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Abstract. We present closed form periodic solutions of the integrable modified Korteweg-de Vries equa-
tion (mKdV). By using a Darboux transformation, we derive first-and second-order doubly-periodic lattice-
like solutions. We explicitly derive first-and second-order rational solutions as limiting cases of periodic
solutions. We have also found the degenerate solution which corresponds to the equal eigenvalue case.
Among the second-order solutions, we single out the doubly-localized high peak solution on a constant
background with an infinitely extended trough. This solution plays the role of a rogue wave of the mKdV
equation.

1 Introduction

The first observation of a solitary wave on a water sur-
face was reported by the Scottish naval engineer J. Scott
Russell back in the nineteenth century [1]. Theoretical
analysis of such a wave was presented by British scientist
Lord Rayleigh [2] and French scientist Boussinesq [3–6]. In
1895, two Dutch mathematicians, Korteweg and de Vries,
formulated a partial differential equation (now known as
the KdV equation) whose closed form solution precisely
modelled the propagation of shallow water waves [7]. In
fact, the ‘KdV’ equation and its fundamental soliton so-
lution are explicitly given in the earlier Boussinesq’s pa-
per [5], wherein “Scott Russell’s solitary wave” is also ob-
tained. Numerical analysis of this equation by Zabuski and
Kruskal [8] showed that a localized initial condition results
in the excitation of solitons. Gardner et al. [9] were the
first to solve an initial value problem involving the KdV
equation using the inverse scattering theory with the one-
dimensional Schrödinger operator.

The mKdV equation and its further modifications are
found to describe pulses consisting of a few optical cy-
cles [10–12] and in modelling supercontinuum generation
in optical fibres [13]. The mKdV equation has many other
applications in various fields such as soliton propagation
in lattices [14], nonlinear Alfvén waves propagating in
plasma [15] and meandering ocean currents [16]. It can
also be applied to the dynamics of traffic flow [17–19].
Furthermore, the mKdV equation is related to Schottky
barrier transmission lines [20], ion acoustic soliton exper-
iments in plasmas [21] and fluid mechanics [22].
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For convenience, we write the focussing mKdV equa-
tion in the following way:

∂ψ

∂x
− α

(
∂3ψ

∂t3
+ 6ψ2 ∂ψ

∂t

)
= 0, (1)

where ψ = ψ(x, t) is a real function with evolution vari-
able x and transverse variable t. We explicitly retain an
arbitrary real parameter, α, in the equation in order to
have consistent notation with our previous results [23,24]
and because it is useful at times. It can be removed by
rescaling the x-variable: αx → x′. The equation contain-
ing the Hirota operator alone [25,26] differs from equa-
tion (1) in that ψ2 in the third term is replaced by |ψ|2
(this Hirota operator equation is sometimes called the
‘complex modified Korteweg-de Vries equation [27,28], but
this label is misleading, since it is in the NLS family,
not the KdV family). A real solution of the Hirota equa-
tion will also solve the mKdV. Some solutions, mainly
with zero background have been given for α set to −1
in references [29,30]. If ψ is a solution of the defocussing
mKdV, ψx + ψttt − 6ψ2ψt = 0, then the Miura trans-
formation [31], φ = ψt + ψ2, is a solution of the KdV,
φx+φttt−6φφt = 0. This is not the case we deal with here.
Both equations are integrable and have infinitely many
conserved quantities [32].

The mKdV admits a scaling transformation. Namely,
if ψ = ψ(x, t) is a solution of equation (1), then

ψ′ = qψ(q3x, qt) (2)

is also a solution of equation (1) for arbitrary real q. For
example, for the basic soliton solution ψ = sech (t+ αx),
the extended one-parameter family of solutions can be
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written as ψ = q sech
(
qt+ α q3 x

)
, where q is an arbi-

trary real number. This scaling applies to all mKdV solu-
tions including those given in this work. We will provide
solutions with q = 1 as unit-background solutions. The
mKdV can also be written in the form of the continuity
equation [33]:

∂ψ

∂x
=

∂

∂t

[
α

(
ψtt + 2ψ3

)]
.

In contrast to KdV, the mKdV equation is not invariant
under Galilean transformation.

Explicit solutions of the mKdV have been derived us-
ing various methods. For instance, Hirota derived the
exact envelope soliton for the mKdV equation in refer-
ence [34] and for multiple collision of solitons with dif-
ferent amplitudes in reference [35]. The inverse scattering
technique (IST) has been developed to solve a range of
nonlinear evolution differential equations, including the
mKdV equation in reference [36]. The IST for the mKdV
equation was given by Tanaka [37]. Wadati used the IST to
obtain the exactN -soliton solution for the mKdV [38]. Di-
rect methods can also be used to derive certain solutions.
Some classes of periodic solutions of mKdV have been de-
rived in [39]. In this work, using a Darboux transformation
with seeding solution ψ = 1, we derive exact periodic and
rational solutions. These correspond to imaginary eigen-
values of the IST.

The Lax-pair for the mKdV equation was given by
Wadati [38]. We note that Wadati used the opposite sign
for α. Our notation below is adapted to equation (1). Now,
two linear equations

∂R

∂t
= UR,

∂R

∂x
= V R, (3)

are such that the ‘zero-curvature’ condition:

Ux − Vt + [U, V ] = 0, (4)

will reproduce equation (1). Here U and V are 2 × 2 ma-
trices with U given by

U = i

[
λ ψ(x, t)∗

ψ(x, t) −λ
]
, (5)

while V is a matrix polynomial in eigenvalue λ. For the
mKdV, it is a simple cubic polynomial that can be written
in general form V = α

∑3
j=0 λ

jVj , where submatrices Vj

are

Vj = i

[
Aj B∗

j

Bj −Aj

]
, (6)

with

A0 = −i (ψ∗
tψ − ψtψ

∗) ,
B0 = 2ψ2ψ + ψtt,

A1 = 2ψ2, B1 = −2iψt,

A2 = 0, B2 = −4ψ,
A3 = −4, B3 = 0.

Fig. 1. A first order mKdV periodic solution equation (7)
with λ = 0 + 0.97i (or κ = 0.48621) and α = − 1

10
. Here, the

amplitude remains constant.

It is easy to check that substitution of the matrices U
and V into equation (4) leads directly to equation (1).

2 First-order periodic and rational solutions

Using the seeding solution ψ = 1, the imaginary eigen-
value λ = ib and the same basic steps as in [40], we obtain
the periodic solution of the mKdV:

ψ1 = −1 +
κ2

2 −√
4 − κ2 cos[κ(t+ vx)]

, (7)

where κ = 2
√

1 + λ2 and v = α
(
6 − κ2

)
. Thus we need

κ < 2. This solution is shown in Figure 1. In contrast
to the Akhmediev breather of the nonlinear Schrödinger
equation (NLSE) [41,42], which is localized in x and
periodic in t, this mKdV solution is periodic in t but
maintains constant amplitude of oscillations

√
4 − κ2 ev-

erywhere. The oscillations move with velocity v in the
(x, t)-plane. The solution of equation (7) is real and con-
tains a trigonometric function only. Here, κ is the fre-
quency of the periodic function.

An asymptotic reduction from the modified Korteweg-
de Vries equation produces the NLS equation [43,44]. So
modulation instability can occur for some parameter val-
ues, and an almost periodic wave-train can provide short
term pulses of relatively high energy. Figure 1 shows a
periodic pattern with the frequency κ = 2

√
1 − b2 < 2.

The eigenvalue is λ = ib where b is real. Then the period
of the solution is T = π/

√
1 − b2 along the t axis. Peri-

odic solutions exist for 0 < b < 1 and consequently their
frequencies remain within 0 < κ < 2.

The longest oscillation period of these solutions occurs
in the limit κ→ 0.

Similar to the case of an Akhmediev breather that be-
comes a rogue wave [45,46] in the limit κ→ 0, the mKdV
periodic solution of equation (7) in the same limit, κ→ 0,
becomes a rational soliton:

ψ1 = −1 +
4

1 + 4(t+ 6xα)2
. (8)
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Fig. 2. A first order mKdV rational solution equation (8) with
α = − 1

4
.

This corresponds to the Peregrine solution of the
NLSE [47,48]. Adding to the similarity, the highest
amplitude of the solution is 3, just as occurs with the
Peregrine solution. However, instead of being doubly local-
ized, the solution of equation (8) looks more like a soliton
on a constant background, ψ = −1, moving with velocity
v in the (x, t) plane, as shown in Figure 2. Both solutions,
equations (7) and (8) lack phase evolution which is an es-
sential part of any NLSE solution. This is in accordance
with the fact that the mKdV directly describes the wave
profile rather than a wave envelope function. These solu-
tions are reminiscent of the periodic ‘cnoidal’ waves of the
NLSE, as discussed in [49].

3 Second order periodic solution

The second step in the Darboux transformation
scheme [40] provides us with the second-order periodic
solution of the mKdV equation:

ψ2 = 1 +
N2

D2
, (9)

where

N2 = (v2
1 − v2

2)[v2(v1 cosF1 − 2) (2 cosF2 − v2)
−v1(2 cosF1 − v1) (v2 cosF2 − 2)]

D2 = −2v1v2
{
κ1κ2 sinF1 sinF2

+[2 cosF1 − v1][2 cosF2 − v2]
}

+(κ2
1 + κ2

2 − 8)[2 − v1 cosF1] [v2 cosF2 − 2],

and

F1 = xακ1

(
6 − κ2

1

)
+ tκ1,

F2 = xακ2

(
6 − κ2

2

)
+ tκ2,

v1 =
√

4 − κ2
1, v2 =

√
4 − κ2

2.

Here, the maximum value is 1+ v1 + v2 and the minimum
value is 1 − v1 − v2. So, the sum of the maximum and
minimum values is always 2, independent of α, and the

Fig. 3. A second order periodic mKdV solution equation (9)
with κ1 = 0.7, κ2 = 1.4 and α = − 1

6
.

Fig. 4. A second order mKdV solution equation (9) with
κ1 = 0.98, κ2 = 0.8 and α = − 1

6
.

total structure always has height of 2(v1+v2). The solution
is shown in Figure 3. This is the nonlinear superposition of
the set of two periodic solutions obtained in the previous
step crossing each other. Thus, the solution creates the
two-dimensional ‘lattice’. Each individual wave train has
specific values of frequencies, κ1 and κ2, respectively. The
maximum amplitude of the superposition is 4.30, while the
minimum one is −2.30. The maxima of the lattice appear
at the positions of intersection of troughs of one periodic
structure with the maxima of the other one. This happens
with all second-order solutions below.

Figure 4 shows another example of a second order
doubly-periodic solution with different values of κ1 and κ2.
The velocities of propagation of the two individual solu-
tions, α(6 − κ2

1) and α(6 − κ2
2), are now closer to each

other. Thus, the two periodic structures comprising the
lattice are located at smaller angles to each other. Their
periods differ significantly. In Figure 4, the maximum am-
plitude is 4.57 and the minimum is −2.57.

The frequencies of the individual components, κ1

and κ2, in the above solutions must remain within the
range 0 < κ1, κ2 ≤ 2. When we have κi → 2 for either
one, the corresponding solution reduces to a constant am-
plitude background wave.

http://www.epj.org
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Fig. 5. A second order mKdV solution equation (10) with
κ1 = 1.6 while κ2 → 0 and α = − 1

6
.

Either of the frequencies, κ1 or κ2, in the solution can
be zero. When κ2 = 0, the solution is:

ψ2 = 1 − κ2
1

D3

[−8 + 4v1 cos (R1) +
(
1 + 4p2

1

)
κ2

1

]
, (10)

with

D3 = −16p2
1

(
v2
1 − 4

) − 16p1v1κ1 sin (R1)

+4
[
4 − 4v1 cos (R1) + v2

1

]
+

(
1 + 4p2

1

)
[v1 cos (R1) − 2]κ2

1

where

R1 = (t− Vbx)κ1, p1 = t+ 6xα
Vb = α

(−6 + κ2
1

)
.

The solution is significantly simplified and contains a ra-
tional component and only one wave frequency. This solu-
tion is shown in Figure 5. The background here has only
one periodic component. The presence of the rational com-
ponent is revealed in a single ridge of higher amplitudes
crossing the origin. The solution is also periodic along this
line, as the ridge crosses the periodic background at a fi-
nite angle. The periodicity of the maxima along the ridge
is defined by this angle. The maximal amplitude of peri-
odic field variation along this line is 4.2.

4 Degenerate solution

Generally, the inverse scattering technique does not allow
the presence of two equal eigenvalues in the solution. The
solution becomes undefined when λ1 → λ2, or, equiva-
lently κ1 → κ2. Despite having this restriction, it is still
possible to derive the solution in this limiting case. To
proceed with the derivation, we set κ2 → κ1 + ε. Then, we
take a Taylor series expansion of this expression in terms
of ε and retain only the lowest order terms. This leaves us
with a real second order degenerate mKdV solution:

ψ2 = 1 +
Nd

Dd
, (11)

Fig. 6. A second order degenerate mKdV solution, equa-
tion (11), with κ = 1.2 and α = − 1

6
.

where

Nd = 4κ2v2
a

×{
κv2

a

[
t− 3α

(
κ2 − 2

)
x
]
sinRb

− (
κ2 − 8

)
cosRb − 4va

}
and

Dd = −8κv4
a[t− 3α(κ2 − 2)x] sinRb − v5

a cos(2Rb)
−8κ2v2

a cosRb

−va {−2κ6(t2 + 60αtx+ 468α2x2)
+12ακ8x(t+ 18αx)
+κ4[16(t+ 6αx)(t + 18αx) + 1]
−8κ2[4(t+ 6αx)2 + 1] − 18α2κ10x2 − 16},

with

va =
√

4 − κ2, Vb = α
(
κ2 − 6

)
,

Rb = (t− Vbx)κ,

here, κ = κ1 = κ2. An example of this degenerate solution
of the mKdV is presented in Figure 6. The wave pattern of
this solution consists of a single periodic ridge of high am-
plitude peaks on a periodic wave background. The back-
ground modulation is much weaker than the modulation
along the periodic ridge. The maximum amplitude of the
peaks along the ridge is (ψ2)max = 5. The line of peaks
crosses the origin. The positions of the peaks are synchro-
nised with the periodic wave structure of the background.

5 Second-order rational solution

We can further simplify the solution of equation (10)
by taking the other frequency κ1 → 0. Trigonometric
functions then disappear and we obtain the second-order
purely rational solution of mKdV equation:

ψ2 = 1 + 12
G2

D2
, (12)

where

G2 = 3 − 8(6αx+ t)
[
2(6αx+ t)3 + 3(22αx+ t)

]
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Fig. 7. A second order mKdV rational solution equation (12)
with α = − 1

6
.

and

D2 = 48αx
[
62208α4x4(αx + t)

+432α3
(
60t2 − 13

)
x3 + 288α2t

(
20t2 − 9

)
x2

+3α
(
240t4 − 120t2 + 139

)
x

+t
(
48t4 − 8t2 + 51

) ]
+ 64t6 + 48t4 + 108t2 + 9.

This solution is shown in Figure 7. The solution is real
without any periodicity and is located on a flat back-
ground, ψ = 1. The solution is seemingly a result of a
collision of a dip and a bright soliton with slightly dif-
ferent velocities. The collision point is at (0, 0) and has
a single peak with the highest amplitude 5 at the origin.
Remarkably, this value is the same as for the second-order
rogue wave of the NLSE [42,50,51]. This solution is a proof
that the mKdV also has a high-amplitude rational solution
localized in two dimensions. The depressed soliton part of
this solution has a minimum around −2.75, thus making
the central part of the solution significantly higher than
the bottom of the trough.

Returning to the simple scaling of equation (2), we
note that the rational solution can be transformed to ar-
bitrary background a and arbitrary maximal amplitude
5a. Then it is given by

ψ2 = a

(
1 + 12

G′
2

D′
2

)
, (13)

where each x is replaced by a3 x and each t by a t in the
above expressions for G2 and D2. Thus,

G′
2 = 3 − 8a

(
6a2αx+ t

)
×

[
2a3

(
6a2αx + t

)3
+ 3a

(
22a2αx+ t

)]

and similar modification applies for D′
2.

6 Second order rational solution
with differential shift

Continuing the comparison with the rogue wave solutions
of the NLSE, we recall that, for the NLSE equation, a

Fig. 8. A second order mKdV rational solution, equation (14),
with shift parameter ca = −2; here α = − 1

6
.

form of the second-order rogue wave solution appears as
a triplet of well-separated first-order rogue waves [52,53].
This form requires two additional free parameters that
move the rogue wave components out from the centre
of the structure. We call these parameters “differential
shifts” [23,54,55]. They should not be confused with triv-
ial translations along the x and t co-ordinates. In contrast
to the NLSE equation, the mKdV rational solution cannot
be split into three components, as there are no first-order
rational solutions here. We apply the “differential shifts”,
xd and td, to the solution of equation (12) in the same
way as in [23,54].

We set ca = xd + 6α td as the combined constant. We
find:

ψ2 = 1 +
Nt

Dt
(14)

where

Nt = −12{8(t+ 6αx)[−16ca + 2t3 + 6α(6t2 + 11)x
+216α2tx2 + 3t+ 432α3x3] − 3},

and

Dt = 4{256c2a + 3456α3x3(8ca + 20t3 − 9t)
+36α2x2[24t(16ca + 10t3 − 5t) + 139]
+128cat3+12αx(192cat2−176ca+48t5−8t3+51t)
−96cat+ 16t6 + 12t4 + 5184α4(60t2 − 13)x4

+27t2 + 3(12αx)5(t+ αx)} + 9.

Now, the new solution, equation (14), has a free real
parameter, ca. For ca = 0, the solution equation (14)
coincides with the second-order rational solution of equa-
tion (12). Two examples of this solution with nonzero val-
ues of xd and td are shown in Figures 8 and 9.

As we can see, the action of these parameters on the
rational solution results in a shift of the peak of along the
“depressed soliton” trough. This is different from elemen-
tary translations of the solution along the x and t axes. In
the present case, the translation is eigenvalue-dependent.

7 Conclusion

In our work, we have found new periodic solutions of the
mKdV equation. A second order nonlinear superposition

http://www.epj.org
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Fig. 9. A second order mKdV rational solution, equation (14),
with shift parameter ca = 2; here α = − 1

6
.

of them, constructed with the use of the Darboux
transformation, leads to doubly-periodic “lattice”-type
structures. Limiting cases of these structures include a
high-amplitude oscillating ridge on a single periodic back-
ground, soliton-like structures and, most remarkably, a ra-
tional solution on a constant background with an infinitely
extended “depressed soliton” trough.

Breathers and rogue wave solutions of the NLSE are
used mainly to explain wave dynamics in deep water and
optical pulse dynamics in nonlinear optics. The corre-
sponding classes of solutions of the mKdV equation de-
rived in this work are fundamentally different from those
of the NLSE. The solutions of the mKdV are related to the
wave profile directly. These solutions reveal that the phe-
nomena of breathers and rogue waves are not confined to
the deep ocean. Being the rational solutions of the mKdV
equation, they may appear in electromagnetic waves in
quantized films, internal waves for some density stratifica-
tions, elastic media [56] as well. Remarkably, in the deep
ocean, modulation instability contributes to the formation
of rogue waves through NLSE breather dynamics, while,
in the shallow water case, we obtain rational solutions and
solitons in the zero frequency limit (κ → 0) of mKdV so-
lutions. Hence, the deep and shallow water cases provide
two different descriptions in hydrodynamics.

These new solutions will undoubtedly be useful and
will give insight in modelling nonlinear wave processes
in various other physical systems where the mKdV is
relevant.
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