
Eur. Phys. J. D (2016) 70: 198
DOI: 10.1140/epjd/e2016-70425-9

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL D

Drift velocity of charged particles in magnetic fields
and its relation to the direction of the source current
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Abstract. Integrable motion of charged particles in magnetic fields produced by stationary current dis-
tributions is investigated. We treat motion in the magnetic field from an infinite flat current sheet, a
Harris current sheath, an infinite rectilinear current, and a dipole in its equatorial plane. We find that
positively charged particles as a rule will drift in the same direction as the current that is the source of the
magnetic field in question. The conclusion is that charged particles moving under the influence of current
distributions tend to enhance the current and that this indicates current self-amplification.

1 Introduction

Finding the motion of classical charged particles in a given
magnetic field is a problem of great practical interest in
many areas of physics and engineering [1–3]. One reason
for investigating these problems is that they can throw
some light on the much more difficult coupled problem
of particles and fields in mutual interaction, a problem
that can be approached in fluid mechanics using magne-
tohydrodynamics, in kinetic theory using the Vlasov equa-
tions, or using statistical mechanics based on the Darwin
Hamiltonian. The latter approach, with its long range ve-
locity dependent interactions, takes the energy lowering
responsible for the attraction of parallel currents into ac-
count. Investigations by us [4–9] indicate that a plasma
will generate currents and magnetic fields in its approach
to equilibrium. Here we will study the drift of charged
particles in the magnetic fields of given current distribu-
tions and conclude that this drift will, as a rule, enhance
the current producing the field, thereby supporting the
conclusions based on the Darwin Hamiltonian.

Drift velocities can be derived approximately for slowly
varying fields by Alfvén’s guiding center theory [1,10]. An-
alytical solutions for drift velocities published by Head-
land and Seymour [11] confirm the validity of the Alfvén
formula

vD =
mc

2q
(v2

⊥ + 2v2
‖)

B ×∇|B|
|B|3 . (1)

The magnetic fields studied there are, however, difficult
to realize in practice. Here we focus on analytical solution
of drift velocities in magnetic fields that arise from ide-
alized but reasonably realistic current distributions. Our
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solutions start from the Lagrangian

L =
1
2
m v2 +

q

c
v · A. (2)

where m is mass, q electric charge, and A the vector po-
tential. In the examples we study the motion is periodic
in one of the coordinates, say x. We denote this period
with T . The drift velocity in another coordinate, say y, is
then,

〈vy〉 =
y(T ) − y(0)

T
, (3)

i.e. the mean velocity over one period. This is the defini-
tion used below.

We investigate the problem of the drift of a classical
charged particle in a static inhomogeneous magnetic field
produced by a given stationary current distribution. The
following current distributions are treated:
– an infinite flat current sheet,
– an infinite current sheath found as a solution to the

Vlasov equations by Harris [12],
– an infinite straight current carrying wire [13],
– current due to a rigidly rotating spherical charged shell

i.e. the source of a dipole field.
The infinite flat current sheet case is mathematically
trivial. It thus makes the physical reason for the drift
especially clear, but we are not aware that this has been
published before.

Motion in the Harris sheath is integrable but the inte-
grals require numerical solution (as far as we know). We
are not aware that this problem has been studied before.
Analytical results can be found for the limiting cases of
slow and fast particles. The case of fast particles reduce
to the flat sheet case.

In addition to Hertweck [13] the rectilinear current
problem has been treated by Müller and Dietrich [14],
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Yafaev [15], Essén [16], and Aguierre et al. [17]. Here we
focus on the drift velocity and how it is affected by the
initial conditions. We point out that the maximum drift
occurs for helical motion while zero angular momentum
motion results in minimum drift. We believe that this is a
new result.

The problem of particles in a magnetic dipole field
is called the Störmer problem after Carl Störmer [18,19]
who treated it in many publications from 1907 and on-
wards. There is an extensive literature (for a review see
Dragt [20]) on this non-integrable problem, which is of in-
terest as a model for the van Allen belts outside the Earth.
When one restricts the motion to the equatorial plane per-
pendicular to the dipole the problem is integrable [21,22].
For certain initial conditions charged particles are bound
between two radii and for these we calculate the angular
drift velocity.

2 Charged particle near flat current sheet

In this section we calculate the motion of particles travers-
ing a flat current sheet. We thus assume that there is a
surface current density in the yz-plane k = σV ŷ where
σ is the surface charge density of current carriers and V
their velocity in the y-direction. From the relation,

4π

c
k = n̂ × (B+ − B−), (4)

where n̂ is normal to the surface of the current and B+ is
the magnetic field on the side that n̂ points to, while B−
is the magnetic field on the opposite side, we find, using
k = kŷ, n̂ = x̂, B+ = −Bẑ, and B− = Bẑ, that

4π

c
k = 2B. (5)

The vector potential is

A = −B|x|ŷ, (6)

a limiting case of the potential in Figure 4 in Section 3,
while the magnetic field can be written B = −B(x/|x|)ẑ.
In practice one can approximate such a sheet with many
thin parallel current carrying wires. A small charged par-
ticle moving near the sheet can then be assumed to to pass
essentially unhindered through such a sheet.

Since the magnetic field is constant on both sides of
the sheet and simply changes sign in the sheet the trajec-
tories of charged particles are easily calculated. Typical
trajectories are illustrated in Figure 1. The circular tra-
jectories of a charged particle have radii r determined by
their speed v according to r = cm

eB v. When the position of
the circle is such that it is does not intersect the sheet the
drift velocity is zero. For circular trajectories that inter-
sect the sheet there will be a positive drift. For trajectories
that are tangent to the sheet the drift velocity will be ei-
ther v or −v depending on from which side the particle
approaches the sheet.

Consider a particle initially moving with x > 0 in a
circular trajectory with radius r and speed v centered at

y

x
B

B

j

Fig. 1. This figure illustrates how positively charged particles
will drift in the direction of the current of a current sheet pro-
vided the initial conditions are such that the trajectory crosses
the sheet. The current and drift are to the left in the figure.
The magnetic field is into the plane of the figure for positive x
and out of the plane for negative x.

Fig. 2. The drift velocity of a positively charged particle with
r = v = 1 moving in such a way that it crosses a current sheet.
The velocity is shown as a function of ξ, the x-coordinate of
the center of the circular trajectory.

a point with x-coordinate ξ. For 0 ≤ ξ < r we find that
the drift velocity in the y-direction is

〈vy〉 =

√
1 − (ξ/r)2

π − arccos(ξ/r)
v (7)

from elementary calculations. If the center of the circle is
on the other side of the x-axis −r ≤ ξ < 0 and one finds
the drift velocity

〈vy〉 =

√
1 − (ξ/r)2

arccos(|ξ|/r)
v. (8)

Since arccos(−x) = π − arccosx this expression is in fact
identical to equation (7). The drift velocity in units of v
as a function of ξ/r is shown in Figure 2. For ξ = 0 the
center of the circle is on the sheet and the drift velocity is
(2/π)v.

3 Charged particle in Harris sheath

The Harris sheath [12] is a plasma current density that is a
solution of the collisionless Vlasov equations. The current
is in the y-direction and is located near the yz-plane. The
number density of charged particles n(r) is given by

n(x) =
n0

cosh(V x/cLD)
, (9)

http://www.epj.org


Eur. Phys. J. D (2016) 70: 198 Page 3 of 10

Fig. 3. Graph of the number density n(x) (Eq. (9)), of the
Harris current sheath, with a peak at x = 0 (red curve). This
charge density moves in the y-direction near the yz-plane. Also
shown is the resulting magnetic field B(x), in the z-direction
(Eq. (13)). The field is zero at x = 0 (green curve).

where V is the speed of the particles in the y-direction,
n0 the number density at x = 0, c the speed of light, and
LD is the Debye length,

LD =

√
θ

4πn0q2
, (10)

with θ = kBT , Boltzmann’s constant times the absolute
temperature,while q is the charge of the particles, see Fig-
ure 3. The vector potential becomes

A = Ay(x)êy, (11)

where

Ay(x) = −2θc

qV
ln

(
cosh

(
xV

cLD

))
. (12)

The magnetic field B corresponding to this vector po-
tential is in the z-direction, B = B(x)êz, and the
z-component is

B(x) = −
√

16πn0θ tanh
(

V x

cLD

)
. (13)

We now study the dynamics of a charged particle in this
magnetic field.

The Lagrangian for a particle of charge q and mass
m moving in the magnetic field is given by equation (2).
We first divide the Lagrangian with the particle mass. We
then choose

2θ

mV
= 1 (14)

as our unit of speed and

cLD

V
= 1 (15)

Fig. 4. Graph of the function − ln(cosh(x)) proportional to
the vector potential Ay(x) of the Harris sheath (12).

as unit of length. The unit of time is then mcLD/(2θ) = 1.
The resulting Lagrangian is now

L =
1
2
ṙ2 − ẏ ln (cosh(x)) . (16)

One sees that the equation of motion in the z-direction
(z̈ = 0, ż = const.) decouples from the xy-motion and is
trivial. We will thus discuss only the xy-motion in what
follows and use the Lagrangian

L =
1
2
(ẋ2 + ẏ2) − ẏ ln(cosh(x)). (17)

There are two constants of the motion, the generalized
momentum,

py ≡ κv = ẏ − ln(cosh(x)), (18)

and the energy,

E ≡ 1
2
v2 =

1
2
(ẋ2 + ẏ2) =

1
2

{
ẋ2 + [κv + ln (cosh(x))]2

}
,

(19)
so the problem is integrable, but the integrals are are not
expressible in terms of well known functions, it seems.

To start with one notices that there is no magnetic
field in the plane x = 0 (yz-plane). A particle in this plane
with ẋ = 0 will therefore stay in this plane and move as
a free particle. The sign of ẏ depends only on the initial
condition.

Let us now focus of equation (18), i.e.

ẏ = κv + ln(cosh(x)). (20)

We note that since |ẏ| ≤ v, ln(cosh(x)) ≥ 0, and v ≥ 0,
we must have

κ ≤ 1. (21)

Note also that the positive sign in front of ln(cosh(x)) cor-
responds to a positive charge. A graph of this function is
shown in Figure 4. It is clear that for positive κv the parti-
cle will always have a positive velocity in the y-direction.
For negative κv the y-velocity is negative for values of
|x| < arccosh(e−κv) but further away from the yz-plane
it will become positive. We now investigate the x-motion.

We see from (19) that

Veff(x) =
1
2

[κv + ln (cosh(x))]2 , (22)

http://www.epj.org
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Fig. 5. Graphs of the function Veff(x), with v = 1, for four
values of κ. The top curve is for κ = 2/3 (green), the curve
tangent to the x-axis at x = 0 (yellow) corresponds to κ = 0,
and the curve with the small maximum at x = 0 corresponds to
κ = −2/3 (blue). The curve with the large maximum (violet)
has κ = −4/3. The horizontal line (red) is at E = v2/2 =
1/2 so the intersections of this line with the curves are at the
turning points in the x-motion.

plays the role of an effective potential energy for the
x-motion. Graphs of this potential for different values
of κv are shown in Figure 5. We therefore have from
2E = ẋ2 − 2Veff(x) that

dx

dt
=

√
2[E − Veff(x)] =

√
v2 − [κv + ln (cosh(x))]2.

(23)
From this one obtains

dt =
dx

√
v2 − [κv + ln (cosh(x))]2

. (24)

The period T of the x-motion is then given by

T = 2
∫ x+

x−

dx
√

v2 − [κv + ln (cosh(x))]2
. (25)

For the y motion is we have from (20) that dy/dt = κv +
ln(cosh(x)) so that

dy = [κv + ln(cosh(x)]dt, (26)

or, using (24), that

dy =
[κv + ln(cosh(x)]dx

√
v2 − [κv + ln (cosh(x))]2

(27)
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Fig. 6. Graphs of the drift velocity vd ≡ 〈ẏ〉 in units of v as
a function of κ. The top curve (red) is for large speed, v � 1,
and is given by equation (40). The lowest curve (yellow) is for
small speed, v � 1, and is given by equations (33) and (34).
For intermediate speeds the drift velocities are between these
two. The middle curve (blue) is for v = 1 and is calculated nu-
merically by doing the integrals (25) and (28). As a decreasing
κ-value reaches −1 the trajectories bifurcate into two separate
trajectories outside the sheath.

The change in y-coordinate during one period of the x-
motion is thus

Δy = 2
∫ x+

x−

[κv + ln(cosh(x)]dx
√

v2 − [κv + ln (cosh(x))]2
. (28)

The y-drift velocity can now be calculated as function of
v and κ as 〈vy〉 = Δy/T but the integrals must be done
numerically (to the best extent of our knowledge) after
finding the relevant turning points x− and x+. This drift
velocity as a function of κ for v = 1 is shown in Figure 6.

3.1 Approximations for small and large v

By introducing the scaled variable x̂ = x/
√

v one can go to
the limit of small speeds in the integrals (25) and (28) and
do them analytically. This then gives explicit expression
for the drift velocity.

Assume that v 	 1. Using ln(cosh(x)) = ln(1+x2/2+
. . .) = x2/2 + . . ., and putting x/

√
v = x̂ we get for (25)

T = 2
∫ x̂+

x̂−

dx̂
√

v

v

√
1 − [

κ + 1
2 x̂2 + O(v)

]2
. (29)

For v 	 1 this gives

T =
2√
v

∫ x̂+

x̂−

dx̂
√

1 − κ2 − κx̂2 − x̂4

4

. (30)
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To the same approximation equation (28) gives

Δy = 2
√

v

∫ x̂+

x̂−

(
κ + x̂2

2

)
dx̂

√
1 − κ2 − κx̂2 − x̂4

4

. (31)

The integrals can then be expressed in terms of the com-
plete elliptic integrals K(k) and E(k) (see Ref. [23]). For
−1 < κ < 1 we find x̂∓ = ∓√

2(1 − κ) and

T =
4√
v
K(k), and, Δy = 4

√
v[2E(k) − K(k)] (32)

where k =
√

2(1 − κ)/2. We thus find the drift velocity,

〈ẏ〉 =
2E(k) − K(k)

K(k)
v, (33)

for the case v small and −1 < κ < 1. This drift velocity
becomes negative for κ-values less than κ ≈ −0.65223
(see Fig. 6). For κ < −1 a similar calculation gives x̂∓ =√−2(κ ± 1) and

〈ẏ〉 =
(k2 − 2)K(k) + 2E(k)

k2K(k)
v, (34)

where k = 2/
√

2(1 − κ). This drift is always in the nega-
tive y-direction.

When v � 1 it turns out to be advantageous to use
the scaled variable x̃ = x/v. Using

ln(cosh(vx̃)) = ln
(

evx̃ + e−vx̃

2

)
(35)

= ln
(

1
2
ev|x̃|

[
1 + e−2v|x̃|

])

= v|x̃| − ln 2 + ln
(
1 + e−2v|x̃|

)
(36)

= v [|x̃| + O(1/v)] (37)

we get for the period (25), in the limit of v � 1,

T = 2
∫ x̃+

x̃−

dx̃
√

1 − κ2 − 2κ|x̃| − |x̃|2 . (38)

Similarly we find

Δy = 2v

∫ x̃+

x̃−

(κ + |x̃|)dx̃
√

1 − κ2 − 2κ|x̃| − |x̃|2 . (39)

For −1 < κ < 1 one finds, x̃∓ = ∓(1 − κ), T = 2π −
4 arcsin(κ) and, Δy = 4v

√
1 − κ2. The drift velocity is

thus

〈ẏ〉 =
√

1 − κ2

π
2 − arcsin(κ)

v. (40)

This agrees with the results (7) and (8) for the for the flat
current sheet with κ = −ξ/r and v = r. For κ < −1 the
drift is, of course, zero in this case. Some trajectories are
shown in Figure 7.
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Fig. 7. The trajectories of charged particles passing through
a Harris sheath with κ = −0.5. The trajectory with the
smaller amplitude is for large speed, v � 1, (yellow curve).
The trajectory with the larger amplitude is for speed v = 1
(blue curve), and the one with intermediate amplitude is for
small speed, v � 1 (red curve). The drift is in the positive
y-direction (upwards in the figure) for all three. Note that
the x- and y-coordinates are scaled differently for the three
trajectories, according to Section 3.1. For v � 1 we thus use
(x̃, ỹ) = (1/v)(x, y) and for v � 1 we use (x̂, ŷ) = (1/

√
v)(x, y).

3.2 The nature of the sheath drift

In summary we have found that a positively charged par-
ticle will drift in the positive y-direction for all positive
values of κ and also for most negative values of κ > −1.
Note that for κ < 0 the function Veff(x) develops a bump
at x = 0 (see Fig. 5) and this means that particles spend
more time inside the current sheath. For v = 1 drift in the
negative y-direction starts at κ ≈ −0.80747. For κ < −1
the drift is always in the negative y-direction and the mo-
tion is bound in a potential minimum on one side of the
sheath. The particles that drift in the positive y-direction
are those that, not too slowly, pass through the sheath.

One notes that the guiding center formula (1) correctly
predicts the drift in the negative y-direction for particles
staying well outside the sheath i.e. in a direction opposite
to the current in the sheath. In our following examples
the corresponding drift will be found to be in the same
direction as the current. The main reason for this differ-
ence is that for a current localized near a point or near
a line the magnetic field strength will fall off away from
the source, whereas for a current localized near a surface
it will increase away from the source.

4 Particle outside line current

First some notation and kinematics. We will use cylin-
drical coordinates, ρ, ϕ, z defined through, x = ρ cosϕ,
y = ρ sin ϕ, z = z, in terms of cartesian coordinates.

http://www.epj.org
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We also use the corresponding unit vectors êρ(ϕ) and
êϕ(ϕ) who’s time derivatives obey the relations ˙̂eρ = ϕ̇ êϕ,
˙̂eϕ = −ϕ̇ êρ. A position vector is given by, r = ρ êρ +z êz,
and the corresponding velocity is, v = ρ̇ êρ +ρϕ̇ êϕ + ż êz,
so that vρ = ρ̇ and vϕ = ρϕ̇.

The general equations of motion can be found from the
Lagrangian (2). For an (infinite) line current I along the
z-axis one can use,

A(ρ) = −2I

c
ln ρ êz, (41)

with corresponding magnetic field B(r) = 2I
cρ êϕ. The

Lagrangian, divided by particle mass, is then

1
m

L(ρ, ρ̇, ϕ̇, ż) =
1
2
(ρ̇2 + ρ2ϕ̇2 + ż2) − 2qI

mc2
ż ln ρ. (42)

The quantity

v0 ≡ 2qI

mc2
, (43)

of dimension velocity, represents a characteristic velocity
of the system. Note that if q and I are of opposite sign
this is actually a negative quantity. We use it as unit for
velocity and put v0 = 1 below.

Since the coordinates ϕ and z are cyclic one finds that
the corresponding generalized momenta are constants of
the motion,

ρ2ϕ̇ = Lz, (44)
ż − ln ρ = pz, (45)

while the ρ-equation of motion is,

ρ̈ − ρϕ̇2 +
ż

ρ
= 0. (46)

In terms of the constants of the motion (44)-(45) the con-
served (kinetic) energy (per mass) can be written

E =
1
2

[
ρ̇2 +

L2
z

ρ2
+ (pz + ln ρ)2

]
=

1
2

[
ρ̇2 + Ueff(ρ)

]
.

(47)
We now assume initial conditions

ρ(0) = 1, ρ̇(0) = 0, ϕ̇(0) = Lz. (48)

The energy is then

E =
1
2

(
L2

z + p2
z

)
. (49)

Using (47) we find

ρ̇2 = 2E − Ueff(ρ) (50)

which using (49) is easily rearranged to

ρ̇2 = L2
z

(
1 − 1

ρ2

)
− ln ρ (2pz + ln ρ) . (51)

Inserting ρ = 1 we see that ρ̇ = 0, as assumed. This means
that ρ = 1 is the inner turning point in the ρ-motion. If
we denote the outer turning point by ρ1 we find that the
period of the ρ-motion is given by

T = 2
∫ ρ1

1

dρ
√

2E − Ueff(ρ)
. (52)

Use of equation (44) and (46) gives

ż + ρρ̈ =
L2

z

ρ2
(53)

but
d

dt
ρρ̇ = ρ̇2 + ρρ̈ (54)

so

ż =
(

ρ̇2 +
L2

z

ρ2
− d

dt
ρρ̇

)
. (55)

Integrating this over one period of the ρ-motion gives

Δz ≡ z(T )− z(0) =
∫ T

0

(
ρ̇2 +

L2
z

ρ2

)
dt (56)

The average (or drift) velocity in the z-direction is thus,

〈vz〉 =
Δz

T
(57)

and it is positive if v0 of equation (43) is positive (q and
I of the same sign), otherwise negative. The same result
has been derived by Yafaev [15] and a similar one can be
found in reference [14]. Below we find explicit expressions
for this drift velocity in the two special cases of helical and
plane motion.

4.1 Helical trajectories

The equation for a helix of radius ρ = R can be written
(ϕ̇ = ω = const.),

r(t) = R êρ(ωt) + vzt êz, (58)

where we use time t as parameter. Introducing the pitch
angle θ through,

vϕ = Rω = v sin θ, vz = v cos θ, (59)

or equivalently, vϕ/vz = tan θ, one gets,

v(t) = v[sin θ êϕ(ωt) + cos θ êz ], (60)

for the tangent (velocity) vector of this helix.
Helical trajectories must be solutions of the equations

of motion (44)–(46) with ρ̈ = ρ̇ = 0, and ρ = R =
constant. These equations give

R2ω2 = vz, (61)

and comparison with equation (59) then gives,

v2 sin2 θ = v cos θ, (62)

http://www.epj.org
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for the pitch angle θ of the helical trajectory. This can be
written

v2 − v2
z = vz (63)

using sin2 θ = 1 − cos2 θ. Solving for vz we find that

vz =
1
2

(√
1 + 4v2 − 1

)
(64)

in units of v0 of equation (43), so that a negative v0 means
that vz is in the opposite direction. One notes that for
large v most of the velocity is in the z-direction.

4.2 Plane trajectories

We now consider plane trajectories with ϕ = constant and
ϕ̇ = Lz = 0. Equation (51) at the outer turning point ρ1

then gives,

pz = −1
2

ln ρ1, (65)

for the case of positive v0, which we assume in what fol-
lows. Using this (51) gives

|ρ̇| =
√

ln ρ(ln ρ1 − ln ρ). (66)

Equation (56) with Lz = 0 is

Δz =
∫ T

0

ρ̇2dt =
∫ T

0

ρ̇ dρ(t). (67)

Changing the integration variable to ρ we thus find

Δz = 2
∫ ρ1

1

|ρ̇| dρ = 2
∫ ρ1

1

√
ln ρ(ln ρ1 − ln ρ) dρ. (68)

For the period we have from equation (52)

T = 2
∫ ρ1

1

dρ

|ρ̇| = 2
∫ ρ1

1

dρ
√

ln ρ(ln ρ1 − ln ρ)
. (69)

We now change variables in the integrals and put

ln ρ1 = k, y =
ln ρ

k
, dρ = kekydy, (70)

so that
√

ln ρ(ln ρ1 − ln ρ) = k
√

y(1 − y) while ρ = 1 cor-
responds to y = 0, and ρ = ρ1 to y = 1. The integrals
then become

Δz = 2k2

∫ 1

0

√
y(1 − y)eky dy (71)

and

T = 2
∫ 1

0

eky dy
√

y(1 − y)
. (72)

These integrals can be expressed in terms of modified
Bessel functions Iν(z), see Olver et al. [23], as follows

Δz = πkek/2I0(k/2), (73)

T = 2πek/2I1(k/2). (74)

Fig. 8. The drift velocity in the direction of the current, 〈vz〉
as a function of speed v in units of v0 for the case of helical
motion equation (64), upper curve, and for the case of plane
motion (Eq. (75)), lower curve.

Now, returning to dimensional quantities, one finds that

〈vz〉 =
Δz

T
=

I1(v)
I0(v)

vv0 (75)

where v = 1
2 ln(ρ1/ρ0) is the dimensionless speed, ρ0 the

inner turning point, and v0 is given by equation (43). A
graph of this function is shown in Figure 8 where it is
compared to the helix result (64).

4.3 Results for all solutions

Numerical results for arbitrary solutions show that the
ratio of drift velocity along the current to speed, 〈vz〉/v,
is maximal for the helical trajectories and minimal for
the plane ones. This means that all solutions will lie be-
tween the two curves in Figure 8. We illustrate this in
Figure 9 where results for solutions between the two ex-
tremes are shown. On the horizontal axis is the (constant)
speed v =

√
v2

ρ + v2
ϕ + v2

z and on the vertical axis the

(pitch) angle θ of equation (60) at the outer turning point
ρ1. This angle is zero for the plane trajectories. It obeys
v = cos θ/ sin2 θ for the helical ones according to (62).
This corresponds to the dashed curve at the top of the
diagram. For the other trajectories the θ-value represents
an initial condition. The numbers on the contours are the
values of 〈vz〉/v. The conclusion is that for any solution
of the equations of motion 〈vz〉/v → 1 for v → ∞, for
positive charge, otherwise to −1.

5 Charged particle in magnetic dipole field

Here we study the non-relativistic motion of trapped par-
ticles in the equatorial plane of a magnetic dipole. We
calculate the angular drift velocity exactly and reach the
same conclusion as above: the drift of the trapped charged
particles is in the same direction as the current producing
the field.
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Fig. 9. The (constant) speed v of the particle is on the hori-
zontal axis in units of v0. The pitch angle θ of the trajectory
at the outer turning point ρ1 is on the vertical axis. The con-
tours represent constant values of 〈vz〉/v and the value for each
contour is given. The bottom line of the figure represents the
plane solutions and the dashed upper end of the contours the
helical solutions.

The vector potential of a dipole m = mzêz in the
z-direction is,

A(ρ, ϕ) =
mz

ρ2
êϕ, (76)

when restricted to the equatorial plane, using cylindrical
coordinates. The magnetic field is B = −(mz/ρ3)êz . The
Lagrangian (2) is

L(ρ, ρ̇, ϕ̇) =
m

2
(
ρ̇2 + ρ2ϕ̇2

)
+

q

c

mz

ρ
ϕ̇. (77)

The angular momentum,

Lz = mρ2ϕ̇ +
q

c

mz

ρ
(78)

is conserved. The energy is, as always in magnetostatic
problems, just the kinetic energy and can be written

E =
m

2
ρ̇2 +

L2
z

2m

(
1
ρ
− �

ρ2

)2

, (79)

where
� ≡ qmz

cLz
. (80)

For � > 0 the function

f(ρ) =
(

1
ρ
− �

ρ2

)2

(81)

has a minimum at ρ = � where f = 0 and a maximum at
ρ = 2� where f = 1/(16�2) (see Fig. 10). If we put

1
λ2

≡ E2m

L2
z

, (82)

Fig. 10. Graphs illustrating the function f(ρ) of equation (81)
for � = 1 and the straight line 1/λ2 for λ = 5. The intersec-
tions of the line and the curve correspond to the three roots of
equation (84).

the turning points in the ρ-motion are the solutions of

1
λ2

−
(

1
ρ
− �

ρ2

)2

= 0. (83)

For λ > 4� there are three positive roots of this equation
given by:

ρ1 =
1
2

(
−λ +

√
λ2 + 4 lλ

)
,

ρ2 =
1
2

(
λ −

√
λ2 − 4 lλ

)
, (84)

ρ3 =
1
2

(
λ +

√
λ2 − 4 lλ

)
,

and one negative (un-physical) root. From these one can
show that,

� =
ρ1ρ2(ρ1 + ρ2)

ρ2
1 + ρ2

2

, and λ =
ρ2
1 + ρ2

2

ρ2 − ρ1
. (85)

Since on a circle with ρ = constant, the magnetic field is
constant, there must be circular solutions to the equations
of motion, as long as the speed is adapted the strength of
the field. These are easily found and turn out to have
radius ρc = 2� and λc = 4�. This means that they are
located at the maximum of the curve f(ρ) in Figure 10.
They are thus highly unstable.

Orbits with λ > 4� and with ρ-values between the two
smaller roots will remain there and will have an angular
drift velocity around the dipole, which we now calculate.
Using (79) and dt = dρ/ρ̇, one finds that,

T =
|Lz|
E

1
λ

∫ ρ2

ρ1

ρ2dρ
√

(ρ2 − λρ + λ�) (ρ2 + λρ − λ�)
, (86)

is the period of the ρ-motion. Using E = m
2 (ρ̇2 + ρ2ϕ̇2) we

also find

Δϕ = 2λ

∫ ρ2

ρ1

(1 − �/ρ)dρ
√

(ρ2 − λρ + λ�) (ρ2 + λρ − λ�)
. (87)
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Fig. 11. The angular drift velocity (88) for particles trapped
by a dipole field in its equatorial plane. In the units used the
angular velocity increases with k where k = 0 corresponds to
zero velocity and k = 1 corresponds to the maximum trapped
velocity.

By doing these integrals one can calculate,

〈ϕ̇〉 =
Δϕ

T
, (88)

the angular drift velocity. After some hard work the inte-
grals turn out to give

T =
|Lz|
E

ρ1 + ρ2

λk
[K(k) − E(k)], (89)

and

Δϕ =
2(ρ1 + ρ2)

ρ1
K(k) − 4(k + 1)Π(−k, k) (90)

where K(k), E(k) and Π(−k, k) denote complete elliptic
integrals, see Olver et al. [23], and where

k =
ρ2
2 − ρ2

1

2ρ1ρ2
. (91)

Algebra shows that λ = 2�(1/k + k). Also ρ1 and ρ2 can
then be expressed as functions of k. Using |Lz|/E as unit
of time we can now plot the angular drift velocity Δϕ/T
as a function of 0 < k < 1 (see Fig. 11). The function is
undefined at the endpoints of the interval but at k = 0
the limit is 3 and at k = 1 it is 4.

For the case λ > 4� the charged particles can either be
trapped between the two ρ-values ρ1 and ρ2, or restricted
to the region ρ > ρ3 (see Fig. 10). Should λ < 4� or
� < 0 there will not be any region with trapped particles.
Note that � > 0 means that Lz and qmz have the same
sign. This means that positive (negative) trapped particles
move round the dipole in the same (opposite) direction to
the circulating current producing the dipole.

6 Conclusions

We have calculated the drift velocity of charged parti-
cles in the magnetic field of three different current distri-
butions exactly: current located near a two-dimensional
plane, current located near a one-dimensional line, and
current in the neighborhood of a (zero-dimensional) point.
In the two latter cases we find that charges will drift in a
direction that enhances the current producing the field. In
the dipole case this is valid for particles that remain near
the dipole. In the case of current in the neighborhood of
a plane the situation is complicated by the fact that the
field increases away from the current but also in this case
faster particles will drift to enhance the source current.

In the Darwin statistical mechanical approach [4] cur-
rents are predicted to be correlated in thermal equilib-
rium. This however does not explain this behavior within
the present model: charged test particles moving in time-
independent external magnetic fields. The fact that there
are exceptions to the rule for slow particles in the Harris
sheath shows that a simple general explanation probably
does not exist. For slowly varying fields one can find an
explanation in the derivation of the the Alfvén formula (1)
as given by e.g. Jackson [24] by noting how the field arises
from the current distribution. For the straight wire case
one has that the current is parallel to the z-axis so j ‖ ẑ.
The magnetic field is then B ‖ ẑ × ρ̂. Finally the gra-
dient of |B| is ∇|B| ‖ −ρ̂. Putting this into (1) gives
vD ‖ (ẑ × ρ̂) × (−ρ̂) = ϕ̂ × (−ρ̂) = ẑ ‖ j. For the dipole
equatorial plane case we similarly have j ‖ ϕ̂, B ‖ −ẑ,
and ∇|B| ‖ −ρ̂, so vD ‖ (−ẑ) × (−ρ̂) = ϕ̂ ‖ j. For
a current sheet on the other hand the magnetic field is
not slowly varying. The explanation for this case and for
fast particles in a Harris sheath is instead found in Fig-
ure 1. For slow particles outside the Harris sheath we get
for the two regions outside the sheath, j ‖ ŷ, B ‖ ∓ẑ,
but now ∇|B| ‖ ±x̂, so the Alfvén drift formula gives
vD ‖ (∓ẑ)× (±x̂) = −ŷ ‖ −j. This explains the negative
drift for slow particles outside the sheath.

The study was motivated by the much more difficult
problem of finding the behavior of systems where charged
particles and fields move according to the coupled equa-
tions of Lorentz and Maxwell. This difficult problem is at
the heart of plasma physics. It seems that understanding
how current is induced in a plasma in the neighborhood
of a given current distribution, due to the inhomogeneous
magnetic field from the source, should improve our quali-
tative understanding of this problem.
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