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Abstract. We calculate the single step cross sections for excitation of Q2 states of H2 and its subsequent
dissociation. The cross section calculations were performed within the first Born approximation and the
electronic wave functions were obtained via State-Averaged Multiconfigurational Self-Consistent Field
followed by Configuration Interaction. We have assumed autoionization is the only important process
competing with dissociation into neutral atoms. We have estimated its probability through a semi classical
approach and compared with results of literature. Special attention was given to the Q2

1Σ+
g (1) state which,

as has been shown in a previous work, may dissociate into H(2sσ) + H(2sσ) fragments (some figures in
this article are in colour only in the electronic version).

1 Introduction

Doubly excited states of the H2 molecule play an impor-
tant role in collisional process such as electron impact
excitation [1], associative ionization [2] and e− + H+

2 scat-
tering [2–5]. These states are so-called because its two elec-
trons occupy excited orbitals, lying above the molecular
orbital 1sσg. As a direct consequence, the states are local-
ized above the ionization threshold of H+

2 . Such states are
also known as Qn states because they are closely related to
the Feshbach formalism [6]. The Qn states may autoionize
yielding to H+

2 + e−, H + H+ + e− or dissociate into H+

+ H− ions as well as into neutral excited H atoms that
would be a possible route towards entangled atom pairs.

Many experimental investigations have been devoted
to the analysis of the different ionic and/or neutral frag-
ments. For example, in 1973 Browning and Fryar [7] mea-
sured the ratio between dissociative and non-dissociative
ionization (H+/H+

2 ) arising from photo absorption. They
found an increase of that ratio near 26 eV due to the pres-
ence of doubly excited states.

The first theoretical calculations related to doubly ex-
cited states were carried out by Bottcher and Docken in
1974 [8], who calculated the energies and widths for dis-
sociative states Q1

1Πu and Q2
1Πu in the internuclear

range of 1 a.u. ≤ R ≤ 10 a.u. Guberman, in 1983 [9]
calculated 24 doubly excited states using the Configura-
tion Interaction (CI) [10] within the Feshbach projection
operators formalism [6] and has been an important ref-
erence for many years. It is worth mentioning the work
of Tennyson and Noble [11] who calculated the positions
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and widths of all the low-lying Σ and Π resonances in
the electron-H+

2 collision as functions of internuclear dis-
tance by using R-matrix method. Nikitin et al. [12] in the
context of cold collisions investigated the interaction be-
tween two excited hydrogen atoms, obtaining asymptotics
doubly excited states at the great distances. In the same
context, Forrey et al. [13,14] obtained cross sections and
yield rates of metastable hydrogen atoms including Lamb
shift and fine structure in their calculations. In the late
90’s, Sánchez and Mart́ın [15] calculated dozens of poten-
tial energy curves and autoionization widths of Q2 doubly
excited states using the Feshbach projection operators for-
malism and wavefunctions with one-center B-spline expan-
tion. In 2002, Jonsell et al. [16] used explicitly correlated
basis functions and complex-scaling method for potential
energy curves and autoionization width calculations, re-
spectively. Vanne et al. [17] calculated the doubly excited
H2 states converging to H(2l) + H(2l′) using B-spline ba-
sis functions with prolate spheroidal coordinate system
(two-center expansion).

From the experimental point of view, most of the works
in photoabsorption are related to dissociation by single
photon impact and due to the selection rule which ap-
plies in such cases, only states with certain symmetries
(1Σ+

u and 1Πu, for example) are accessed. For example,
Bosek et al. [18] measured the cross sections for the for-
mation of the metastable atomic hydrogen in the 2s state
in photoexcitation of H2 and D2 as a function of the in-
cident photon energy in the range of the doubly excited
states. Optically forbidden states has also been investi-
gated through resonance-enhanced multiphoton ionization
(REMPI) technique [19,20] that is more efficient to access
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a specific state. With regard to collisions by electron im-
pact, in which states of symmetry 1Σ+

g are accessible (as
well as in REMPI), few works [21,22] have been conducted
as, for example, Ishikawa et al. [21] who measured dif-
ferential cross sections of the dissociative double excita-
tions resulting in H(2p) in 80 eV electron collisions with
H2 by means of angle-resolved electron energy loss spec-
troscopy in coincidence with detecting Lyman-α photons.
No group, except ours, has reported the detection of H(2s)
+ H(2s) coincident fragments [23].

We have previously investigated the optically forbid-
den transition from ground to Q2

1Σ+
g state that may dis-

sociate into H(2s) + H(2s) metastable fragments [24] and,
as we said, experimental data confirm its existence [23].
Now, we present our calculated excitation cross sections
from ground to the repulsive doubly excited states Q2
1Σ+

g (1), Q2
1Σ+

g (2), Q2
1Σ+

g (3), Q2
1Σ+

u (1), Q2
1Πu(1),

Q2
1Πu(2) and Q2

1Πg(1) within the first Born approx-
imation (FBA). Ground and excited state wavefunctions
were obtained at the Configuration Interaction level from
State Averaged Multiconfigurational Self Consistent Field
molecular orbitals in which states with the same symme-
try as the ground state were optimized.

In order to compute dissociation from excitation cross
sections, we have used the resonance widths of Fernandez
and Mart́ın [25] and a semiclassical approximation [26] in
order to estimate the survival factor χd, for Q2

1Σ+
g (1),

Q2
1Σ+

g (2), Q2
1Σ+

g (3), Q2
1Σ+

u (1) and Q2
1Πu(1) (the

numbers in brackets represent the order of the root with
a given symmetry) states. Then, combining the survival
factor and the calculated CI excited cross sections, we
obtained the dissociation cross sections for production of
H(2l) + H(2l′) through these states. This results can be
very helpful for future experimental investigations of those
states, which lead to dissociation into two hydrogen atoms
at 2s state.

2 Theoretical background

2.1 Excitation and dissociation cross-sections

Calculations were performed within the first Born approx-
imation (FBA) for incident electron energies in the range
100 eV–800 eV. FBA is certainly valid in the upper limit
of this range and furnishes a good estimation in the lower
part. The inclusion of 100 eV as lower limit in the present
study is motivated by a previous work of our group on
twin atoms [23], where we used electrons with energies
ranging in the interval 60 eV–200 eV. We are interested
in a collisional process in which a H2 molecule, initially in
the ground vibro-electronic state, is excited by a 100 eV
electronic projectile to the purely repulsive Q2 states.

As said before, when the doubly excited states are
accessed, two main channels are in competition: the H2

molecule may dissociate into excited neutral fragments or
autoionize. In particular, the aim of this paper is to shed
light to the dissociative channels that yield excited neu-
tral metastable non radiative H(2s) fragments which has

a life-time sufficient to go through a longitudinal Stern-
Gerlach atomic interferometer [27] without decay. In the
FBA approach, the double differential excitation cross sec-
tion (DDECS) of excitation to these dissociativeQn states
is given by [28]

d2σ0n

dωdE
= (2π)2

1
2K2

kn

k0

1
E

df0n(K,E)
dE

(1)

where ω = (θ, φ) stands for the solid angle of the scat-
tered projectile measured from the electron beam, k0 and
kn it initial and final momentum respectively, E is the
transition energy and K, the transferred momentum to
the target. The scattering angle and the transferred mo-
mentum are directly related through dω = 2πsenθdθ =
2πKdK/k0kn.

For a molecular system,

df0n(K,E)
dE

=
2E
K2

gn

4π
|ε0n(K; ν,M, J ← ν0,M0, J0)|2 (2)

where gn is the degeneracy of the final electronic state
(two for a Πu state) and

ε0n(K; ν,M, J ← ν0,M0, J0) = 〈Ψn|
2∑

i=1

exp(iK.ri)|Ψ0〉
(3)

is the so called form factor for the transition between the
molecular ground state and an excited state.

In order to obtain single differential cross sections as
a function of transition energy, i.e.

dσ0n

dE
=
∫ (

d2σ0n

dωdE

)
dω (4)

we change the variable of integration to the more conve-
nient d lnK2 and equation (1) becomes:

dσ0n

dE
=
(
π2
) 1
Eimp

∫
1
E

df0n(K,E)
dE

d
(
lnK2

)
(5)

where Eimp = k2
0/2 stands for the energy impact of the

projectile.
The molecular wavefunctions Ψ0(r1, r2;R) and

Ψn(r1, r2;R), calculated within the Born-Oppenheimer
approximation [29] will be explained in next section.

The processes we are interested in, the dissociation
into two neutral excited atoms, are in competition with
autoionization. Neglecting other effects like non-adiabatic
coupling, dissociation cross section σdiss, can be estimated
through the expression

σdiss = χdσ0n (6)

where χd is the survival factor of the final state. It can be
calculated within a semiclassical approach [26,30]

χd(E,R0) = exp

(
−
∫ Rx

R0

Γ (R)
v(R)

dR

)
(7)
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where Γ (R) is the theoretical autoionization width ob-
tained by Sánchez and Mart́ın [31].

The low integration limit R0 = 1.2 a.u. corresponds
to the left border of the Franck-Condon region for the H2

molecule, and Rx, the stabilization point, was chosen by
the very same criteria as in previous works [30,32], i.e., we
have used the last calculated points for Rx for Q2 states,
since there is no crossing between levels which leads to
the ground state. The quantity v(R) in equation (7) is the
semiclassical radial velocity of the two nuclei [26]

v(R)=
1

μ1/2

⎡

⎣(E−V (R))

(
(E−V (R))2

(
Γ (R)

2

)2
)1/2

⎤

⎦
1/2

.

(8)

2.2 Target wavefuncion

Within the Born-Oppenheimer approach the molecular
wavefunction is given by:

Ψ0(r1, r2;R) = YJ0M0(Θ,Φ)χ0J0(R)ψ0(r1, r2;R)
Ψn(r1, r2;R) = YJM (Θ,Φ)χnW (R)ψn(r1, r2;R) (9)

where r1 and r2 stands for the electronic coordinate and
R is the internuclear distance. The spherical harmonics
YJ0M0(Θ,Φ) and YJM (Θ,Φ) are the rigid rotor eigenfunc-
tions for initial and final rotational states, respectively;
χ0J0 is the discrete vibrational wavefunction and χnW the
continuum one and finally ψ0 and ψn stands for, respec-
tively, the initial and final electronic wavefunctions.

The ground and vibrational continuum wavefunctions
and their eigenvalues were obtained by integrating numer-
ically the Schroedinger equation for the nuclei making use
of Le Roy et al.’s routines [33], in which we have used
our own potential energy curves [24] for the ground and
vibrational continuum states.

The doubly excited electronic states were obtained by
using the package GAMESS [34,35] which, among other
features, calculates the non-relativistic electronic energy
of the ground and excited electronic states of molecules
within the Born-Oppenheimer approximation [29]. The
electronic states were described by an ab initio wavefunc-
tion constructed within the Huzinaga’s [36] basis set of
Cartesian Gaussian-Type (12s, 6p, 3d, 1f)/[9s, 6p, 3d, 1f ]
orbitals in which the full space consisted of 110 or-
bitals of which 29σg, 29σu, 22πg, 22πu, 2δg, 2δu, 2φg

and 2φu was used. Within this space, we have used the
State Averaged Multiconfigurational Self Consistent Field
(SA-MCSCF) [37], followed by Configuration Interaction
(CI) [10].

In the SA-MCSCF step, the configurations were gen-
erated within the point group C2v, which is a subgroup
of the actual H2 group, i.e., D∞h, and all states that be-
longed to the same irreducible symmetry, 1Σ+, were opti-
mized with equal weight. The reduction of the point group
from D∞h to C2v was done in order to allow states of dif-
ferent irreducible representation in the original group to
lie in the same irreducible representation in the subgroup

(σg and σu)→ σ. This procedure allows states Σg and Σu

to be optimized on the same footing. The active space was
consisted of 12 molecular orbitals of which: nσg (n = 1–4),
nσu (n = 1–4), nπg (n = 1–2), nπu (n = 1–2).

Thus, it was optimized both P = |1σg〉〈1σg| +
|1σu〉〈1σu| and Q = 1 − P spaces. It is desirable to have
an accurate set of P-space configurations in order to de-
scribe continuum wavefunctions in the future. In the CI
approach, we have used a larger active space. It should
be mentioned the doubly excited states lie at a high root
in the CI matrix eigenvalue approach which, in general,
is arduous to converge. Thus, in order to eliminate from
calculation some spurious states and obtain converged ma-
trix elements between so distant states, i.e., ground and
doubly excited, we have used 20 of 110 available molecular
orbitals of which 12 previously optimized via SA-MCSCF.

2.3 Form factor

Excitation cross-sections were performed within the Q-
branch and rotational average approaches regarding the
rotational motion and the fixed nuclei approximation for
the electronic transition that was performed at R = Req,
i.e., the equilibrium geometry of the molecular target.

The Q-branch approach was performed through the
transitions J = 0→ J ′ = 0 and J = 1→ J ′ = 1. Remem-
bering that the rotational wavefunctions are given by:

YJM (Θ,Φ) = NM
J eiMΦP

|M|
J (cosΘ) (10)

where

NM
J =

√
(2J + 1)(J − |M |)!

4π(J + |M |)! . (11)

For J = 0, 1 and M = 0, one gets:

Y00(Θ,Φ) =

√
1
4π

Y10(Θ,Φ) =

√
3
4π

cos(Θ). (12)

The expressions for the form factor in the Q-branch ap-
proach (Eq. (3)) became for J = 0→ J ′ = 0

|ε0n(K; ν, 0, 0← 0, 0, 0)|2 =
q00

16π2

∣∣∣∣
∫
ε′0n(K,Req, Ω)dΩ

∣∣∣∣
2

(13)
and for J = 1→ J ′ = 1

|ε0n(K; ν, 0, 1← 0, 0, 1)|2

=
9q11
16π2

∣∣∣∣
∫
ε′0n(K,Req, Ω)cosΘdΩ

∣∣∣∣
2

(14)

where:

qJJ′ =
∣∣∣∣
∫
dRχ∗

EJ′(R)χ0J (R)
∣∣∣∣
2

(15)
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Fig. 1. Process involving the excitation from the ground elec-
tronic to the dissociative Q2 states converging into H(2l) +
H(2l′) neutral fragments for some symmetries; the shaded re-
gion represents the continuum of the molecule.

is the Franck-Condon factor and ε′0n(K,Req, Ω) the elec-
tronic form factor at R = Req.

In this work we have only considered the MJ = 0 case
because the collisional process under investigation is in-
variant under a Φ rotation.

We now consider the rotational average approach. It
is an useful theoretical tool, mainly when electron impact
experiments are to be compared to, since in such cases one
can consider the rotational states of molecule as effectively
degenerate by summing over all states J , M and then,
making an average on J0,M0 [28]. Thus, the form factor
of equation (3) becomes:

|ε0n(K; ν ← 0)|2 =
qJJ′

4π

∫
dΩ |ε′0n(K,Req , Ω)|2 . (16)

In the next section we present our calculations for exci-
tation cross-sections in both approaches and results are
discussed.

3 Results and discussion

Figure 1 shows the excitation by electron impact to Q2

series of doubly excited states that can, if they survive,
dissociate into neutral fragments in which at least one
of them is excited. We note that, in the Franck-Condon
region, the Q2 states of lower energy cross the 2Σ+

u curve
which may influence their probability of surviving in the
dissociative limit.

3.1 Q-branch

In many experiments of electron-molecule collision, it is
not possible to define precisely the rotational quantum
number of the initial state, which implies that rotational
contribution should be taken as an average over possible
states. However, when temperature is low, only the lowest
rotational levels are populated. Besides, electron impact

Fig. 2. (a) Single differential cross section obtained from equa-
tions (1) (integrated over the transition energy) and (13) for
the state Q2

1Σ+
g (1) as a function of the scattering angle;

(b) double differential excitation cross section (DDECS) for
the state Q2

1Σ+
g (1) as a function of transition energy for some

scattering angles; all calculations in the Q-branch approach
and at energy impact Eimp = 100 eV.

collisions are not likely to cause rotational excitations on
the molecule. Therefore, the Q-branch transitions can be
assumed to be a good approximation for such systems.
Figure 2a presents the single differential excitation cross
section for the Q-branch transition J = 0 → J ′ = 0 as a
function of the scattering angle for the state Q2

1Σ+
g (1)

(the first root) and for an impact energy of 100 eV. It
was calculated from equations (1) and (13) and for scat-
tering angles in the range θmin ≈ 0 ≤ θ ≤ θmax ≈ 173.
This figure shows a maximum around 20 degree. There
is no benchmark to compare with, but it can be observed
that the curve behaves like an ordinary optically forbidden
transition. Figure 2b presents the double differential exci-
tation cross sections (DDECS) as a function of the transi-
tion energy (see Eq. (1)) and for several scattering angles
θ = 21, 36 and 58 and for the Q-branch J = 0 → J ′ = 0
and J = 1 → J ′ = 1 transitions obtained from equa-
tions (13) and (14). Maxima around 33 eV can be observed
for several scattering angles. We can also observe that the
J = 1→ J ′ = 1 transitions are more likely to happen for
smaller scattering angles than the J = 0 → J ′ = 0 ones
which have higher contribution for θ ≥ 58.

3.2 Rotational average

We present in Figure 3 the calculated cross sections as
a function of the transition energy E for several states
that may dissociate into excited neutral fragments H(2l) +
H(2l′); the cross sections were obtained from equations (1)
and (16) for an energy impact of 100 eV.

The limits of the K integration (see Eq. (5)), i.e.,
Kmin and Kmax were obtained in the same way that Cann
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Fig. 3. Differential excitation cross sections for some Q2 states
as a function of transition energy (rotational average calculated
from Eq. (15)): number in brackets stands for the order of the
root in CI eigenvalue approach.

and Thakkar [39]. The cross sections present maxima be-
tween 33 and 37 eV which is approximately the energy
range of Q2 states calculated from the ground state. Note
that all optically forbidden states (1Σ+

g ,
1 Πg) have lower

cross sections than the allowed ones (1Σ+
u ,

1 Πu). The ex-
planation is that the major contributions to the excitation
cross section come from collisions with low transferred mo-
mentum which is close to the optical regime.

Figure 4 shows the total excitation cross section as a
function of the impact energy of the electron. In order to
obtain it, we have integrated equation (1) considering the
adequate limits of integrationKmin andKmax for each en-
ergy impact and then integrated in the transition energy
variable. We observed that the allowed transitions present
higher cross sections than the forbidden ones. Also, a max-
imum is found for the 1Σ+

g (1, 2, 3) states for impact energy
smaller than 150 eV, the 1Πu(1, 2) present maxima around
150 eV, 1Σ+

u (1) has a maximum around 200 eV as well as
1Πg(1).

3.3 Dissociation

We consider that only two processes may occur along the
dissociative dynamics of the excited states: autoionization
or dissociation in neutral fragments H(2l) + H(2l′). Thus,
the dissociation cross sections are related to the excitation
cross sections through the survival factors χd which are
shown in Table 1.

We have calculated χd within a semiclassical ap-
proach [26], in which we have used the autoionization
width Γ (R) from Fernández and Mart́ın [25] and the nu-
clear velocity v(R) from our own potential energy curves
(see Eq. (8)). In Table 1 the present results are com-
pared with other theoretical [32] and experimental [40]
survival factors. Discrepancies between the experimental
values and the theoretical ones are observed although the
theoretical ones have a good agreement with each other.

Fig. 4. Total cross section of excitation to Q2 states (obtained
from an average rotational calculation see Eq. (15)) as a func-
tion of the energy impact.

Table 1. Theoretical [32] and experimental [40] estimated sur-
vival factors.

χd(E) present χd(E) [32] χd(E) [40]

Q1
1Σ+

u (2) 0.81 0.85 0.50
Q1

1Πu(1) 0.90 0.91 0.26
Q2

1Σ+
g (1) 0.58 0.61

Q2
1Σ+

g (2) 0.74
Q2

1Σ+
g (3) 0.68

Q2
1Σ+

u (1) 0.70
Q2

1Πu(1) 0.71 0.65 0.10
Q3

1Πu(1) 0.02
Q3

1Πu(2) 0.03

These can be due to the numerical integration performed
in equation (7), specifically the R0 and Rx values which
are determined by two criteria: an intersection with the
ionic potential curve or up to the highest value of Rx for
which there is a value for Γ (R) calculated. Further, in the
experimental case a state that coupled to another can be
recorded as autoionized, interfering with the experimental
value of χd.

Figure 5 shows the results for the dissociation of the
states obtained from equation (5) as a function of the Ki-
netic Energy Released (KER) of their fragments. The
kinetic energy released is approximately the kinetic en-
ergy relative to the laboratory framework, i.e., KER =
(E(R) − E(∞))/2, with half of the total internal energy
released for each fragment. Excitation cross sections from
which dissociation was obtained, were calculated from the
rotational average approach.

At this point, we should emphasize that the neglected
non-adiabatic interactions could be responsible for dis-
crepancies in the cross-sections values. Some estimative
of the discrepancy due this point was considered by
Glass-Maujean and Schmoranzer [40] who estimated the
population of the dissociation channel H(2pπ) + H(2pσ)
as being 82% due to the Q2

1Πu(2) and 18% as a mix of
Q1

1Πu(1) and Q2
1Πu(1) states.

http://www.epj.org
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Fig. 5. Dissociation in neutral H(2l) + H(2l′) fragments cross
section as a function of the kinetic energy released.

According to Glass-Maujean and Schmoranzer [40],
who worked with states acessible by impact of photons,
the Q2

1Πu(1) and 1Πu(2) states dissociate adiabati-
cally into excited neutral fragments H(2sσ) + H(2pπ) and
H(2pπ) + H(2pσ) respectively, and are in part responsi-
ble for the fast peaks H(2s). Taking advantage of the MR-
CI method used in this paper, we can conclude that the
state Q2

1Σ+
g (1) dissociates adiabatically into H(2sσ) +

H(2sσ) [24]. The Q2
1Σ+

u (1), 1Σ+
g (2) and 1Σ+

g (3) states
have unknown dissociative limits and they were indicated
by the usual notation H(2lλ) + H(2l′λ′), where l stands
for angular momentum in separated atom limit and λ, for
the projection of the MO angular momentum along the
nuclear axis.

From the Figure 5 we can assert the energy position of
the peaks of these fragments that lie in the range of about
4 eV to 6 eV in agreement with our previous theoretical
work and experimental data [41].

4 Conclusions

This work presents theoretical investigations on Q2 dou-
bly excited states of H2 molecule promoted by electron
impact. The scattering process is described within the first
Born approximation. Electronic wave functions were ob-
tained at MCSCF/CI level.

For Q-branch (J = 0 → J ′ = 0), the double differ-
ential excitation cross section (DDECS) for the transition
from ground to Q2

1Σ+
g (1) state as a function of scattering

angle, for a impact energy of 100 eV, shows a maximum
around 20 degree and a profile of forbidden transition.
The DDECS for (J = 0→ J ′ = 0) and (J = 1→ J ′ = 1)
transitions are also plotted against transition energy, max-
ima are found around 33 eV for several scattering angles
and dependence on scattering angle of dominant transi-
tion is found. When rotationally averaged, the maximum
does not shift significantly. In this case, DDECS for Q2
1Σ+

g (1) has the same order of magnitude of other allowed
and forbidden transitions from ground to Q2 states, the

allowed lying above, which means that the main contribu-
tion comes from low transferred momentum.

When dissociation cross section is plotted against ki-
netic energy released of the fragments, a maximum is
found around 4 eV for the Q2

1Σ+
g (1) state and lies in

the 4–6 eV range for all Q2 states considered. Total cross
sections were also obtained for all the Q2 states and we
found its maxima around 150–200 eV.
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Appendix

A.1 Rotational averaging

In this appendix we show how the rotational averaging is
performed.

First of all, one should remember that:
∞∑

J=0

J∑

M=−J

Y∗
JM (Ω)YJM (Ω′) = δ(Ω −Ω′) (A.1)

where YJ,M (Θ,Φ) are the spherical harmonics and Ω =
(Θ,Φ) the angles between the internuclear axis and the
momentum transfer vector.

Let’s consider F (Ω) as a smooth and monotonic func-
tion of the variables Θ and Φ. We are going to show that:

∑

J,M

∣∣∣∣
∫
Y∗

JM (Ω)F (Ω)YJM (Ω)dΩ
∣∣∣∣
2

=
∫
|F (Ω)|2 |Y(Ω)|2 dΩ. (A.2)

First, we expand the square module of the left hand side
of equation (A.2)

∞∑

J=0

J∑

M=−J

∫
Y∗

JM (Ω′)F (Ω′)YJM (Ω′)dΩ′

×
∫
YJM (Ω)F ∗(Ω)Y∗

JM (Ω)dΩ

=
∫
dΩ′

∫
dΩ
∑

J,M

Y∗
J,M (Ω′)YJ,M (Ω)

× F (Ω′)F ∗(Ω)YJ,M (Ω′)Y∗
J,M (Ω). (A.3)

Inserting equation (A.1) into equation (A.3)
∫
dΩ′

∫
dΩδ(Ω −Ω′)F (Ω′)F ∗(Ω)Y∗

J,M (Ω)YJ,M (Ω′)

=
∫
dΩF (Ω)F ∗(Ω)Y∗

J,M (Ω)YJ,M (Ω)

=
∫
dΩ |F (Ω)|2 |YJ,M (Ω)|2 . (A.4)

This demonstrates equation (A.2).
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Before proceeds, few comments have to done:

1. the J dependence in the electronic transition matrix
is not only through spherical harmonics but also due
vibrational wavefunction χE,J(R). However we have
assumed that the J dependence on vibrational wave-
function can be approximated by a certain J → J̃ . It
is a good approximation provided the rotational occu-
pancy J ∼ 1 . It is precisely the case of the H2 molecule
at room temperature;

2. in the range 100 eV < Eimp < 1000 eV, we are cer-
tainly unable to extract any information about the
rotational transitions. So we consider the rotational
states as effectively degenerates and sum up to ∞.

Thus, the oscillator strength in equation (2) (manuscript)
can be written as:

(
df0n

dE

)n,E

0,ν0J0,M0

=
∞∑

J=0

J∑

M=−J

E

K2

[∫
dΩ′Y∗

JM (Ω′)

×
∫
dR′χ∗

E,J(R′) [ε∗0n(K,R′, Ω′)]χν0,J0(R
′)YJ0M0(Ω

′)

×
∫
dΩY∗

JM (Ω)
∫
dRχ∗

E,J(R)

× [ε0n(K,R,Ω)]χν0,J0(R)YJ0M0(Ω)

]
. (A.5)

Rearranging terms and assuming the conditions above:

(
df0n

dE

)n,E

0,ν0,J0,M0

=
E

K2

∫
dΩ

×
∣∣∣∣
∫
dRχ∗

E,Jε0nχν0,J0

∣∣∣∣
2

|YJ0,M0 |2 .
(A.6)

Now, besides the sum of the final J states, we sum up the
(2J + 1) times degenerate M0 states.

(
df0n

dE

)n,E

0,ν0

=

〈(
df0n

dE

)n,E

0,ν0,J0,M0

〉

=

∑J0
M0=−J0

(
df0n

dE

)n,E

0,ν0,J0,M0∑J0
M0=−J0

〈J0,M0|J0,M0〉

=

∑J0
M0=−J0

(
df0n

dE

)n,E

0,ν0,J0,M0∑J0
M0=−J0

1

=

∑J0
M0=−J0

(
df0n

dE

)n,E

0,ν0,J0,M0

(2J + 1)
(A.7)

where
J0∑

M0=−J0

|YJ0,M0 |2 =
(2J + 1)

4π
. (A.8)

Finally, equation (A.5) becomes:

(
df0n

dE

)n,E

0,ν0

=
E

K2

∫
dΩ

4π

∣∣∣∣
∫
dRχ∗

E,J(R)ε0n(K,R,Ω)χν0,J0(R)
∣∣∣∣
2

.

(A.9)
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