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Abstract. One-dimensional multi-component Fermi or Bose systems with strong zero-range interactions
can be described in terms of local exchange coefficients and mapping the problem into a spin model is
thus possible. For arbitrary external confining potentials the local exchanges are given by highly non-
trivial geometric factors that depend solely on the geometry of the confinement through the single-particle
eigenstates of the external potential. To obtain accurate effective Hamiltonians to describe such systems
one needs to be able to compute these geometric factors with high precision which is difficult due to the
computational complexity of the high-dimensional integrals involved. An approach using the local density
approximation would therefore be a most welcome approximation due to its simplicity. Here we assess
the accuracy of the local density approximation by going beyond the simple harmonic oscillator that has
been the focus of previous studies and consider some double-wells of current experimental interest. We
find that the local density approximation works quite well as long as the potentials resemble harmonic
wells but break down for larger barriers. In order to explore the consequences of applying the local density
approximation in a concrete setup we consider quantum state transfer in the effective spin models that
one obtains. Here we find that even minute deviations in the local exchange coefficients between the exact
and the local density approximation can induce large deviations in the fidelity of state transfer for four,
five, and six particles.

1 Introduction

The field studying atomic gases at extremely low tem-
peratures has seen riveting developments over the past
decade [1]. This has pushed the field into a rather unique
position where cold atoms in various geometries can be
used to do quantum simulation of widely used models from
other fields including condensed-matter physics [2,3], par-
ticle and high-energy physics [4–8], nuclear physics [9], and
even chemistry [10]. A remarkably useful feature of cold
atomic gas experiments is the control over external trap-
ping parameters that makes it possible to explore physics
in different dimensionalities [1]. In particular, a number
of impressive experiments have studied various aspects of
interacting bosons in one dimension [11–17]. Using the
atomic interaction resonances caused by one-dimensional
confinement [18] it has thus become possible to realize
many interesting one-dimensional systems including the
famous hard-core bosonic Tonks-Girardeau gas [19,20]
(see Refs. [13,14]). Most recently, one-dimensional sys-
tems of interacting fermions have been also realized in
experiments [21].

a e-mail: zinner@phys.au.dk

In the last few years it has become possible to con-
trol the particle number in one-dimensional experiments
with great accuracy [22], allowing one to build a con-
trollable few-body system of fermions and study fermion-
ization for strong interactions [23], pairing [24], impu-
rity physics [25], a two-site Hubbard model [26], and
Heisenberg spin models [27]. These developments have
sparked a great deal of excitement in the community
studying few-body physics and its relation to many-body
phenomena. Over the last decade a lot of new aspects of
these one-dimensional systems have been covered by dif-
ferent authors. This includes the physics of small trapped
bosonic systems (single- and two-component) [28–40], de-
tails of few-fermion systems with two values of an internal
degree of freedom (spin) [41–56] and various aspects of
the transition from few- to many-body physics [57–67].
Furthermore, a number of studies have looked into mixed
systems of bosons and fermions and systems with particles
of unequal mass [68–90].

In the present paper we are interested in studying
one-dimensional fermions or bosons with strong repul-
sive short-range interactions. As has been recently dis-
cussed, in the strongly interacting limit the system may
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be described by an effective Hamiltonian which has the
form of an (anisotropic) Heisenberg spin model [60,62]. It
was predicted theoretically that by tuning the interaction
strength from the weak (repulsive) to the strongly inter-
acting regime for a two-component Fermi system in one
dimension one may arrive in the ground state of an anti-
ferromagnetic Heisenberg model [60] and recently this was
confirmed in experiments [27]. However, the Heisenberg
model obtained is non-trivial in the sense that the ex-
change couplings are determined by the local geometry
of the trapping potential. Computing the local exchange
coupling constants is a formidable numerical task and thus
several papers have discussed the possibility to use vari-
ous approximations to obtain these quantities. A very neat
approximation is the strong-coupling ansatz of Levinsen
et al. [40,65] which allows one to get an extremely accu-
rate set of exchange coefficients for arbitrary system sizes
in the case where the external confinement is given by a
harmonic oscillator. It has also been conjectured that for
smooth potentials, the well-known local density approxi-
mation (LDA) should give a very accurate value for the
local exchange coefficients [62,65] and numerical results
for up to six particles show that the deviations are at
most a few percent [62]. This is a very reasonable expec-
tation and many studies in the past have used the LDA
when studying the properties of many-particle systems in
one dimension [91–100]. However, this does not necessarily
imply that the LDA works equally well for smaller systems
as large system sizes can sometimes average out some of
the finer details that the LDA may not capture.

In the present paper we test the performance of the
LDA for strongly interacting one-dimensional systems
with up to six particles by comparing it to exact calcula-
tions. We do this for several different potential forms, in-
cluding some experimentally relevant double-well geome-
tries. To the best of our knowledge, no previous study
has presented results for the effective spin models with up
to six particles in non-harmonic confinement. We gauge
the performance of the LDA against exact results not
only for statics (producing the local exchange constants
needed for the effective Hamiltonian) but also for dynam-
ics. For the latter case we study quantum state trans-
fer using the spin models that one obtains with the LDA
and with exact calculations. Transfer of quantum states in
two-component spin systems is a delicate process that de-
pends sensitively on the local exchange couplings and thus
provides a difficult challenge for the LDA. The dynami-
cal propagation of information and correlations in one-
dimensional setups with cold atoms is a focal point of re-
search at the moment [101–105] and it is thus theoretically
important to have accurate models for these systems also
in the strongly interacting regime where time-dependent
exchange and non-equilibrium quantum magnetism can be
studied [56,104,106].

The paper is organized as follows. In Section 2 we out-
line the model and its assumptions, and then discuss how
to compute exchange coefficients exactly and within the
LDA. Section 3 presents a comparison of exact and LDA
results for double-well potentials. In Section 4 we intro-

duce the spin model picture of strongly interacting 1D
systems and we apply the local exchange coefficients in
the context of quantum state transfer to investigate some
consequences of the differences between different computa-
tional schemes. Section 5 contains a summary, discussions,
and outlook.

2 Formalism

We consider particles that are confined to move in one
dimension (1D) and assume that along the direction of
motion there is a trapping potential, V (x), which is the
same for all the particles. The particles have short-range
interactions that we model by a Dirac delta-function and
in turn the Hamiltonian may be written in the following
way

H =
N∑

i=1

[
p2

i

2m
+ V (xi)

]
+ g1D

∑

i>j

δ(xi − xj), (1)

where pi and xi are the momentum and coordinate oper-
ators of particle i, m is the mass of a particle and V (xi)
is the trapping potential for the ith particle. The inter-
action strength is parametrized by g1D. In experimental
setups the 1D confinement is achieved by applying a very
tight transversal trap. It may then be shown that g1D

can be directly related to the scattering properties of the
non-trapped atoms and is a function of the low-energy
three-dimensional scattering length a3D and the trans-
verse trapping length a⊥ [18]. What is very interesting
is that one finds resonances where g1D diverges due to
the presence of the transverse confinement. This has been
clearly demonstrated in recent experiments [23]. In par-
ticular, the regime where |g1D| is very large is accessible
experimentally [27]. For simplicity we will use the nota-
tion g = g1D from now on since this can give rise to no
ambiguities in the present context.

In the present paper we will consider two-component
Fermi systems with N = N↑ + N↓ atoms, where N↑ and
N↓ are number of atoms of components with spin projec-
tion up and down, respectively. The zero-range two-body
interaction in the Hamiltonian will act only between pairs
with opposite spin projection. For pairs with the same
spin projection the Pauli principle requires antisymmetry
upon exchange of the two particles. As the wave func-
tion must also be continuous, we may infer that when two
particles with identical spin projections are close to each
other the wave function has a continuous first derivative.
In turn, the Dirac delta-function two-body interaction has
no effect. In experiment with atoms there are interactions
between pairs of atoms with identical spin projection, but
they are highly suppressed due to their short-range na-
ture and thus can be safely neglected for our purposes.
The general Hamiltonian above takes this implicitly into
account as we ensure antisymmetry among like compo-
nents in our N -body wave functions. We note, however,
that many of our results may be easily transferred to two-
component bosons with uniform interactions, i.e. a single
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g controlling the interactions between both identical and
different components [63].

We now consider the strongly interacting regime where
1/g → 0 [37,60,63]. The most general eigenstate of the
Hamiltonian in the limit 1/g → 0 is [63]

Ψ =
∑

k

akθ(xPk(1), . . . , xPk(N))Ψ0(x1, . . . , xN ), (2)

where the sum is over the N ! permutations, Pk, of the
coordinates, ak are the coefficients that depend on the or-
dering of the particles, θ(x1, . . . , xN ) = 1, when x1 < x2 <
· · · < xN and zero otherwise. Ψ0 is a fully antisymmetric
N -particle Slater determinant wave function constructed
from N single-particle wave functions that are obtained
by solving the corresponding single-particle Schrödinger
equation with the potential V (x). In this paper we are in-
terested in the lowest energy manifold of N -body states
which are obtained by taking the single-particle states
with the N lowest energies.

The wave function Ψ0 describes the non-interacting
N -fermion system with the energy E0. It is impor-
tant to note that this N -body energy is M(N↑, N↓) =
N !/(N↑!N↓!) times degenerate, and thus there is a mani-
fold of M(N↑, N↓) degenerate N -body states in the limit
1/g → 0 which is a quasi-degenerate manifold at large
but finite g (which is where we will be working below
as we consider quantum state transfer). This degeneracy
arises from the fact that in the 1/g → 0 limit the parti-
cles become essentially impenetrable. Yet, there are still
M(N↑, N↓) distinguishable ways that the particles may be
ordered on a line which all have the same energy. In prac-
tice one may think of these various orderings of the spins
along a line as a set of basis states [60,62,63].

In the limit 1/g → 0 we can write the N -particle en-
ergy, E, to the linear order in 1/g as [37,60,63]

E = E0 − 1
g

∑N−1
j=1 Ajαj

∑M(N↑,N↓)
k=1 a2

k

, (3)

where Aj =
∑

k>j(aj − ak)2. The important observation
is that there is an ak-independent coefficient, αj , in this
expression. It is a geometric factor that depends solely on
the total number of particles N and on the potential V (x)
and its single-particle eigenstates. Remarkably, it does not
depend on what system one is considering as long as the
interactions are strong, i.e. as long as we consider the limit
1/g → 0. If one is able to compute αj for a given V (x),
then this may be used to study multi-component Fermi
or Bose systems with all possible combinations of internal
components among the particles. The geometric factor αj

can in a certain sense be thought of as the local exchange
coupling in the system. This interpretation is very useful
when mapping the system onto a spin model [60,62,63,65].
If one thinks of the N particles sitting on a line, then the
index j on αj corresponds to a pair of particles and the ex-
change coupling for that pair is proportional to αj . Since
strongly interacting 1D systems are governed by exchange
processes, the statics and dynamics of such systems is es-
sentially dictated by the αj coefficients and we would thus

like to compute these in as general circumstances as pos-
sible. Therefore, the coefficients αj will therefore be the
main focus of our discussion.

An exact expression for αj was first derived in [60]

αj =
�
4

m2

∫ ∏N
i=1 dxiθ(x1, . . . , xN )δ(x1 − xj) (∂Ψ0)

2

〈Ψ | Ψ〉 , (4)

where the derivative in the integral denotes

∂Ψ0 =
[
∂Ψ0

∂x1

]

x1=xN

, (5)

where one first takes the derivative of the N -body anti-
symmetric function Ψ0 with respect to x1 and then subse-
quently sets x1 = xN . The exact expression is an (N −1)-
dimensional integral and the numerical calculation of αj is
by no means an easy task. It is therefore desirable to con-
sider whether appropriate approximations can be made to
access these quantities also for larger values of N . An im-
portant observation was made in reference [62] where it
was noticed that for N ≤ 6, a local density approxima-
tion can be used in computing αj and this yields results
that are off by only a few percent for the benchmark case
where V (x) is a simple harmonic oscillator potential. Us-
ing a highly accurate ansatz wave function for the N -body
problem, it later became possible to get a highly accurate
approximation to αj for the harmonic trap for anyN given
as a ratio of quadratic polynomials in N [65].

Here we are concerned with the question of how well
the local density approximation (LDA) does for different
potentials. We must therefore define and discuss how the
LDA may be applied in the context of strongly interact-
ing particles in 1D. This discussion closely parallels that of
reference [62]. The main inspiration for the LDA method
in the present context comes from earlier work on the
Hubbard model using the Bethe ansatz where Ogata and
Shiba have shown that in the strongly interacting limit the
spin and charge dynamics decouple [107]. The spin degrees
of freedom may correspondingly be described by a spin
model of the Heisenberg type (we return to this later on)
with an exchange coupling that is proportional to the third
power of the density [108–110]. This result is derived for
a homogeneous system with periodic boundary conditions
which are the typical basic conditions needed to solve the
Bethe ansatz equations [107]. In order to transfer these
results into the present context with non-homogeneous
confinement of the 1D system, reference [62] suggested
to use the density from the LDA in the expression for
the exchange coupling in the spin model. This yields the
expression

α
(LDA)
i =

�
4π2

3m2
n3

TF (Xi). (6)

Here nTF (Xi) is the 1D Thomas-Fermi density [62,65]
which is given by

nTF (x) =
1
π�

√
2m(μ− V (x)), (7)

where μ is the chemical potential of the system. Refer-
ence [62] proposed to calculate the Thomas-Fermi den-
sity in the center-of-mass positions Xi of the ith and
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(i+ 1)th particles. The position Xi can be written as [62]
Xi = 1

2

∫
dx(ρ(i)(x) + ρ(i+1)(x)), where

ρ(i)(x) =
∫
dx1 . . . dxNθ(x1, . . . , xN )δ(x − xi)Ψ0

〈Ψ | Ψ〉 . (8)

Taking this position makes sense in light of the interpreta-
tion of α as a local exchange coupling of a pair of particles
and thus by symmetry one should take the density at their
common center-of-mass which may be determined within
the N -body system. One may argue that any discrepancy
between the exact value of α and the LDA can be allevi-
ated by simply picking the right values of Xi. However,
finding the right Xi appears as difficult as calculating the
exact α directly. Note also that for large N finding ρ(i)

is an equivalently difficult task and thus one needs some
method of determining densities accurately. Here we will
ignore these problems and be concerned with how well the
LDA performs in cases where we can compute both the ex-
act and the LDA expression for α easily. We therefore work
with N ≤ 6 here. For a commonly used harmonic oscilla-
tor trapping potential V (x) = 1

2mω
2x2 the Thomas-Fermi

density can be written down in a simple form

nTF (x) =
1
π�

√

2m
(
N�ω − 1

2
mω2x2

)
. (9)

In this case the approximation is rather accurate com-
pared to the exact calculation and the relative error is not
larger than 7 percent and decreases rapidly with increasing
particle number N [62]. However, for potentials of more
complicated shape the calculation of the center-of-mass
positions becomes much more difficult.

In the following we discuss the coefficients αi and
α

(LDA)
i , with i = 1, . . . , N − 1 for different potential pro-

files. The numerical calculations of equations (4) and (8)
consist of two main parts. First, we construct the Slater
determinant Ψ0 with the eigenstates, ψj(xi), of a particle
trapped in the potential V (xi). We assume that our sys-
tem is confined in a box potential with length L. To handle
this numerically, we use the normalized eigenstates

φn(xi) =

√
2
L

sin
πnxi

L
, (10)

where n is an integer, as an expansion basis for the func-
tions

ψj(xi) =
∑

n

a(j)
n φn(xi). (11)

To evaluate integrals in equations (4) and (8) we uti-
lize a recursive many-dimensional integration procedure
with the one-dimensional integrals being calculated using
a standard trapezoidal integration routine. Even though
more advanced integration methods of course are avail-
able they are not readily available for the case of nested
integrals (integration limits that depend on subsequent in-
tegrations). We find that the trapezoidal integration con-
verges rapidly with the relative error for the values of the
coefficients not exceeding 10−5. We find that 50 basis vec-
tors φn and 50 integration points are sufficient to achieve

this accuracy in a reasonable time. In the following sec-
tions we dismiss the superscript (LDA) for simplicity and
make sure that it is clear from the context of the discus-
sion and in the figures whether we are discussing the exact
expressions for α or the LDA ones.

3 Comparison of exact and LDA coefficients

To perform a comparison between the LDA results and
the exact solutions for the exchange coupling constants αi

we use two specific forms of a double well potential which
have flexibility to explore the similarities and differences
between the LDA and the exact calculation. The first po-
tential has the form

V1(x) =
1
2
k(|x| − b)2, (12)

where k and b define the energy scale, and the height of
the central barrier. Notice that this potential has a cusp
(discontinuity of the first derivative) at x = 0. This is per-
fectly well allowed in the formalism as this will not cause
any troubling discontinuities in the single-particle wave
functions or their first derivatives. The second potential is
a symmetric trap of the form [63]

V2(x) = −V0 sin2

[
π

2

(
2x
L

+ 1
)]

− u sin2

[
π

(
2x
L

+ 1
)]

,

(13)
where the values of V0 and u control the shape of the po-
tential. Figure 1 shows the shapes of the potentials we use
in the article for different values of the control parameters.

We note that we consider values in the interval x ∈
[−L/2;L/2] where L is the length of a box which confines
the whole system. This is required for our numerical pro-
cedure where we use L = 4π in our calculations. Energies
are measured in units of ε = 4�

2/mL2, with a factor of 4
coming from the box extending to ±L/2. For the potential
in equation (12) we set k = 1 (in units of ε

L2 ) while for
equation (13) we have used V0 = 50 in units of ε. In deep
enough potentials the single-particle states do not feel the
effect of this ‘outside’ boundary. However, for shallow po-
tentials some of the states might reside in the whole box
and thus be influenced by the outer wall. We will see how
it affects the exchange constants in the subsections below.

3.1 Results

We now consider the coefficients αi using equations (4)
and (6) for different values of the control parameters; the
height of the central barrier b for the potential in equa-
tion (12) and the parameter u for the potential in equa-
tion (13). Figures 2 and 3 show both the LDA and exact
values of the coefficients αi for different numbers of parti-
cles N = 2, 3, 4, 5, and 6. In this article we consider only
spatially symmetric 1D potentials and so αN−i = αi.

In Figure 2 we show the results for the potential in
equation (12) comparing the exact results obtained from
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Fig. 1. The shapes of the potentials V1(x) from equation (12)
(top panel) and V2(x) from equation (13) (bottom panel) for
different values of parameters.

equation (4) to the LDA results obtained with the formula
in equation (6) for particle numbers N = 2, 3, 4, 5, and 6.
Note that we do not need to plot all the αi coefficients as
the parity invariance of the double well in equation (12)
gives us the convenient symmetry relation αN−i = αi. The
results demonstrate that the LDA does very well for small
values of the central barrier height b which should not be
too surprising as the potential for small b resembles very
much that of a harmonic oscillator which was previously
shown to be quite accurately described within LDA [62].

One notices that for the even particle numbers the mid-
dle coefficient, i.e. α1, α2, and α3 for N = 2, N = 4, and
N = 6, respectively, has similar behavior, and that this
behavior is not captured well by the LDA for b � 0.75.
In fact, this middle coefficient, αN/2, calculated via equa-
tion (6) goes to zero much faster than the exact value. This
αN/2 pertains to the exchange coupling in the middle of
the trap, i.e. to the exchange taking place right at the cen-
tral barrier in the potential. It is therefore determined by
the probability for particle tunneling through this central
barrier, and we clearly see the LDA fail to capture this
effect for larger barriers, i.e. larger values of b, where LDA
underestimates exchange. This is connected to the fact
that LDA and in particular the Thomas-Fermi density in
equation (7) is only well-defined in between the classical
turning points, where μ− V (x) > 0. Hence for large bar-
riers where μ−V (x) ≤ 0, the Thomas-Fermi density goes
to zero and thus in turn the coefficient αN/2 goes to zero.
For example, in the case of the potential in equation (12)
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α i
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b [L/2]

α1, N = 6
α2, N = 6
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Fig. 2. Exchange coefficients αi for the double well potential
in equation (12) as function of the barrier height b. The en-
ergy scale parameter of the potential is k = 1 in units of ε/L2.
The solid lines correspond to the exact values of the coeffi-
cients expressed in equation (4), while the dashed lines show
the approximate values from equation (6). The top panel is for
N = 2, 3 and 4, the middle panel for N = 5, and the bottom
panel for N = 6. Due to the parity symmetry of the potential,
we have αN−i = αi. The dashed horizontal lines in the N = 4
and N = 6 cases correspond to the value α1 for N = 2 and
N = 3, respectively. These are the expected asymptotic values
for large b as discussed in the text.

α
(lda)
N/2 ≡ 0 for b >

√
N (when k = 1 as we have here). The

termination values of b =
√

2, b = 2, and b =
√

6 can be
clearly seen on the horizontal axis for α1 (N = 2) and α2

(N = 4) in the top panel of Figure 2, and for α3 (N = 6)
in the bottom panel of Figure 2.

When the height of the barrier is large (large b) each
of the two wells can be approximated by the harmonic os-
cillator potential. We see that in this case the exact values
of the coefficients becomes almost constant as function of
the barrier height. For even number of particles we intu-
itively expect that half of the particles will be located in
each well. In the case with N = 4 this would imply that
α1 should go to a constant for large b, reaching the value
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corresponding to the b = 0 case with N = 2 (two par-
ticles in a single harmonic well). This is clearly seen in
the top panel of Figure 2 where the horizontal dashed line
marks the latter value. Likewise, for N = 6, we expect a
split into two three-body systems and thus that both α1

and α3 should be approaching the α1 value for b = 0 and
N = 3. Again this is seen very nicely in the bottom panel
of Figure 2 the first two coefficients for N = 6 approach
the dashed horizontal line corresponding to N = 3 and
b = 0 (notice that there are different vertical scales on the
three panels in Fig. 2).

For the spatially symmetric potentials considered here
with an odd number of particles, we cannot use the same
logic of division of the particles into the two wells as the
barrier grows large as for even particle numbers. The over-
lap across the barrier of the single-particle wave functions
will not vanish for odd particle numbers. Hence, the coeffi-
cients αi which depend solely on these single-particle wave
functions will also not vanish. We clearly see in the top
and the middle panel of Figure 2 that for b � 2 the LDA
result does not do a good job in describing the exchange
couplings. Again, this is caused by the fast decrease of
the Thomas-Fermi density on which the LDA result relies
as the barrier increases. This decrease of density clearly
takes place much faster than seen in the exact results. We
thus see that odd-even effects can be considerable in the
comparison of the LDA and the exact method.

In order to further explore the case with odd particle
numbers we have tried to apply a small tilt to the poten-
tial in order to explicitly break the parity invariance. This
could for instance be done by an additional term that is
linear in x in the potential (12). When this is done for an
odd number of particles the values of the exchange cou-
plings approach the values of the couplings of a smaller
system. For instance, for the system consisting of N = 5
particles, two of the particles will be located in one of
the wells, with the interacting coefficient approaching the
value of α1 for two particles in a harmonic trap, and the
other three will occupy the other well, with α1 = α2 ap-
proaching those of a three-particle system in a harmonic
trap. At the same time we find the intuitive result, namely
that the interaction between these two subsystems will ap-
proach zero as the barrier increases. We will not discuss
the introduction of slight symmetry-breaking terms any
further here. All in all, for the double well potential (12)
the LDA approach provides a reliable approximation to
the exact values of the coefficients αi for small central
barrier heights (small values of b) and then becomes poor
for larger barrier heights. An exception is found for even
particles numbers where the system splits into two equal
size groups that can be described as particles in two sep-
arate harmonic wells. Here LDA does approach the exact
results for the split system asymptotically.

To further explore the robustness and/or failures of ap-
plying the LDA to our problem system, we now change the
potential into a different kind of double well shape which
has the form given in equation (13). What one should
notice here is that the potential in equation (13) is in a
sense shallow, i.e. it does not increase to infinity around
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Fig. 3. Exchange coupling coefficients αi for the smooth dou-
ble well potential in equation (13) as function of the parameter
u that controls the central barrier. Here we have set V0 = 50.
The solid lines correspond to the exact values of the coeffi-
cients expressed in equation (4), while the dashed lines show
the approximate values from equation (6). The top panel is
for N = 2, 3 and 4, the middle panel for N = 5, and the
bottom panel for N = 6. Note that the parity symmetry of
equation (13) implies that αN−i = αi.

its edges. Therefore the box potential that we have as a
hard-wall boundary around the system could be felt by
the particles. This is in fact the case for larger particle
numbers as we will now discuss.

First we consider the cases with N = 2 and N = 3
as shown in the top panel of Figure 3. Here we see that
the qualitative behavior of the αi coefficients is similar to
the potential of equation (12) (shown in the top panel of
Fig. 2) with the two-particle case shown a steady decrease
with the barrier parameter, u, while the three-particle case
first decreases and then has a slight increase again at large
values of u. This is analogous to the behavior in the top
panel of Figure 2. We also notice that the LDA does a very
good job for the two- and three-particle systems for most
values of u in the top panel of Figure 3. For the N = 3
case this should be compared and contrasted to the case
in the top panel of Figure 2 where the same N = 3 case
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Table 1. Comparison of the exact calculation, α
(EXACT )
i (first

column), to that of the LDA, α
(LDA)
i (second column), for a

potential consisting of a flat box with infinite walls. Notice that
in this case the exchange coefficients are independent of i, i.e.
αi = α. The percentages in parenthesis in the second column
give the deviations of the LDA from the exact results. Notice
that the LDA always underestimates the exchange coupling
coefficients.

N α
(EXACT )
i [ε2L] α

(LDA)
i [ε2L]

2 0.02487 0.01328 (47%)
3 0.06963 0.04485 (36%)
4 0.14921 0.10630 (29%)
5 0.27355 0.20798 (24%)
6 0.45260 0.35911 (21%)

for the potential in equation (12) demonstrates that the
LDA deviates significantly from the exact result for larger
barrier heights (large b values in that case).

For more particles (N ≥ 4) the LDA results start to
deviate significantly from the exact results as we see in
all three panels in Figure 3. We see that already for four
particles the coefficient αi differs significantly in the LDA
and exact calculations. This difference only increases for
larger particle numbers. The reason for this discrepancy
can be traced back to the form of the potential in equa-
tion (13) and its shallow nature as compared to that in
equation (12). For the parameters we have chosen, the po-
tential does not become deep enough for five or six single-
particle eigenstates to be confined completely inside of the
potential profile. This can be rephrased by stating that not
all the five or six lowest single-particle energy eigenvalues
are in fact negative. The most energetic single-particle
wave functions that we require to build the totally an-
tisymmetric function, Ψ0, are thus feeling the outside of
the potential. In particular, they are influenced by the
box potential that surrounds our system. While one may
alleviate this problem by going to deeper potentials (in-
creasing V0 in Eq. (13)) we choose V0 = 50 in order for
us to study quantum state transfer in the last part of our
paper and make contact with recent results that utilize
the same parameters [63].

To gain further insights into the influence of the box
and the behavior of LDA in this respect we may consider
just the box potential on its own. In Table 1 we present the
results of applying both the exact formula (first column)
and the LDA version (second column) to the box poten-
tial. We clearly see a large discrepancy for the particle
numbers we have studied. The deviation of the LDA from
the exact result is given in percentages in the parenthesis
in the second column of Table 1. By doing a crude fit to
the percentages we find that the deviations scale approx-
imately with the particle number as a power law N−0.73.
We thus find a quite slow convergence and for smaller sys-
tem sizes the deviations can be significant. We can see
that as the single-particle wave functions are distributed
over the whole confining infinite square well potential the
local density approach becomes rather inadequate. The
large discrepancies in the values of the LDA and the ex-

act results for the αi coefficients of the shallow potential
in equation (13) for particle numbers N ≥ 5 can now be
better understood. They are in large part the result of the
fact that the outer box boundaries do become important
for these particles numbers and that the LDA does a poor
job of describing particles in a box with a flat bottom. We
do see that the LDA gives qualitatively similar results to
the exact calculation even for N > 4, but quantitatively
the LDA may differ substantially. We have checked that as
one increases the depth of the potential in equation (13)
one does indeed see better agreement. However, the devi-
ations we identified as common for both potential profiles
within the LDA remain.

4 Quantum transport properties

In order to understand some possible effects that could be
implied by using the LDA instead of the exact solutions
for the exchange couplings, we now consider a dynami-
cal protocol that has recently been discussed in the con-
text of strongly interacting systems in 1D. As mentioned
earlier, one may indeed map these systems into effective
spin models [60,62]. This can be done for both Fermi sys-
tems [60,62,65] and Bose systems [40,63]. To keep the
discussion concise, we will mainly consider the example
of the two-component Fermi system here. In that case,
the spin mapping is into the famous Heisenberg spin- 1

2
model whose Hamiltonian (up to a constant energy shift)
is given by

Hs =
N−1∑

j=1

JjS
j · Sj+1, (14)

where Sj = 1
2σj is a spin operator where σj = (σj

x, σ
j
y, σ

j
z)

is the vector of the Pauli matrices. Here the nearest-
neighbor interaction coefficients are related very simply
to the local exchange coefficients and the coupling con-
stant as Ji ≡ −αi

g . This is another justification for us-
ing the term ’local exchange coupling’ for the αi above,
i.e. that under the spin mapping they appear as nearest-
neighbor couplings in what is equivalent to a spin chain
Hamiltonian. For Bose systems, one may have more in-
volved spin models as the coefficients for x-, y-, and
z-direction spin operators are not necessarily the same
(see Ref. [63] for further details). Below, we will make
one detour from the uniform Heisenberg spin model in
equation (14) in order to consider the so-called XX model
which is a special case of the Hamiltonian in equa-
tion (14) where all the terms with z-component operators
are eliminated.

Spin- 1
2 chains have been proposed as media for quan-

tum state transfer about a decade ago [111–113]. The
quantum state transfer in these chains essentially corre-
sponds to flipping a single spin at one end of the chain
and then dynamically evolving the state such that one
may project onto the state at which the single spin flip
has reached the other end for all subsequent times. The
probability of finding the flipped spin at the other end is
known as the fidelity of the quantum state transfer and if it
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reaches unity at some subsequent time we say that the sys-
tem supports perfect quantum state transfer [112]. In the
original proposal [111] a spin chain with constant Ji = J
was considered and it was shown that the fidelity could
not reach unity in this case. Later studies demonstrated
that if the coefficients are chosen as Ji = J0

√
N(N − i)

with J0 some overall constant, then perfect state transfer
is possible (although only within the so-called XX model).
One would then have an ideal communications channel
for quantum information. However, it turns out to be ex-
ceedingly difficult to produce a system that fulfills these
requirements on Ji. In reference [63] Volosniev et al. pro-
posed strongly interacting 1D atomic systems as a possi-
ble realization of perfect state transfer and found that the
potential in equation (13) can give rise to perfect state
transfer in the XX model for u = 12.5. We will return to
this below.

First we need to define the spin state space and the
fidelity that we consider. For a spin chain with one im-
purity (a single spin that is flipped) and N − 1 majorities
(in other words N↑ = 1 and N↓ = N − 1) it is natural
to use the basis of spin functions {|↑↓↓ . . . ↓〉, |↓↑↓ . . . ↓〉,
|↓ . . . ↓↑↓〉, |↓ . . . ↓↓↑〉}. In this basis we define the fidelity
of the quantum state transfer which is a function of time
and is given by

F (t) =
∣∣∣〈↓ . . . ↓↓↑| e−iHst/� |↑↓↓ . . . ↓〉

∣∣∣
2

. (15)

The fidelity can be straightforwardly interpreted as the
Hamiltonian acting on the initial state on the right (with
the single flipped spin on the left edge of the systems)
and then projection on the final state on the left (with
the single flipped spin on the right edge). In practice, one
expands the initial state on the set of eigenstates of the
Hamiltonian, then constructs the state at all later times,
and then projects onto the final state which also has some
expansion in terms of the eigenstates of the Hamiltonian.
Notice that the overall time scale of the transfer depends
on αi and on g. In the strict limit where 1/g = 0, there
is no dynamics as the particles are completely impene-
trable and all orderings are eigenstates (all of which are
degenerate). However, in the more realistic case where g
is large but finite, our effective spin models work to lin-
ear order in 1/g and can thus be used to study dynam-
ics in the strongly interacting regime. The timescale of
transfer will then depend linearly on g. One may think
of the state transfer process as a set of subsequent flips
of pairs of spins along the chain. Each of these local ex-
changes depend on αi, i.e. if αi is large this happens fast
and vice versa. We thus see that large barriers will sup-
press the transfer as expected. However, the process can
depend rather delicately on the actual values of the local
exchanges as we will now demonstrate. For instance, in
the exact results we may see slow suppression of the lo-
cal exchange with barrier height as in Figure 2 in regimes
where LDA would give exactly zero (when the chemical
potential is below the barrier). This is one source of error
in the LDA that could carry into a dynamical protocol
like state transfer in a severe way.

0 100 200 300
time

0

0.25

0.5

0.75

1

F

Exact, u = 0 LDA, u = 0

0 100 200 300
time

0

0.25

0.5

0.75

1

F

Exact, u = 12.5 LDA, u = 12.5

0 100 200 300
time

0

0.25

0.5

0.75

1

F

Exact, u = 25 LDA, u = 25

0 100 200 300
time

0

0.25

0.5

0.75

1

F

Exact, u = 50 LDA, u = 50

Fig. 4. Quantum state transfer fidelity, F , for an N = 4 two-
component Fermi system with Ji obtained from the potential
in equation (13) for u = 0 (first row), u = 12.5 (second row),
u = 25 (third row), and u = 50 (fourth row) where u is in
units of ε. The other potential parameter is V0 = 50 for all
panels. The (blue) solid line corresponds to the Ji coefficients
obtained from the exact calculation and the (brown) dashed
line corresponds to the LDA approach. Time is measured in
units of �/ε.

Here we plot the fidelity of equation (15) as a function
of time for different potentials of the form given in equa-
tion (13) for the cases with N = 4 (Fig. 4), 5 (Fig. 5),
and 6 (Fig. 6) particles, respectively. All the three cases
we present show the characteristic oscillatory behavior of
state transfer fidelities as function of time [63]. However,
one does indeed notice that the oscillations become more
prominent and more irregular as N increases (system size
or chain length in the spin chain language), and also as
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Fig. 5. Same as Figure 4 but for N = 5.

the control parameter for the central barrier u is increased.
Perfect state transfer is never achieved for these param-
eters in a Heisenberg model of the type in equation (14)
without an external magnetic field. This is in accordance
with previous results [113–115]. The calculations demon-
strate that even when there are only small differences in
the exact and LDA results, the fidelity can show large
variations particularly for longer time intervals. This is
probably due to an accumulation of phase factors in the
system over time that tends to drive the exact and LDA
results apart. However, we do see some instances of very
good agreement as for instance in the second row of Fig-
ure 4 where u = 12.5 and V0 = 50 in equation (13). Even
in this case, noticeable differences between exact and LDA
results are seen, but the overall agreement is very good.
For the larger particle numbers in Figures 5 and 6 we may
even notice a clear tendency for the LDA results to pre-
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Fig. 6. Same as Figure 4 but for N = 6.

dict large fidelity spikes that are either at different times
as compared to similar spikes using the exact result, or in
some instances the LDA shows spikes where the exact re-
sults have none (see for instance the fourth row in Figure 5
or the third row in Fig. 6). We thus conclude that in most
cases, the LDA results can provide large deviations from
the exact results in a dynamical process such as quantum
state transfer.

In closing this section, we want to consider how well
the LDA results do in the case where perfect state transfer
is achieved. This can be achieved with parameters corre-
sponding to the second row in Figure 4 in a setup where
we can discard the Sj

zS
j+1
z interaction in the Hamiltonian

in equation (14) and thus reduce the problem to the
Heisenberg XX model. This can be realized by either
using a tailored external magnetic field applied to the
system or in specific models with strongly interacting
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Fig. 7. Quantum state transfer fidelity, F , for an N = 4 two-
component Fermi system with Ji obtained from the potential
in equation (13) for u = 12.5 and V0 = 50 (in units of ε) for the
case where the z-components in equation (14) can be discarded
so that we are in the so-called Heisenberg XX spin model. In
this case perfect state transfer can be achieved [63]. The (blue)
solid line corresponds to the Ji coefficients obtained from the
exact calculation and the (brown) dashed line corresponds to
the LDA approach. Time is measured in units of �/ε.

two-component Bose systems [63]. In Figure 7 we com-
pare the fidelities computed using the exact and the LDA
values of the exchange coupling coefficients. We see that
the perfect transfer is indeed obtained for the exact val-
ues calculated via equation (4). However, the fidelity of
the spin transfer decreases with time for the coefficients
obtained via LDA results in equation (6). The relative dif-
ferences in the αi exchange coefficients are no more than
2 percent when comparing the exact to the LDA method.
However, we still see that it affects the quantum transfer
properties on longer time scales significantly.

5 Summary and discussion

We have considered strongly interacting two-component
systems in one dimension held in place by an external
confinement. Such systems have an effective Hamiltonian
that can be completely specified by computing a set of
local exchange coefficients which may be interpreted as
nearest-neighbor spin exchange interactions when the sys-
tem is mapped onto a spin model Hamiltonian of the
Heisenberg type. Computing these exchange coefficients
as accurately as possible is an important yet also com-
putationally difficult task. In the present paper we have
explored two different approaches. One is a ‘brute force’
calculation of a multi-dimensional integral which gives the
exact result (but is prohibitive for larger particle numbers)
and the other is an approach inspired by the local den-
sity approximation (LDA) that could in principle be used
to reduce the computational complexity. While previous
studies have shown that the local density approach can
be accurate at the level of a few percent for the case of
a harmonic oscillator potential, we explore more compli-
cated geometries consisting of two instances of a double-
well potential.

Our findings demonstrate that while the LDA does
rather well with potentials that resemble a harmonic os-
cillator, the exchange couplings do not have the right qual-
itative and quantitative behavior in the LDA when there
are significant barriers as is typical of a double-well poten-
tial. In particular, the LDA cannot capture the right quan-
tum tunneling processes across such barriers and may thus
leave out important effects. We have shown that for small
systems this can lead to an underestimation of exchange
by the LDA for potentials which have a more interesting
structure than the simple single-well harmonic oscillator.
We expect this observation to have influence on experi-
ments with small system sizes in 1D optical lattices. There
one typically also has an external overall smooth potential
(approximately harmonic in shape). Thus, the potential
seen by the particles is the superposition of harmonic trap
and optical lattice, i.e. a ‘smiling’ lattice potential. This
is a very structured potential and in the strongly interact-
ing regime one could be in dire straits with a simple LDA
approach as compared to the exact exchange couplings.
In order to test out the LDA in a concrete physical pro-
cess, we considered quantum state transfer of single spin
flips in systems with four, five, and six particles. Here we
found that while the LDA performs reasonably for some
double-well realizations there is amplification of the devi-
ations of the LDA compared to the exact results in the
transfer fidelity that can be significant and lead to large
errors in both maximum fidelity values and the specific
times at which these are attained.

The current study has concentrated on small particle
numbers where very accurate results can be obtained for
the local exchange coefficients using multi-dimensional in-
tegration so that a comparison between exact and LDA
results is possible for arbitrary potentials. Incidentally, as
we discussed in the introduction, the system sizes used
here are also of great current experimental interest in cold
atoms. One would, however, like to study how these results
scale to larger particle numbers. This most likely requires
alternative approaches not only to the exact formula but
also to the LDA formula. In the current implementation
it depends on the density of the system which is not easy
to compute for arbitrary potentials. One may thus pur-
sue an agenda of finding an alternative LDA method that
obtains the density by some other and computationally
much simpler approach, and simultaneously explore how
to get a computational reduction of the exact formula.
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