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Abstract. We investigate the dynamics of entanglement and nonlocality for multipartite quantum systems
under collective dephasing. Using an exact and computable measure for genuine entanglement, we demon-
strate the possibility of a non trivial phenomenon of time-invariant entanglement for multipartite quantum
systems. We find that for four qubits, there exist quantum states, which are changing continously never-
theless their genuine entanglement remains constant. Based on our numerical results, we conjecture that
there is no evidence of time-invariant entanglement for quantum states of three qubits. We point out that
quantum states exhibiting time-invariant entanglement must live in both decoherence free subspace and in
the subspaces orthogonal to it. The previous studies on this feature for two qubits can be recovered from
our studies as a special case. We also study the nonlocality of quantum states under collective dephasing.
We find that although genuine entanglement of quantum states may not change, however their nonlocality
changes. We discuss the possibility of finite time end of genuine nonlocality.

Quantum entanglement and nonlocality are features of
quantum mechanics not only related to its foundation
but also have applications in current and future technolo-
gies [1–3]. Due to growing efforts for an experimental real-
ization of devices utilizing these features, it is essential to
study the effects of noisy environments on quantum cor-
relations. Such studies are an active area of research [4]
and several authors have studied decoherence effects on
quantum correlations for both bipartite and multipartite
systems [5–27].

One specific type of noise dominant in experiments on
trapped atoms is caused by intensity fluctuations of elec-
tromagnetic fields which leads to collective dephasing pro-
cess. The detrimental effects of collective dephasing noise
on entanglement have been studied [28–36], however all
these previous studies were restricted to a special orien-
tation (z-axes) of the field. Recently, a more general ap-
proach has been worked out [37,38], where the authors
addressed an arbitrary orientation of field. This general
approach revealed an interesting feature of its dynamical
process which is so called freezing dynamics of entangle-
ment. It was shown that a specific two qubits state under
certain orientation of the field may first decay upto some
numerical value before suddenly stop decaying and main-
tain this stationary entanglement [37]. Such behavior was
also predicted for multipartite states. Recently, we have
confirmed this freezing entanglement phenomenon for var-
ious genuinely entangled states of three and four qubits,
including random states [39]. Another interesting dynam-
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ical feature under this type of decoherence is the possi-
bility of completely time-invariant entanglement, however
time-invariance phenomenon so far including this work
has only been observed for a special orientation of field
(z-axes). Time-invariant entanglement does not necessar-
ily mean that the quantum states live in decoherence free
subspaces (DFS). In fact the quantum states may change
at every instance whereas their entanglement remain con-
stant throughout the dynamical process. This feature was
first observed for qubit-qutrit systems [33] and more re-
cently for qubit-qubit systems [36]. In this Letter, we in-
vestigate the time-invariant phenomenon for genuine en-
tanglement of multiqubit quantum systems. It is known
that genuine entanglement is different than the entangle-
ment among bipartition and this type of entanglement is
only a peculiar feature of multipartite quantum states. We
have looked for this phenomenon in Hilbert space of three
qubits and our preliminary search suggests that it may
not exist for this dimension of Hilbert space. However, we
have explicitly observed this phenomenon for a family of
quantum states of four qubits. The interesting difference
between three and four qubit case is the fact that for three
qubits, all off-diagonal elements of GHZ-diagonal states
decay and there are no DFS for them, whereas for four
qubits, there are some GHZ-diagonal states which live in
DFS. We have detected this phenomenon by taking mix-
tures of GHZ states living in DFS and ones living in other
orthogonal subspaces. The mixing probability for entan-
gled state preserved in DFS must be larger than the prob-
ability of entangled state which decay, such that although
combined states might change whereas their entanglement
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stay invariant. It is interesting that genuine entanglement
also exibits time-invariance even though the entanglement
among bipartition is not constant as evident by a change
in the negative eigenvalues of the partially transposed ma-
trix. Recent progress in the theory of multipartite entan-
glement has enabled us to study decoherence effects on
actual multipartite genuine entanglement and not on en-
tanglement among bipartitions. In particular, the ability
to compute genuine negativity for multipartite systems
has eased this task [40–42].

Another concept related to non-classical correlations
is quantum nonlocality. This feature says that the predic-
tions made using quantum mechanics cannot be simulated
by a local hidden variable model. The presence of non-
local correlations can be detected via violation of some
type of Bell inequalities [43]. The pure entangled states
violate a Bell inequality, whereas mixed entangled states
may not do so [44,45]. However, all entangled states do ex-
hibit some kind of hidden nonlocality [46]. The well known
Clauser-Horne-Shimony-Holt (CHSH) inequality [47] for
two qubits has been studied under decoherence both in
theory [48], and experiment [49]. Several investigations
of nonlocality of multipartite quantum states under de-
coherence have been carried out [50–55]. The extension of
CHSH inequality for multipartite quantum systems has re-
ceived considerable attention [56–59], however Svetlichny
discovered the first method to detect genuine multipartite
nonlocality [60]. Violations of some of these inequalities
in experiments have been reported [61–64]. We have stud-
ied the effect of collective dephasing on genuine nonlocal-
ity of quantum states exhibiting time-invariant dynamics.
We have found that these quantum states may loose their
genuine nonlocality at a finite time.

We review the basic notions of genuine multipartite
entanglement and genuine nonlocality only for three par-
ties A, B, and C. One can generalize these methods to
more parties straightforwardly. A state is called separa-
ble with respect to some bipartition, say, A|BC, if it is
a mixture of product states with respect to this parti-
tion, that is, ρ =

∑
j pj |ψj

A〉〈ψj
A| ⊗ |ψj

BC〉〈ψj
BC |, where pj

form a probability distribution. We denote these states as
ρsep

A|BC . Similarly, we can define separable states for the
two other bipartitions, ρsep

B|CA and ρsep
C|AB. Then a state is

called biseparable if it can be written as a mixture of states
which are separable with respect to different bipartitions,
that is

ρbs = p̃1ρ
sep
A|BC + p̃2ρ

sep
B|CA + p̃3ρ

sep
C|AB, (1)

with p̃1 + p̃2 + p̃3 = 1. Finally, a state is called genuinely
multipartite entangled if it is not biseparable. In the rest
of this paper, we always mean genuine multipartite entan-
glement when we talk about entanglement.

Genuine entanglement can be detected and charac-
terized [40–42] by a technique based on positive partial
transpose mixtures (PPT mixtures). A two-party state
ρ =

∑
ijkl ρij,kl|i〉〈j| ⊗ |k〉〈l| is PPT if its partially trans-

posed matrix ρTA =
∑

ijkl ρji,kl|i〉〈j| ⊗ |k〉〈l| is positive
semidefinite. The separable states are always PPT [65]

and the set of separable states with respect to some par-
tition is therefore contained in a larger set of states which
has a positive partial transpose for that bipartition.

Denoting PPT states with respect to fixed bipartition
by ρPPT

A|BC , ρPPT
B|CA, and ρPPT

C|AB, we call a state as PPT-
mixture if it can be written as

ρPPTmix = q1ρ
PPT
A|BC + q2ρ

PPT
B|CA + q3ρ

PPT
C|AB. (2)

As any biseparable state is a PPT-mixture, therefore any
state which is not a PPT-mixture is guaranteed to be gen-
uinely multipartite entangled. The main advantage of con-
sidering PPT-mixtures instead of biseparable states comes
from the fact that PPT-mixtures can be fully character-
ized by the method of semidefinite programming (SDP),
a standard method in convex optimization [66]. Gener-
ally the set of PPT-mixtures is a very good approxi-
mation to the set of biseparable states and delivers the
best known separability criteria for many cases; however,
there are multipartite entangled states which are PPT-
mixtures [40–42]. In order to quantify genuine multipartite
entanglement, it was shown [40–42] that for the following
optimization problem

min Tr(Wρ) (3)

with constraints that for all bipartition M |M̄

W = PM +QTM

M , with 0 ≤ PM ≤ I and 0 ≤ QM ≤ I (4)

the negative witness expectation value is multipartite en-
tanglement monotone. The constraints just state that the
considered operator W is a decomposable entanglement
witness for any bipartition. Since this is a semidefinite
program, the minimum can be efficiently computed and
the optimality of the solution can be certified [66]. We de-
note this measure by E(ρ) or E-monotone in this paper.
For bipartite systems, this monotone is equivalent to nega-
tivity [67]. For a system of qubits, this measure is bounded
by E(ρ) ≤ 1/2 [68].

For a brief description of genuine nonlocality, consider
that each party can perform a measurement Xj with re-
sult aj for j = A,B,C. The joint probability distribu-
tion P (aAaBaC |XAXBXC) may exhibit different notions
of nonlocality. It may be that it cannot be written in local
form as

P (aAaBaC |XAXBXC) =
∫

dλpλPA(aA|XAλ)

× PB(aB|XBλ)PC(aC |XCλ),
(5)

where λ is a shared local variable. Such nonlocality can
be tested by standard Bell inequalities and it can not cap-
ture the genuine nonlocality. As an example consider that
parties A and B are nonlocally correlated but uncorre-
lated from party C. It is still possible that P cannot be
written as equation (5), although the system has no gen-
uine tripartite nonlocality [59]. Genuine nonlocality can
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be detected if one makes sure that P cannot be written as

PG(aAaBaC |XAXBXC) =
3∑

m=1

pm

∫

dλρij(λ)

× Pij(aiaj |XiXjλ)Pm(am|Xmλ), (6)

that is, P cannot be reproduced by local means even if
any two of parties come together and act jointly to pro-
duce bipartite nonlocal correlations with probability dis-
tribution ρij(λ), where ij denotes for all possible parti-
tions. We focuss on the possibility that each party j is
allowed to two measurements Xj and X ′

j with outcomes
aj and a′j such that aj , a

′
j ∈ {−1, 1}. For an initial state

|GHZ〉 = (|0000〉+ |1111〉)/√2, we consider the Ardehali
inequality [57] 〈BA〉 ≤ 4, where

BA = A1X2X3X4 +B1X2X3X4 − [A1X2Y3Y4 + perm]
− [B1X2Y3Y4 + perm] − [A1X2X3Y4 + perm]
+ [B1X2X3Y4 + perm] +A1Y2Y3Y4 −B1Y2Y3Y4,

(7)

and the sum in square brackets include all distinct per-
mutations on last three qubits, A1 = (X1 + Y1)/

√
2, and

B1 = (X1−Y1)/
√

2. The expectation value for GHZ state
is 〈BA〉 = 8

√
2, which is the maximum violation for four

qubits.
We consider our qubits as atomic two-level systems

with energy splitting �ω. The splitting is controlled by a
homogeneous magetic field. The Hamiltonian for a single
atom is given as

Ĥω =
�ω

2
n · σ, (8)

where n = nxx̂+ny ŷ+nz ẑ is the orientation of magnetic
field and σ = σxx̂+ σy ŷ + σz ẑ is the vector of Pauli ma-
trices. This time independent Hamiltonian generates the
propagator

Uω(t) = e−iHωt/� = e−iωt/2n·σ. (9)

We can introduce a pair of orthogonal projectors

Λ± =
I2 ± n · σ

2
, (10)

to write the propagator in terms of them. Let us consider
N non-interacting atoms (qubits), so that the propagator
for these collection of atoms can be written as [37]

Uω(t)⊗N = (e−iωtΛ+ + eiωtΛ−)⊗N

=
N∑

j=0

eiωt(j−N/2)Θj , (11)

where the operators Θj are defined as

Θj =
1

j!(N − j)!

∑

s∈∑
N

Vs

[
Λ⊗j
− ⊗ Λ⊗N−j

+

]
V †

s , (12)

where
∑

N represents the symmetric group and Vs are the
permutations in operator space of N qubits.

As there are fluctuations in the magetic field strength,
the integration over it will induce a probability distribu-
tion p(ω) of characteristic energy splitting. Therefore the
time evolution of the combined state of N atoms can be
written as [37]

ρ(t) =
∫

p(ω)Uω(t)⊗Nρ(0)U †
ω(t)⊗Ndω. (13)

In writing this equation, we have assumed that the field
fluctuations occur on time scale which are longer than the
time over which the combined state of N atoms evolve un-
der unitary propagator Uω(t)⊗N . Substituting the above
derived format for the unitary propagator, we can write
the time evolved state as

ρ(t) =
N∑

j,k=0

Mjk(t)Θjρ(0)Θk, (14)

where Mjk(t) are elements of the Toeplitz matrix M(t),
which can be obtained by the relationMjk(t) = φ[(j−k)t],
where φ(t) is the characteristic function of the probability
distribution p(ω), defined as

φ(t) =
∫

p(ω)eiωtdω. (15)

It has been demonstrated that time evolution form equa-
tion (14) is both trace preserving and positivity preserv-
ing [37]. In order to study the exact behavior of multipar-
tite quantum states, it is convenient to obtain an exact
expression for state ρ(t), in terms of a spectral distribu-
tion p(ω) characterizing the fluctuations. As an example,
we take the Lorentzian distribution also known as Cauchy
distribution, defined as

p(x) =
γ2

πγ
[
(x− x0)2 + γ2

] . (16)

For standard Cauchy distribution, the characteristic func-
tion turns out to be

φ(t) =
∫

p(x)eixtdx = e−|t|, (17)

here t denotes dimensionless quantity usually taken as Γt.
The time evolution of an arbitrary initial state can be ob-
tained straightforwardly. In general there are no decoher-
ence free subspaces (DFS) in this noisy model except for
some special directions of field, like n = (0, 0, 1)T , etc.
In addition it may happen that some quantum states are
completely invariant for certain directions of field as well.
However, an interesting and non-trivial possibility is the
time-invariant entanglement such that the quantum states
are changing at every instance however their entanglement
remains constant. Such observation was initially made for
qubit-qutrit systems [33] and later on for a specific family
which is so called Bell-diagonal states of two qubits [36].
The time-invariant entanglement phenomenon including
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our current study has been observed for n = (0, 0, 1)T .
This direction of field always have DFS for all dimensions
of Hilbert space. The combination of quantum states re-
siding in DFS and subspaces orthogonal to them lead to
this phenomenon as explained below.

By choosing n = (0, 0, 1)T onwards in this Letter, first
we take an example of two qubits. The resulting time
evolved quantum state for two qubits can be obtained
straightforwardly as

ρ(t) =

⎛

⎜
⎝

ρ11 γρ12 γρ13 γ
2ρ14

γρ21 ρ22 ρ23 γρ24

γρ31 ρ32 ρ33 γρ34

γ2ρ41 γρ42 γρ43 ρ44

⎞

⎟
⎠ , (18)

where γ = e−Γt. We note that there are two sectors in
which entangled states can reside. For Bell states |Φ±〉 =
1/

√
2(|00〉±|11〉), there is decay of entanglement, whereas

Bell states |Ψ±〉 = 1/
√

2(|01〉 ± |10〉) remain invariant
while being in DFS. If we mix any Bell state living in DFS
with any other Bell state in orthogonal subspace then we
may find the phenomenon of time-invariant entanglement.
As a concrete example, let us consider the family of states

ρa,b = b|Ψ±〉〈Ψ±| + (1 − b)ρa, (19)

where 0 ≤ b ≤ 1 and ρa is defined as

ρa = a|Φ+〉〈Φ+| + 1 − a

4
I4, (20)

where 0 ≤ a ≤ 1. The time evolution of states ρa,b can be
straightforwardly written as

ρa,b(t) = b|Ψ±〉〈Ψ±| + (1 − b)ρa(t). (21)

The four eigenvalues of the partially transposed matrix
ρTA

a,b(t) are [1+a−(3+a)b]/4, [1+a+b−ab]/4, [1+b−a(1−
b)(1−2e−2Γt)]/4, and [1+b−a(1−b)(1+2e−2Γt)]/4. As it is
known that for two qubits, the partially transposed matrix
can have maximum one negative eigenvalue, therefore for
the choice

b >
1 + a

3 + a
, (22)

the first eigenvalue is negative and the rest of the three
eigenvalues are positive. As this negative eigenvalue is
time-invariant, therefore we can quantify entanglement by
negativity as

N(ρa,b(t)) =
(3 + a)b− 1 − a

2
, (23)

causing time-invariant entanglement although the quan-
tum states are changing at every instance as evident by
their eigenvalues. If condition (22) is not satisfied then
entanglement decays. As a special case of a = 1, b = 0.7
and b = 0.75, we recover the results already worked out
recently [36].

Let us consider three qubits. In this case, we have two
types of inequivalent genuinely entangled states, namely
GHZ type states and W type state. The most general
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0.41

0.43
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η = 0.98

Fig. 1. Genuine negativity for three qubits is plotted against
parameter Γt for ρη(t) states (Eq. (25)) for two values of pa-
rameter η. See text for details.

solution for an arbitrary initial state is similar to equa-
tion (18), such that W state and W̃ (locally equivalent
state) reside in decoherence free subspace. The natural
extension of Bell-diagonal states for multi qubits are GHZ-
diagonal states. In computational basis these states lie on
the main diagonal and anti-diagonal of density matrix,
hence forming an X just like Bell-diagonal states. The
GHZ-diagonal states are subset of X-states and all off-
diagonal matrix elements decay under collective dephas-
ing. Therefore in order to look for time-invariant entangle-
ment we must take mixture of GHZ states and W states.
The only GHZ state |GHZ〉 = (|000〉 ± |111〉)/√2 has no
overlap with W state, so we define our quantum states as

ρη = (1 − η)|GHZ〉〈GHZ| + η|W〉〈W|, (24)

where 0 ≤ η ≤ 1 and |W〉 = 1/
√

3(|001〉 + |010〉 + |100〉).
The time evolved states are written as

ρη(t) = (1 − η)|GHZ(t)〉〈GHZ(t)| + η|W〉〈W|. (25)

As it is hard to find analytical expressions for genuine
negativity, nevertheless, based on our numerical search,
we conjecture that there is no time-invariant genuine en-
tanglement for three qubits under collective dephasing.
Figure 1 shows the genuine negativity for two values of pa-
rameter η. We see that although entanglement is changing
at a very slow rate due to very large percentage of W state,
nevertheless, we do not have any time-invariant entangle-
ment. Our numerical calculations suggests that we do not
have any time-invariant entanglement even for η = 0.99.

Finally we move to four qubits case. We demonstrate
explicitly that time-invariant entanglement can occur for
this dimension of Hilbert space. The sixteen GHZ states
in this case are defined as

|GHZi〉 =
|x1x2x3x4〉 ± |x̄1x̄2x̄3x̄4〉√

2
, (26)

where xj , x̄j ∈ {0, 1} and xj �= x̄j . We note that in con-
trast to the three qubits, four qubits case do have some
GHZ states living in DFS. More specifically, all those GHZ
states which have two 1’s in a ket reside in DFS, for an
example, the state (|0011〉± |1100〉)/√2, and other states
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Fig. 2. Genuine negativity for four qubits is plotted against
parameter Γt for ρα,β(t) states (Eq. (29)) for various values of
parameter β. We take α = 0.9. See text for details.

with permutations. We are now in a position to define a
family of quantum states similar to two qubits case as

ρα = α|GHZ2〉〈GHZ2| + 1 − α

16
I16, (27)

where |GHZ2〉 = (|0001〉+ |1110〉)/√2 and 0 ≤ α ≤ 1. We
take a mixture of this state with a state which resides in
DFS, given as

ρα,β = β|GHZ6〉〈GHZ6| + (1 − β)ρα, (28)

where |GHZ6〉 = (|0101〉+ |1010〉)/√2 and 0 ≤ β ≤ 1. The
time evolution of these states can be written as

ρα,β(t) = β|GHZ6〉〈GHZ6| + (1 − β)ρα(t). (29)

We can analyze the eigenvalues of the partially transposed
matrix ρTA

α,β(t), however we should remember the fact that
there are states which are NPT under each partition nev-
ertheless they are biseparable [69]. Although Figure 3 can
be regarded as manisfestation of explicit time dependence
of quantum states, nevertheless, the spectrum of quan-
tum states ρα,β(t) can also show their explicit time depen-
dence. The eigenvalues of these states are (1−α)(1−β)/16
(13 times), (1−α+15β+αβ)/16, (1+7α−8αe−2Γt)(1−
β)/16, and (1 + 7α + 8αe−2Γt)(1 − β)/16. The last two
eigenvalues are time dependent and exhibit the fact that
quantum states are changing at all times.

Figure 2 shows genuine negativity plotted against pa-
rameter Γt for family of states ρα,β(t). We have set α =
0.9 and plotted three instances for parameter β. We can
see that for β = 0.85 and β = 0.8, we have time-invariant
genuine entanglement, whereas for β = 0.1, we have de-
cay of entanglement. For smaller values of β, the subspace
orthogonal to DFS is dominant and entanglement decays,
whereas for larger values of β, we may get time-invariant
entanglement even though the quantum states are chang-
ing at every instance. Hence we have explicitly demon-
strated the existance of time-invariant feature for genuine
entanglement of four qubits.

In order to study the genuine nonlocality of states
ρα,β(t), we need to find appropriate measurement oper-
ators for it. As time-invariant entanglement occurs for

0 1.14 2 3

8

8.8

9.4

Γ t

<
B
>

α = 0.9

Fig. 3. Genuine nonlocality is plotted against parameter Γt
for states ρα,β(t). We take α = 0.9. Top curve is for β = 0.85
and depicts asymptotic nonlocal states. The lower curve is for
β = 0.8 and shows sudden death of genuine nonlocality.

larger values of β, which implies that the largest off-
diagonal matrix element corresponds to state |GHZ6〉. As
all GHZ states are locally equivalent to each other via
a local unitary operator, therefore we can apply same lo-
cal unitary transformations to measurement operators and
then take expectation value of Bell operator BA. The ex-
pectation value of such operator is given as

〈BA〉 =
16β − α(1 − β)(9 − 7e−2Γt)√

2
. (30)

We note that for β = 1, we have maximum violation
of 8

√
2, which is expected as the state is in DFS and

not changing so its genuine nonlocality remains invariant.
Whereas for β < 1, we have decay of genuine nonlocality
provided that α �= 0. Depending upon parameter β, we
can either have nonlocal states throughout the dynamics
or sudden death of genuine nonlocality. We find that for

β >
4
√

2 + α

8 + α
, (31)

we have initial genuine nonlocal quantum states. It is well-
known that the n-partite quantum state ρ(t) exibits gen-
uine multipartite nonlocality if |〈B〉| > 2n−1. In Figure 3,
we plot the expectation value of BA against parameter Γt
for β = 0.85 (black solid line) and β = 0.8 (blue dashed
line). We see that we have asymptotic nonlocal states for
top curve and sudden death of nonlocality for lower curve.
In both situations, these curves indicate the fact that qua-
tum states are changing at every instance, such that gen-
uine nonlocality is changing whereas its genuine entangle-
ment does not change at all.

In summary we have studied the dynamics of gen-
uine entanglement and genuine nonlocality for multiqubits
quantum systems under collective dephasing. We have in-
vestigated the possibility of time-invariant entanglement
for two, three and four qubits. We have found that there
exist a non-trivial feature of quantum states, in which the
states are changing at every instance whereas their entan-
glement remain constant. The change in quantum states
might be indicated by the change in their nonlocality.
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This feature was first discovered for qubit-qutrit systems
and later on for qubit-qubit quantum states. Based on
our numerical search, we conjecture that there is no ev-
idence of time-invariant entanglement for three qubits
states. For four qubits, we have explicitly demonstrated
phenomenon of time-invariant genuine entanglement for a
family of quantum states. It seems that if we have mix-
tures of two entangled states such that one entangled state
lives in decoherence free subspace and other entangled
state resides in orthogonal subspaces to it, only then we
might observe this phenomenon. The fraction of entan-
gled states living in DFS must be larger than entangled
states in orthogonal subspaces. We have also studied the
decoherence effects on genuine nonlocality of those quan-
tum states which exhibit time-invariant entanglement. We
have found that these states may exhibit either asymp-
totic nonlocality or so called sudden death of nonlocality,
in which quantum states loose their nonlocality at a finite
time. Although the quantum states remain genuine entan-
gled, nevertheless, their genuine nonlocality varies. We be-
lieve that our findings can be verified in already available
ion trap or photonic experiments, for example, in 40Ca+

ion, the operation of MSφ(π/2) can map the ground state
|0000〉 of four qubits directly to maximally entangled GHZ
state [70]. Any other GHZ state can be obtained by ro-
tation Rφ(π/2). The state ρα (Eq. (27)) can be prepared
via same technique as Werner states have been prepared
with operation MS2 = exp(−iπ/4σJσJ) using 854 nm
and 729 nm pulses [71] and so on. Experimental verifi-
cation of time-invariant entanglement of two qubits [36]
indicates the interest and importance of such experiments
for multipartite quantum systems. Finally, one may ask
how the results obtained here may change if we have lo-
cal decoherence instead of global. As we have pointed out
that the presence of decoherence free subspaces seems to
be a necessary condition for the time-invariant entangle-
ment and it is known that for local dephasing there are no
decoherence free subspaces, therefore, we expect no such
phenomenon in that case. Our previous studies on dynam-
ics of genuine entanglement for local decoherence also sup-
port this claim [24–27]. One of the future avenues would
be to look for the time-invariance of quantum nonlocality.

M. Ali is grateful to Edoardo G. Carnio for helpful discus-
sions and Otfried Gühne for his correspondence. The author is
also thankful to both referees for their constructive and helpful
comments which brought much clarity in the Letter.
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