribution, as shown in Fig-
ure 14. The yellow areas are defined as those in which
the spiral phase field performs a full turn by 360 degrees,
as can be seen in Figure 14b. Note that this area exists
for both the focusing and defocusing signs of the nonlin-
earity in Figure 13a, and solely for zero nonlinearity in
Figure 13b, which corresponds to the stronger pump.

The spiral shape of the phase pattern is explained
by the fact that radial amplitude A(r) in solution (34)
is a complex function, as is explicitly shown, in particu-
lar, by equations (2) and (35). The spirality of vortices
is a well-known feature of 2D complex Ginzburg-Landau
equations [33–36]. However, unlike the present situation,
the spirality is not usually related to a multi-ring radial
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Fig. 15. The same as in Figure 13, but with the self-defocusing
sigh of the nonlinearity, σ = 2.

structure. Patterns with multi-ring shapes usually exist as
excited states, on top of stable ground states in the same
models, being unstable to azimuthal perturbations [37,38].
For this reason, the stability of complex modes, like the
one displayed in Figure 14, is a noteworthy finding.

Lastly, a typical example of a stable vortex at the
boundary between the simple (non-spiral) and complex
(spiral-shaped) ones is presented in Figure 15. It features
emerging spirality in the phase field, but the radial struc-
ture keeps the single-ring shape.

6 Conclusion

We have introduced the 2D model based on the LL
(Lugiato-Lefever) equation with confinement imposed by
the harmonic-oscillator trap. In spite of the action of
the uniform pump, the confinement creates well localized
patterns, which may be used for the creation of robust
small-area pixels in applications. The VA (variational ap-
proximation), based on a novel fractional ansatz, as well
as a simple TFA (Thomas-Fermi approximation), were
elaborated to describe the fundamental (zero-vorticity)
confined modes. The VA effectively reduces the 2D LL
equation to the zero-dimensional version. The VA is addi-
tionally enhanced by taking into regard the balance condi-
tion for the integral power. The comparison with the full
numerical analysis has demonstrated that the VA provides
qualitatively accurate predictions, which are also quanti-
tatively accurate, in some areas of the parameter space.
The systematic numerical analysis has produced overall
stability areas for the confined pattern in the underly-
ing parameter space, which demonstrate that the patterns
tend to be less stable and more stable under the action of
the self-focusing and defocusing nonlinearity, respectively
(although very strong self-defocusing causes fragmenta-
tion of the patterns). The increase of the confinement
strength leads to shrinkage of the stability area, although
it does not make all the states unstable. On the other
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hand, large positive values of the cavity’s detuning tends
to expand the region of the stability in the parameter
space.

We have also explored vortex solitons (which may be
used to realize vortical pixels in microcavities) supported
by the pump with embedded vorticity. In this case, the
simple TFA provides a qualitatively correct description,
and systematically collected numerical results reveal a re-
markably large stability area in the parameter space, for
both the self-defocusing and focusing signs of the non-
linearity. In addition to simple vortices, stable complex
ones, featuring the multi-ring radial structure and the spi-
ral phase field, have been found too. As an extension of
the present work, a challenging issue is to look for confined
states with multiple embedded vorticity.
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