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Abstract. We propose a scheme to fast controlled preparation of two-atom maximally entangled state
and N-atom W state in the directly coupled cavities systems via shortcuts to adiabatic passage (STAP).
Numerical simulation demonstrates that the scheme is faster than adiabatic passage and robust against the
decoherence caused by atomic spontaneous emission and photon leakage. The result provides a theoretical
basis for the manipulation of quantum states in the directly coupled cavities systems via STAP and
contributes to the understanding of more complex systems.

1 Introduction

Quantum entanglement, one of the most intriguing prop-
erties in quantum mechanics, is a key resource for quan-
tum information processing (QIP) [1,2], such as quantum
teleportation [3], quantum dense coding [4], quantum
cryptography [5], quantum computation [6], and so on.
Typical entangled states are the Bell states [7], the
Greenberger-Horne-Zeilinger (GHZ) states [8,9], and the
W states [10]. Different entangled states have different ad-
vantages. For instance, the Bell states are the two-particle
entangled states which are fundamental for demonstrating
quantum nonlocality [7]. The GHZ states provide possibil-
ities for testing quantum mechanics against local hidden
variable theory [11]. Compared with the above two types
of entangled states, the W states possess a high degree of
robustness against the qubit loss as they maintain some
entanglement when more than two qubits remains. Many
entangled states’ preparation programs have been realized
in ion traps [12], cavity quantum electrodynamics (QED)
systems [13,14], and other systems. Among these systems,
coupled cavities QED systems have the advantages of eas-
ily addressing individual lattice sites with external con-
trol and scalability, which give the possibility to compose
a quantum network. Thus, much attention has been paid
to the investigation of coupled cavities systems [15–18] in
recent years.

There are two major routes for generating and ma-
nipulating the entangled states with external interact-
ing fields. One is fixed-area resonant pulses route [19–21]
and the other is the adiabatic method [22–24]. In general
terms, simple fixed-area resonant pulses may be fast if

a e-mail: xia-208@163.com

intense enough, but the schemes are difficult to imple-
ment since all parameters need to be precisely controlled.
That is, the fidelity is highly sensitive to the parameters
fluctuations. The advantage of the adiabatic method is
that it can reduce populations of the intermediate excited
states. Therefore, the method would restrain the influence
of atomic spontaneous emission on the fidelity. However,
in order to make sure each of the eigenstates of the sys-
tem evolves along itself all the time without transition
to other ones, the controlling parameters should change
slowly enough. Thus, the adiabatic method typically needs
long evolution time [25]. However, it should be avoided,
because decoherence, noise, or losses would spoil the in-
tended dynamics. Therefore, a fast, robust and easy to
realize scheme is important to generate and manipulate
entangled states.

To achieve fast and high-fidelity quantum states, some
approaches [26–45] have been proposed. For example,
Masuda and Nakamura [27] have proposed the theory
of the fast-forward of adiabatic dynamics in quantum
mechanics. The theory can accelerate quantum dynam-
ics by using an additional phase of a wave function
and obtain a target state in any desired short time.
Berry [33] has put forward “Transitionless quantum driv-
ing” (TQD) to construct the “counter-diabatic driving”
(CDD) HamiltonianH(t), which can accurately derive the
instantaneous eigenstates of H0(t) to effectively speed up
adiabatic processes. Chen et al. [34] have present a reverse-
engineering approach which use the Lewis-Riesenfeld (LR)
invariant to carry the eigenstates of a Hamiltonian from
a specified initial to a final configuration, and then design
the transient Hamiltonian from the LR invariant. Soon
afterwards, Chen and Muga [36] have proposed a scheme
to perform a fast population transfer (FPT) in three-level
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systems under the help of the inverse engineering based
on LR invariant. Palmero et al. [37] have designed fast
trajectories of a trap to transport two ions using shortcut-
to-adiabaticity technique based on invariants. Inspired by
these works and in combination with quantum Zeno dy-
namics (QZD) [46,47], Chen et al. [44] have constructed
shortcuts for performing the FPT of ground states in mul-
tiparticle systems with invariant-based reverse engineering
in cavity QED systems. We note that references [42–45]
have successfully introduced shortcuts to adiabatic pas-
sage (STAP) into cavity QED systems, but, so far, fast
controlled preparation of multiparticle entangled states in
the directly coupled cavities systems has not been put for-
ward because it is hard to directly generalize the idea in
references [42–45]. In view of that we ask if it is possible to
construct STAP for multiparticle in the directly coupled
cavities systems.

In our scheme, we use the inverse engineering based on
LR invariant to construct effective STAP for speeding up
the generation rate of the two-atom maximally entangled
state and N -atom W state in the directly coupled cavi-
ties systems. Compared with previous works, the present
scheme has the following advantages. First, we realize the
fast controlled preparation of two-atom maximally entan-
gled state and N -atom W state in the N + 1 directly cou-
pled cavities via STAP. That is, we take one of the N + 1
atoms as the control qubit and the rest of N atoms as the
controlled qubits. Secondly, the N + 1 atoms are trapped
in the N + 1 cavities, respectively. So, our scheme avoids
the influence of direct interaction among atoms and also
makes the individual addressing easy. Furthermore, due
to the spatial separation of each qubit, it is feasible to
control every single qubit by laser pulse in experiment.
Thirdly, numerical simulation shows that our scheme has
a high fidelity and the evolution process is fast. Besides,
our scheme is robust against parameters fluctuation in the
experimental and decoherence caused by atomic sponta-
neous emission and photon leakage. Fourthly, we propose
a scheme to generate entangled state in the N+1 directly
coupled cavities, this work maybe helpful for large-scale
quantum information processing.

This paper is organized as follows. In Section 2, we
show that the fast controlled preparation of two-atom
maximally entangled state can be realized in the three
directly coupled cavities via STAP. In Section 3, we use
STAP to realize the fast controlled preparation of N -atom
W state in the N+1 directly coupled cavities. In Section 4,
we provide the numerical simulation and discussion. The
conclusion is in Section 5.

2 Fast controlled preparation of two-atom
maximally entangled state in 3 directly
coupled cavities via Shortcuts to adiabatic
passage

We consider that three Λ-type atoms 1, 2, and 3 are
trapped in three directly coupled cavities c1, c2, and c3,

Fig. 1. (a) The cavity-atom combined system for controlled
two-atom maximally entangled state generation. (b) The
atomic level configuration.

respectively (here, we choose the second atom as the con-
trol qubit). The involved atomic levels and transitions are
depicted in Figure 1, each atom has an excited state |e〉
and two ground states |f〉 and |g〉. The atomic transition
|f〉k ↔ |e〉k (k = 1, 2, 3), where subscript k denotes the
kth atom, is resonantly driven through a time-dependent
laser pulse with Rabi frequency Ωk(t), and the transi-
tion |g〉k ↔ |e〉k is non-resonantly coupled to the cav-
ity mode with coupling constant λk and detuning Δ. The
whole Hamiltonian in the interaction picture is written as
(� = 1)

Hi = Hal +Hac +Hc,

Hal =
∑

k=1,2,3

Ωk(t)|e〉k〈f | +H.c.,

Hac =
∑

k=1,2,3

λkake
iΔt|e〉k〈g| +H.c.,

Hc =
∑

n=1,2

va†nan+1 +H.c., (1)

where a†n and an (subscript n denotes cavity number) are
the creation and annihilation operators for photons, re-
spectively. v denotes the hopping rate between the ad-
jacent cavities. For convenience, we assume Ωk(t), λk,
and v to be real. Next, we rewrite the Hamiltonian in
terms of new bosonic operators q1 = 1√

2
(a3 − a1), q2 =

1
2 (a1 +

√
2a2 +a3), and q3 = 1

2 (a1−
√

2a2 +a3). Then, the
Hamiltonian in the interaction picture can be written as:

Hi = HI
al +HI

ac +HI
c ,

HI
al =

∑

k=1,2,3

Ωk (t) |e〉k〈f | +H.c.,

HI
ac = λ1|e〉1〈g|12

(
−
√

2q1 + q2 + q3

)
eiΔt

+ λ2|e〉2〈g| 1√
2

(q2 − q3) eiΔt

+ λ3|e〉3〈g|12
(√

2q1 + q2 + q3

)
eiΔt +H.c.,

HI
c =

√
2v

(
q†2q2 − q†3q3

)
. (2)
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In the rotation framework, we perform the unitary trans-
formation U = eiHI

c t. After that, we obtain the effective
Hamiltonian HI

HI = HI1
al +HI1

ac ,

HI1
al =

∑

k=1,2,3

Ωk(t)|e〉k〈f | +H.c.,

HI1
ac = UHI

acU
†

=
λ1

2
|e〉1〈g|

[
−
√

2q1eiΔt + q2e
i(Δ−√

2v)t

+q3ei(Δ+
√

2v)t
]

+
λ2√

2
|e〉2〈g|

[
q2e

i(Δ−√
2v)t

− q3e
i(Δ+

√
2v)t

]
+
λ3

2
|e〉3〈g|

×
[√

2q1eiΔt + q2e
i(Δ−√

2v)t + q3e
i(Δ+

√
2v)t

]
+H.c.

(3)

We set λ1√
2

= λ2√
2

= λ3√
2

= λ, q2 = a, and Δ =
√

2v.

Under the large detuning regime {Δ,Δ+
√

2v} � λ, the
Hamiltonian HI1

ac is simplified as:

HI1
ac =

λ√
2
|e〉1〈g|a+ λ|e〉2〈g|a+

λ√
2
|e〉3〈g|a+H.c. (4)

If the initial state is |ψ0〉 = −|g〉1|f〉2|g〉3|0〉c, the whole
system evolves in the subspace spanned by:

|ψ1〉 = |g〉1|f〉2|g〉3|0〉c,
|ψ2〉 = |g〉1|e〉2|g〉3|0〉c,
|ψ3〉 = |g〉1|g〉2|g〉3|1〉c,
|ψ4〉 = |e〉1|g〉2|g〉3|0〉c,
|ψ5〉 = |f〉1|g〉2|g〉3|0〉c,
|ψ6〉 = |g〉1|g〉2|e〉3|0〉c,
|ψ7〉 = |g〉1|g〉2|f〉3|0〉c. (5)

In this case, we set Ω1(t) = Ω3(t) = Ω(t) and use two
orthogonal vectors |�〉 = 1√

2
(|ψ4〉 + |ψ6〉) and |�̃〉 =

1√
2
(|ψ4〉 − |ψ6〉) to rewrite the Hamiltonian HI . We can

obtain

HI = HI1
al +HI1

ac ,

HI1
al = Ω2(t)|ψ1〉〈ψ2| + Ω(t)√

2
(|ψ5〉 + |ψ7〉)〈�|

+
Ω(t)√

2
(|ψ5〉 − |ψ7〉)〈�̃| +H.c.,

HI1
ac = λ(|ψ2〉 + |�〉)〈ψ3| +H.c. (6)

It is obvious that when the initial state is |ψ1〉, the terms
containing |�̃〉 are negligible because they are decou-
pled to the time evolution of initial state. After that, the
Hamiltonian HI becomes the following form:

H ′
I = H ′

al +H ′
ac,

H ′
al = Ω2(t)|ψ1〉〈ψ2| + Ω(t)√

2
(|ψ5〉 + |ψ7〉)〈�| +H.c.,

H ′
ac = λ(|ψ2〉 + |�〉)〈ψ3| +H.c. (7)

In addition, there are two eigenstates with zero eigenval-
ues for the intermediate Hamiltonian HI1

ac in the subspace
spanned by {|ψ2〉, |ψ3〉, |ψ4〉, |ψ6〉},

|ϕ1〉 =
√

6
3

(
−
√

2
2

|ψ2〉 + |ψ4〉
)
,

|ϕ2〉 =
√

6
3

(
−
√

2
2

|ψ2〉 + |ψ6〉
)
. (8)

After orthogonalizing the states |ϕ1〉 and |ϕ2〉, we obtain
a special dark state |φ1〉 as:

|φ1〉 =
1√
2
(−|ψ2〉 + |�〉). (9)

At the same time, two eigenstates with non-zero eigenval-
ues for the intermediate Hamiltonian HI1

ac are:

|φ2〉 =
1
2
(|ψ2〉 +

√
2|ψ3〉 + |�〉),

|φ3〉 =
1
2
(|ψ2〉 −

√
2|ψ3〉 + |�〉), (10)

with eigenvalues E2 =
√

2λ and E3 = −√
2λ. In light of

QZD, we rewrite the Hamiltonian H ′
I with |ψ1〉, |φ1〉, |φ2〉,

|φ3〉, and |φ4〉 = 1√
2
(|ψ5〉+ |ψ7〉) (|φ4〉 is the target state.),

H ′
I = H ′

al +H ′
ac,

H ′
al =

Ω2(t)√
2

(−|ψ1〉〈φ1|) +
Ω2(t)

2
(|ψ1〉〈φ2|)

+
Ω2(t)

2
(|ψ1〉〈φ3|) +

Ω(t)√
2

(|φ4〉〈φ1|)

+
Ω(t)

2
(|φ4〉〈φ2|) +

Ω(t)
2

(|φ4〉〈φ3|) +H.c.,

H ′
ac =

√
2λ(|φ2〉〈φ2| − |φ3〉〈φ3|). (11)

We introduce two vectors |μ1〉 = 1√
2
(|φ2〉 − |φ3〉) and

|μ2〉 = 1√
2
(|φ2〉 + |φ3〉) for rewriting the Hamiltonian H ′

I .
The Hamiltonian H ′

I becomes the following form:

Hre =
|φ1〉√

2
(−Ω2(t)〈ψ1| +Ω(t)〈φ4|)

+
|μ2〉√

2
(Ω2(t)〈ψ1| +Ω(t)〈φ4|)

+
√

2λ|μ1〉〈μ2| +H.c. (12)

There is a dark state for the Hamiltonian Hre,

|θ0〉 =
1
N

[Ω(t)|ψ1〉 − Ω2(t)Ω(t)
λ

|μ1〉 +Ω2(t)|φ4〉], (13)

with

N =
√
Ω2

2(t) +Ω2(t) + (Ω2(t)Ω(t)/λ)2.

For the Hamiltonian Hre, the status of the system can be
expressed by using this |ψ̃(t)〉 =

∑4
l=0 Bl(t)|θl(t)〉 at any
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time, where |θl(t)〉 denotes the instantaneous eigenstates
of Hre. The corresponding eigenvalues of |θl(t)〉 is ξl. We
know that the construction of nonadiabatic process is the
simplest way of speeding up the evolution for the system.
The adiabatic condition 〈θ0(t)|∂tθ3(4)(t)〉 � ξ3(4) is ful-
filled, so B3(t) = B4(t) ≈ 0 and the eigenstates |θ3(t)〉
and |θ4(t)〉 do not have chance to participate in the evolu-
tion, while the eigenstates |θ1(t)〉 and |θ2(t)〉 whose eigen-
values ξ1 and ξ2 are closest to zero would have chance to
participate in the evolution [44].

|θ1 (t)〉 =
1
Ne

{
Ω2 (t)
ς

[
ϑ2

2
− (

Ω2 (t) + 2λ2
)] |ψ1〉

− Ω (t)
ς

[
ϑ2

2
− (

Ω2
2 (t) + 2λ2

)] |φ4〉

− ϑ
(
2λ2 + η

)

2ς
|φ1〉 − ϑ

2λ
|μ2〉 + |μ1〉

}
,

|θ2 (t)〉 =
1
Ne

{
Ω2 (t)
ς

[
ϑ2

2
− (

Ω2 (t) + 2λ2
)] |ψ1〉

− Ω (t)
ς

[
ϑ2

2
− (

Ω2
2 (t) + 2λ2

)] |φ4〉

+
ϑ

(
2λ2 + η

)

2ς
|φ1〉 +

ϑ

2λ
|μ2〉 + |μ1〉

}
, (14)

with

η =
√

(Ω2
2(t) −Ω2(t))2 + 4λ4,

ϑ =
√
Ω2

2(t) +Ω2(t) + 2λ2 − η,

ς = λ(Ω2
2(t) −Ω2(t)),

and Ne is the corresponding normalization coefficient.
Through analysing the proportions of the base vectors in
equation (12) in the eigenstates |θ1(t)〉 and |θ2(t)〉, the
coefficients ratio τ for states |φ1〉 and |μ2〉 is:

τ =

∣∣∣∣∣

[
ϑ

(
2λ2 + η

)

2ς

]/(
ϑ

2λ

)∣∣∣∣∣ =
∣∣∣∣

2λ2 + η

Ω2
2 (t) −Ω2 (t)

∣∣∣∣ , (15)

when τ2 � 1, the population of the state |μ2〉 is far less
than that of the state |φ1〉. So we assume that τ2 � 1 is
established in the whole evolution process and the state
|μ2〉 is considered as negligible. Then, the whole system
can be divided into two parts: the main subsystem Sm =
{|ψ1〉, |φ1〉, |φ4〉} and the assistant subsystem Sn = {|μ1〉}.
They are independent of each other. The Hamiltonian for
the main subsystem is

Hm =
|φ1〉√

2
(−Ω2(t)〈ψ1| +Ω(t)〈φ4|) +H.c. (16)

In order to construct the shortcuts for generating two-
atom maximally entangled state by the dynamics of
invariant-based inverse engineering, we need to find out
the Hermitian invariant operator I(t), which satisfies

i∂tI(t) = [Hm, I(t)]. Since Hm possesses SU(2) dynam-
ical symmetry [48], I(t) can be easily given [35]

I(t) =

√
Ω2(t)2 +Ω(t)2√

2
(cos γ sinβ|φ1〉〈ψ1|

+ cosγ cosβ|φ1〉〈φ4| + i sinγ|φ4〉〈ψ1| +H.c.),
(17)

γ and β are both time-dependent auxiliary parame-
ters. Ω2(t) and Ω(t) are obtained through solving the
relation i∂tI(t) = [Hm, I(t)],

Ω2(t) =
√

2(β̇ cot γ sinβ + γ̇ cosβ),

Ω(t) =
√

2(β̇ cot γ cosβ − γ̇ sinβ), (18)

where the dot represents a time derivative. The general
solution of the Schrödinger equation i∂t|ψ〉 = Hm|ψ〉 with
respect to the instantaneous eigenstates of I(t) is writ-
ten as:

|ψ(t)〉 =
∑

n=0,±
Cne

iαn |θ̃n(t)〉, (19)

where αn are the LR phases [35,49]

αn (tf ) =
∫ tf

0

〈θ̃n (t) |
[
i
∂

∂t
−Hm (t)

]
|θ̃n (t)〉dt, (20)

tf is the total interaction time. In our case α0 = 0 and

α± = ∓
∫ tf

0

[
β̇ sinγ +

1√
2

(
Ω2(t) sinβ

+Ω(t) cos β
)

cos γ
]
dt, (21)

|θ̃n(t)〉 are the instantaneous eigenstates of I(t),

|θ̃0(t)〉 = cos γ cosβ|ψ1〉 − i sinγ|φ1〉 − cos γ sinβ|φ4〉,
|θ̃±(t)〉 =

1√
2
[(sin γ cosβ ± i sinβ)|ψ1〉 + i cos γ|φ1〉

− (sin γ sinβ ∓ i cosβ)|φ4〉]. (22)

In order to transfer the population from the initial state
|ψ1〉 to the target state −|φ4〉, we choose the parameters
appropriately

γ(t) = ε, β(t) = πt/2tf , (23)

where ε is a time-independent small value and tf is the
interaction time. It should be noted that the parame-
ters Ω2(t) and Ω(t) are closely related to γ(t). In a single-
eigenstate evolution process (singlemode driving), γ(t)
generally is a polynomial [36], the pulses’ shapes may be
difficult to be realized in practice. However, in a multi-
eigenstate evolution process (multimode driving), γ(t) is
chosen as a small constant value [43–45]. After the precise
calculation, we can easily obtain

Ω2(t) =
π cot ε√

2tf
sin

πt

2tf
,

Ω(t) =
π cot ε√

2tf
cos

πt

2tf
. (24)
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Fig. 2. The cavity-atom combined system for controlled N-
atom W state generation. The control qubit in the cavity
CN+1, the N controlled qubits in N cavities C1, C2, . . ., CN ,
respectively.

In the present case, when t = tf

|ψ(tf )〉 = i sin ε sinα|ψ1〉 + i sin ε cos ε(cosα− 1)|φ1〉
− (cos2 ε+ sin2 ε cosα)|φ4〉, (25)

where α = π/(2 sin ε) =| α± |. Hence, when we choose
α = 2jπ (j = ±1,±2, . . .), |ψ(tf )〉 = −|φ4〉 can be ob-
tained. In the assistant subsystem Sn, the time-dependent
population of the state |μ2〉 is mainly dominated by the
dark state evolution [44]. Its population becomes zero and
the dark state also evolves into the state −|φ4〉 when
t = tf . With the help of both the subsystems Sm and Sn,
the whole system quickly evolves from the initial state
|ψ1〉 to the final state −|φ4〉 [|φ4〉 = 1√

2
(|ψ5〉 + |ψ7〉) =

1√
2
(|f〉1|g〉3 + |g〉1|f〉3)|g〉2|0〉c]. So, we can see that atom

1 and atom 3 are in the two-atom maximally entangled
state.

3 Fast controlled preparation of N-atom
W state in N + 1 directly coupled cavities
via shortcuts to adiabatic passage

Actually, the above scheme in Section 2 can be effectively
applied to (N + 1)-atom (N ≥ 3) systems for fast con-
trolled generating N -atom W state. As shown in Figure 2,
the N+1 atoms are trapped in the N +1 cavities, respec-
tively (here, we choose the (N + 1)th qubit as the control
qubit). In the interaction picture, the whole Hamiltonian
of cavity-atom combined systems can be described as:

H ′′
i = H ′′

al +H ′′
ac +H ′′

c ,

H ′′
al =

∑

k=1,2,3,...,N+1

Ωk(t)|e〉k〈f | +H.c.,

H ′′
ac =

∑

k=1,2,3,...,N+1

λkake
iΔt|e〉k〈g| +H.c.,

H ′′
c =

∑

n=1,2,3,...,N

va†naN+1 +H.c., (26)

where H ′′
al is the Hamiltonian for the interaction between

the atoms and the time-dependent laser pulses, H ′′
ac is

the Hamiltonian for the interaction between the atoms
and the cavities, and H ′′

c is the Hamiltonian for the direct
interaction between the coupled cavities.

We solve the eigenequation of HamiltonianH ′′
c , getting

the following bosonic operators

qm =
1√
2
(−a1 + am+1), (m = 1, 2, . . .N − 1),

qN =
1√
2N

(a1 + a2 + . . .+ aN +
√
NaN+1),

qN+1 =
1√
2N

(a1 + a2 + . . .+ aN −
√
NaN+1). (27)

We rewrite the Hamiltonian H ′′
c with the bosonic opera-

tors and obtain H ′′
c =

√
Nv(q†N qN −q†N+1qN+1). In the ro-

tation framework, we perform the unitary transformation
U = eiH′′

c t. After that, we set λ1√
2

= λ2√
2

= . . . = λN+1√
2

= λ′,

qN = a, and Δ =
√
Nv. Under the large detuning regime

{Δ,Δ +
√
Nv} � λ′ condition, the Hamiltonian H ′′

ac
becomes

H ′′
ac′ = eiH′′

c tH ′′
ace

−iH′′
c t

=
λ′√
N

|e〉1〈g|a+
λ′√
N

|e〉2〈g|a+ . . .

+
λ′√
N

|e〉N 〈g|a+ λ′|e〉N+1〈g|a+H.c. (28)

If the initial state is:

|ψ′
0〉 = −|g〉1|g〉2|g〉3 . . . |g〉N |f〉N+1|0〉c,

the whole system evolves in the subspace spanned by:

|ψ′
1〉 = |g〉1|g〉2|g〉3 . . . |g〉N |f〉N+1|0〉c,

|ψ′
2〉 = |g〉1|g〉2|g〉3 . . . |g〉N |e〉N+1|0〉c,

|ψ′
3〉 = |g〉1|g〉2|g〉3 . . . |g〉N |g〉N+1|1〉c,

|ψ′
4〉 = |g〉1|g〉2|g〉3 . . . |g〉N−1|e〉N |g〉N+1|0〉c,

|ψ′
5〉 = |g〉1|g〉2|g〉3 . . . |g〉N−1|f〉N |g〉N+1|0〉c,
...

|ψ′
2N+2〉 = |e〉1|g〉2|g〉3 . . . |g〉N |g〉N+1|0〉c,

|ψ′
2N+3〉 = |f〉1|g〉2|g〉3 . . . |g〉N |g〉N+1|0〉c. (29)

There are N eigenstates with zero eigenvalues for the in-
termediate Hamiltonian H ′′

ac′ in the subspace spanned by
{|ψ′

2〉, |ψ′
3〉, |ψ′

4〉, |ψ′
6〉, . . . , |ψ′

2N+2〉}. After orthogonalizing
the dark states for the Hamiltonian H ′′

ac′ , we get a special
dark state |φ′1〉

|φ′1〉 =
1√
2

[
−|ψ′

2〉 +
1√
N

(|ψ′
4〉 + |ψ′

6〉 + . . .+ |ψ′
2N+2〉

)]
.

(30)

For convenience, we assume |�′〉 = 1√
N

(|ψ′
4〉 + |ψ′

6〉 +
. . .+ |ψ′

2N+2〉). At the same time, the two eigenstates with
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non-zero eigenvalues for the Hamiltonian H ′′
ac′ are

|φ′2〉 =
1
2
(|ψ′

2〉 +
√

2|ψ′
3〉 + |�′〉),

|φ′3〉 =
1
2
(|ψ′

2〉 −
√

2|ψ′
3〉 + |�′〉), (31)

with eigenvalues E2 =
√
Nλ′ and E3 = −√

Nλ′. After-
wards, we set Ω1(t) = Ω2(t) = . . . = ΩN (t) = Ω′(t),
|φ′4〉 = 1√

N
(|ψ′

5〉+ |ψ′
7〉+ . . .+ |ψ′

2N+3〉) (|φ′4〉 is the target
state.), |μ′

1〉 = 1√
2
(|φ′2〉−|φ′3〉), and |μ′

2〉 = 1√
2
(|φ′2〉+ |φ′3〉).

According to the analysis in Section 2, we rewrite the
Hamiltonian H ′′

I (H ′′
I = H ′′

al + H ′′
ac′). The Hamiltonian

H ′′
I becomes the following form:

H ′
re =

|φ′1〉√
2

(−ΩN+1(t)〈ψ′
1| +Ω′(t)〈φ′4|)

+
|μ′

2〉√
2

(ΩN+1(t)〈ψ′
1| +Ω′(t)〈φ′4|)

+
√
Nλ′|μ′

1〉〈μ′
2| +H.c. (32)

There is a dark state for the Hamiltonian H ′
re,

|θ′0〉 =
1
N1

[
Ω′(t)|ψ′

1〉 −
√

2ΩN+1(t)Ω′(t)√
Nλ′

|μ′
1〉

+ΩN+1(t)|φ′4〉
]
, (33)

with

N1 =
√
Ω2

N+1(t) +Ω′2(t) + (
√

2ΩN+1(t)Ω′(t)/
√
Nλ′)2.

According to the analysis in Section 2, the coefficients
ratio τ ′ for states |φ′1〉 and |μ′

2〉 is

τ ′ =
∣∣∣∣

Nλ′2 + η′

Ω2
N+1(t) −Ω′2(t)

∣∣∣∣ , (34)

with η′ =
√

(Ω2
N+1(t) −Ω′2(t))2 +N2λ′4. The

Hamiltonian for the main subsystem is

H ′
m =

|φ′1〉√
2

(−ΩN+1(t)〈ψ′
1| +Ω′(t)〈φ′4|) +H.c. (35)

In order to construct the shortcuts for generating N -atom
W state by the dynamics of invariant-based inverse engi-
neering, we need to find out the Hermitian invariant oper-
ator I(t), which satisfies i∂tI(t) = [H ′

m, I(t)]. Since H ′
m

possesses SU(2) dynamical symmetry [48], I(t) can be
easily given [35]

I(t) =

√
Ω2

N+1(t) +Ω′2(t)
√

2
× (cos γ sinβ|φ′1〉〈ψ′

1| + cos γ cosβ|φ′1〉〈φ′4|
+ i sinγ|φ′4〉〈ψ′

1| +H.c.), (36)

where γ and β are both time-dependent auxiliary param-
eters. ΩN+1(t) and Ω′(t) are obtained through solving the
relation i∂tI(t) = [H ′

m, I(t)],

ΩN+1(t) =
√

2(β̇ cot γ sinβ + γ̇ cosβ),

Ω′(t) =
√

2(β̇ cot γ cosβ − γ̇ sinβ), (37)

where the dot represents a time derivative. The general
solution of the Schrödinger equation i∂t|ψ〉 = H ′

m|ψ〉
with respect to the instantaneous eigenstates of I(t) is
written as:

|ψ(t)〉 =
∑

n=0,±
Cne

iαn |θ̃n(t)〉, (38)

where αn are the LR phases [35,49]

αn (tf ) =
∫ tf

0

〈θ̃n (t) |
[
i
∂

∂t
−H ′

m (t)
]
|θ̃n (t)〉dt, (39)

tf is the total interaction time. In our case α0 = 0 and

α± = ∓
∫ tf

0

[
β̇ sin γ +

1√
2
(ΩN+1 (t) sinβ

+Ω′ (t) cosβ) cos γ
]
dt, (40)

|θ̃n〉 are the instantaneous eigenstates of I(t),

|θ̃0〉 = cos γ cosβ|ψ′
1〉 − i sinγ|φ′1〉 − cos γ sinβ|φ′4〉,

|θ̃±〉 =
1√
2
[(sin γ cosβ ± i sinβ)|ψ′

1〉 + i cosγ|φ′1〉
− (sin γ sinβ ∓ i cosβ)|φ′4〉]. (41)

In order to transfer the population from the initial state
|ψ′

1〉 to the target state −|φ′4〉, we choose the parameters
appropriately

γ(t) = ε, β(t) = πt/2tf , (42)

where ε is a time-independent small value. From a detailed
calculation, we can obtain

ΩN+1(t) =
π cot ε√

2tf
sin

πt

2tf
,

Ω′(t) =
π cot ε√

2tf
cos

πt

2tf
. (43)

In the present case, when t = tf

|ψ(tf )〉 = i sin ε sinα|ψ′
1〉 + i sin ε cos ε(cosα− 1)|φ′1〉

− (cos2 ε+ sin2 ε cosα)|φ′4〉, (44)

where α = π/(2 sin ε) =| α± |. Hence, when we choose α =
2jπ (j = ±1,±2, . . .), |ψ(tf )〉 = −|φ′4〉 can be obtained.
The whole system quickly evolves from the initial state
|ψ′

1〉 to the final state −|φ′4〉 [|φ′4〉 = 1√
N

(|ψ′
5〉+ |ψ′

7〉+ . . .+
|ψ′

2N+3〉)]. The N -atom W state is successfully generated.

http://www.epj.org


Eur. Phys. J. D (2016) 70: 162 Page 7 of 11

4 Numerical simulation and discussion

The fidelity of the target state |φ4〉 is given through the
relation F = |〈φ4|ρ(tf )|φ4〉|, where ρ(tf ) is the density
operator of the system. We also know that the condition
τ2 � 1 is the precondition of the scheme’s implementa-
tion. Now we discuss how to choose parameters to sat-
isfy the condition τ2 � 1 for generating two-atom max-
imally entangled state. The fidelity of the target state
|φ4〉 versus the values of ε and λtf is depicted in Fig-
ure 3a. From Figure 3a, we can see if the evolution time
λtf > 30, we can get high-fidelity for any value of ε.
However, the interaction time is too long. So, we choose
λtf = 10 and plot the fidelity of the target state |φ4〉
versus the value of ε in Figure 3b. Figure 3b shows the
optimal value of ε for the highest fidelity of the target
state |φ4〉 is about 0.2641 when λtf = 10. The parame-
ters ε=0.2641 and β(tf ) = π/2 are chosen for a good fi-
delity when t = tf , which are brought into equation (24),
we can get Ω2(tf ) = λπ cot 0.2641

10
√

2
and Ω(tf ) = 0. Sub-

stituting Ω2(tf ) and Ω(tf ) to equation (15), we obtain
τ2 = 37.21, satisfying the condition τ2 � 1. At the same
time, from Figure 3b, we can also obtain two sets of data
{ε1 = 0.0959 and τ1 = 1.0699} and {ε2 = 0.0547 and
τ2 = 1.008} by calculation when λtf = 10 (the subscripts
“1” and “2” for the symbol ε (τ) denote second-highest
wave peak and third-highest wave peak in Fig. 3b, re-
spectively). It is manifest that τ1 and τ2 do not satisfy
the condition τ2 � 1. As is known to all ε should be a
time-independent small value. However, based on equa-
tion (24), if ε is too small, Ω2(t) will be too large when tf
is a constant value. So, we make a balance between short
interaction time, high fidelity, and the condition τ2 � 1,
the parameters are chosen as {ε = 0.2641 and λtf = 10}.
Due to the slightly populated intermediate state |μ2〉, the
whole system can not be faultlessly considered as a three-
level three-atom system, and the optimal value of ε for
the whole system will not faultlessly satisfy the condition
sin ε = 1

4j (j = 1, 2, 3, . . .). To confirm that the state |μ2〉
can be neglected in the whole evolution process for our
scheme, we also plot the population of the state |μ2〉 in
Figure 3c. When v = 10λ/

√
2 and Δ =

√
2v, the de-

tuning is 10 times larger than the coupling constant λ,
which meets the validity of the large detuning condition in
equation (4).

Now we analyse the efficiency of the STAP for the gen-
eration of two-atom maximally entangled state. We know
from references [34–36,44,45] that we can shorten the time
of the evolution process by increasing the amplitude of the
laser pulses. The larger the amplitude, the shorter the in-
teraction time needs. The time dependences of Ω2(t)/λ
and Ω(t)/λ versus λt are shown in Figure 4a. Figure 4b
shows that the populations of the initial states |ψ1〉 and
the target state |φ4〉 versus λt. When λt = 10, the popu-
lation of the state |ψ1〉 is close to zero, while the popula-
tion of the state |φ4〉 is close to 1. In order to show that
the scheme is fast, we plot the population of the target
state |φ4〉 via STAP and adiabatic passage in Figure 4c,
respectively. It can be clearly seen that the population of
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Fig. 3. (a) The fidelity F of the target state |φ4〉 versus the
parameter ε and the interaction time λtf . (b) The fidelity F of
the target state |φ4〉 versus the parameter ε when λtf = 10. (c)
Dependence on λt of the populations for the states |φ1〉, |μ1〉,
and |μ2〉.

the target state |φ4〉 is 99.56% via STAP when λt = 10,
however the population of the target state |φ4〉 is 98.65%
via adiabatic passage when λt = 100 (Ω1(t) = λ

10 sin πt
4tf

and Ω2(t) = λ
10 cos πt

4tf
with the adiabatic method). The

result demonstrates that the present STAP is faster than
the adiabatic passage.
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Fig. 4. (a) Dependence on λt of Ω2/λ and Ω/λ. (b) Dependence on λt of the populations for the initial state |ψ1〉 and
the target state |φ4〉. (c) The comparison of the operation times required for achieving the target state via the adiabatic
method with those via the present STAP method. (d) Dependence on λ′t of the populations for three-atom W state |φ′

4〉N=3

(|φ′
4〉N=3 = 1√

3
(|ψ′

5〉 + |ψ′
7 + |ψ′

9〉)) and four-atom W state |φ′
4〉N=4 (|φ′

4〉N=4 = 1√
4
(|ψ′

5〉 + |ψ′
7 + |ψ′

9〉 + |ψ′
11〉)).

We also analyse the efficiency of the STAP for the gen-
eration of N -atom W state. As the case stands, the STAP
method for the generation of N -atom W state is equiva-
lent to the STAP method for the generation of two-atom
maximally entangled state. The parameters ε = 0.2641
and β(tf ) = π/2 are chosen for a good fidelity when
t = tf , which are brought into equation (43), we can
get ΩN+1(tf ) = λ′π cot 0.2641

10
√

2
and Ω′(tf ) = 0. Substi-

tuting ΩN+1(tf ) and Ω′(tf ) to equation (34), we ob-
tain τ ′2 ≈ 9N2, satisfying the condition τ ′2 � 1 when
N ≥ 3. Figure 4d shows the dependence on λ′t of the
populations for three-atom W state |φ′4〉N=3 (|φ′4〉N=3 =
1√
3
(|ψ′

5〉 + |ψ′
7〉 + |ψ′

9〉)) and four-atom W state |φ′4〉N=4

(|φ′4〉N=4 = 1√
4
(|ψ′

5〉 + |ψ′
7〉 + |ψ′

9〉 + |ψ′
11〉)). Figure 4d

demonstrates that the interaction time and the fidelity of
the N -atom W state are unrelated to the atom number N .
The reason is that there are a control qubit and N con-
trolled qubits in the N + 1 atoms. In the whole evolution
process the N controlled atoms are similar to one atom in
the cavity. Thus the whole evolution process is equivalent
to two atoms in evolution. So, the interaction time and
the fidelity of the N -atom W state are unrelated to the
atom number N .

When dissipation is considered, the evolution of the
system can be modelled by a master equation in Lindblad
form,

ρ̇ = i [ρ,Htot] +
∑

k

[
LkρL

†
k − 1

2
(L†

kLkρ+ ρL†
kLk)

]
,

(45)

where the Lk are the so-called Lindblad operators [50]. For
the two-atom maximally entangled state’s scheme, there
are nine Lindblad operators:

Lk
1 =

√
κ1a1, Lk

2 =
√
κ2a2,

Lk
3 =

√
κ3a3, LΓ

4 =
√
Γ1|f〉1〈e|,

LΓ
5 =

√
Γ2|f〉2〈e|, LΓ

6 =
√
Γ3|f〉3〈e|,

LΓ
7 =

√
Γ4|g〉1〈e|, LΓ

8 =
√
Γ5|g〉2〈e|,

LΓ
9 =

√
Γ6|g〉3〈e|, (46)

where κm(m = 1, 2, 3) are the decays of the cavities and
Γn(n = 1, 2, 3, 4, 5, 6) are the spontaneous emissions of
atoms. We assume κm = κ and Γn = Γ/2. Figure 5a
shows the fidelity of the target state |φ4〉 gradually de-
creases as the two noise resources increase via STAP when
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Fig. 5. (a) The influence of decays on the fidelity F of the target state via the STAP method. (b) Dependence on λt of the
populations for the intermediate states. (c) The fidelity F of the target state |φ4〉 versus the ratios Γ/λ and κ/λ via the adiabatic
method. (d) The fidelity F of the target state |φ4〉 versus the ratios Γ/λ and κ/λ via the STAP method.

ε = 0.2641 and λtf = 10. We can find that the decay
of spontaneous emission has a greater impact than the
decay of cavity on the fidelity. Now we analyze the rea-
sons why the decay of spontaneous emission has a greater
impact. In the whole evolution process, the intermediate
states also participate the evolution. Among the interme-
diate states, |ψ2〉, |ψ4〉, and |ψ6〉 can spontaneous radiate
to |g〉1|g〉2|g〉3|000〉c. Figure 5b shows that the populations
of the intermediate states versus λt. The maximum pop-
ulation of the state |ψ4〉 reaches 22.85%, so the decay of
spontaneous emission has a relatively large impact on the
fidelity. The benefits of the STAP method are shown ob-
viously, though the STAP method is sensitive to atomic
spontaneous emission, it is robust against cavity decay.

For the N -atom W state, the fidelity of three-atom W
state |φ′4〉N=3 and four-atom W state |φ′4〉N=4 versus the
two noise resources also are shown in Figure 5a. So, we can
expect that when it comes to the generation of N -atom
W state, the robustness of the scheme against decoherence
caused by the atomic spontaneous emission may remain
almost the same as that of the two-atom maximally entan-
gled state. However, the robustness of the scheme against
decoherence caused by cavity decay is weaker than that
of the two-atom maximally entangled state. It is implied

that not only the interaction time for the generation of
N -atom W state but also the robustness of the scheme
against decoherence caused by the atomic spontaneous
emission is insensitive to the atom number N . The reason
for this phenomenon is not hard to understand: although
the N+1 atoms are respectively trapped in the N+1 cav-
ities, there are a control qubit and N controlled qubits. In
the whole evolution process, the N controlled atoms com-
pose the target state, and the holistic spontaneous emis-
sions of N atoms are similar to one atom in the cavity.
The whole evolution process is equivalent to two atoms
in evolution. So, the robustness of the scheme against de-
coherence caused by the atomic spontaneous emission is
insensitive to the atom number N . On the other hand,
with the increase of the number of coupled cavities, the
robustness of the scheme against decoherence caused by
cavity decay is weaker, because the decay of N cavities is
not equivalent to that of one cavity.

The fidelity of the target state |φ4〉 versus the ratios
κ/λ and Γ/λ in the adiabatic method is shown in Fig-
ure 5c. The fidelity gradually decreases with the increasing
of cavity decay and atomic spontaneous emission. When
κ/λ = Γ/λ = 0.05, the fidelity is 92.87%. The fidelity
of the target state |φ4〉 versus the ratios κ/λ and Γ/λ
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in the STAP method is shown in Figure 5d. The fidelity
gradually decreases with the increasing of cavity decay and
atomic spontaneous emission. When κ/λ = Γ/λ = 0.05,
the fidelity is 90.23%. The fidelity of the STAP method
is close to the fidelity of the adiabatic method. There-
fore, our scheme is robust against the two noise sources
and could achieve a better result in realistic conditions.
In addition, compared with TQD, the inverse engineer-
ing based LR invariant does not have to break down the
form of the original Hamiltonian so that the possibility of
a nonexistent Hamiltonian which drives the instantaneous
eigenstates of the original Hamiltonian exactly in experi-
ment is avoided. The inverse engineering based LR invari-
ant also is more easy and convenient than the fast-forward
of quantum dynamics in the laboratory.

The robustness against operational imperfection is also
a main factor for the feasibility of the scheme [51]. We cal-
culate the fidelity of the target state |φ4〉 by varying error
parameters of the mismatch among the laser amplitude,
the interaction time, and coupling constants. We define
δx = x′ − x as the deviation of parameter x. The fidelity
of the target state |φ4〉 versus the variations in different
parameters are shown in Figures 6a and 6b. As shown in
the figures, the scheme is robust against the variations
of λ, Ω0, and T (Ω0 = π cot 0.2641√

2tf
and T = tf is the ma-

nipulation time). Figure 6a demonstrates that the scheme
is sensitive to the variation of coupling constant υ. This
is because the coupling constant υ is strongly related to
detuning Δ whose deviation greatly influences the target
state’s fidelity. However, this is not a serious problem to
realize the scheme because the detuning Δ can be precisely
controlled in experiment.

In a real experiment, the atom cesium can be used
to implement the scheme. The state |e〉 corresponds to
F = 4,m = 3 hyperfine state of the 62P1/2 electronic ex-
cited state, the state |g〉 corresponds to F = 3,m = 2
hyperfine state of the 62S1/2 electronic ground state, and
the state |f〉 corresponds to F = 3,m = 4 hyperfine
state of the 62S1/2 electronic ground state, respectively. In
recent experimental conditions [52,53], it is predicted to
achieve the parameters λ = 2π × 750 MHz, κ = 2π × 3.5
MHz, and Γ = 2π × 2.62 MHz and the optical cavity
mode wavelength in a range between 630 and 850 nm.
Under the above parameters, we obtain the fidelity of the
two-atom maximally entangled state |φ4〉 is about 98.7%,
the fidelity of the three-atom W state |φ′4〉N=3 is about
98.6%, and the fidelity of the four-atom W state |φ′4〉N=4

is about 98.4%, which shows our scheme is relatively ro-
bust against the realistic conditions. We also know from
references [54–57] that the temporal profile of the Rabi fre-
quencies can be well controlled and regulated in recent ex-
periments. Therefore, our scheme may be very promising
within current experiment technology.

5 Conclusion

In summary, we have proposed the STAP method for
generating two-atom maximally entangled state and
N -atom W state in the directly coupled cavities systems.
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Fig. 6. (a) The fidelity F of the target state |φ4〉 versus the
variations of λ and υ. (b) The fidelity F of the target state |φ4〉
versus the variations of Ω0 and T .

The merits of the method are that we do not need to
control the interaction time exactly and the evolution pro-
cess is fast. When considering dissipation, we find that
the method is robust against the decoherences caused by
the atomic spontaneous emission and cavity decay. The
scheme has a high fidelity and may be implemented with
the current experimental technology. So, the scheme is
fast, robust, and effective. In addition, the present scheme
proves to be useful for applications in scalable distributed
quantum networks.

This work was supported by the National Natural Sci-
ence Foundation of China under Grants Nos. 11575045
and 11374054, the Major State Basic Research Development
Program of China under Grant No. 2012CB921601, and the
Foundation of Ministry of Education of China under Grant
No. 212085.

References

1. H.J. Kimble, Nature 453, 1023 (2008)
2. S.B. Zheng, G.C. Guo, Phys. Rev. Lett. 85, 2392 (2000)
3. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
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