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Abstract. Modulation instability (MI) in metamaterials induced by pseudo-quintic nonlinearity, self-
steepening effect along with delayed Raman response (DRR) is investigated and expression for MI gain
is presented by linear stability method. Compared to the previous results with saturable nonlinearity, it
is found that the MI without DRR may occur in four primary cases with different threshold behaviors
depending on the combination of dispersion and nonlinearity and the competition of pseudo-quintic non-
linearity and self-steepening effect. This implies that we may manipulate or tune the MI by adjusting the
power and frequency of incident waves at will. In addition, we consider the influence of DRR on MI and
find that the DRR leads to additional regions where it entirely governs the MI gain, besides the primary
ones where the self-steepening and the pseudo-quintic nonlinearity dominate the MI gain. Moreover, the
DRR makes MI happen in three new cases exhibiting monotonous growth with perturbation frequency,
which means that it is possible to observe MI at arbitrary high frequency. Finally, we confirm the analytical
results by numerical simulations. The obtained results may be useful for manipulating or tuning the MI in
metamaterials and provide more ways to generate ultrashort pulses with ultrahigh repetition rate.

1 Introduction

Modulation instability (MI) is a remarkable nonlinear phe-
nomenon that has been extensively studied in various
nonlinear dispersive systems especially in nonlinear op-
tics [1–8]. It is well-known that MI arises from the in-
teraction between dispersion and nonlinearity and results
in a continuous wave evolving into a train of ultrashort
pulses [1–3]. MI is usually considered to be a source of
soliton trains and related to supercontinuum generation.
In optical fibers, it has been demonstrated that MI usually
occurs in the anomalous group velocity dispersion (GVD)
regime [1–3] except for some special cases in the pres-
ence of the four-order dispersion, relaxing self-focusing
nonlinearity or cooperation propagation of two optical
beams, where MI may occur in normal- or zero-GVD
regimes [4–9].

Over the past decade, considerable attention has been
paid to the MI in nonlinear metamaterials after some dy-
namical models for ultrashort pulse propagation in meta-
materials were established, which demonstrated that the
dispersive magnetic permeability leads to some signifi-
cant differences between metamaterials and conventional
materials [10–14]. For example, the self-steepening effect
in metamaterials may be positive or negative, which can
cause the pulse to steepen along its leading or trailing edge
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and the spectrum to split asymmetrically with blueshifted
or redshifted peaks, different from that in optical fiber
where the self-steepening effect only steepens the trail-
ing edge of the pulses and causes the spectrum redshift.
Such differences result in new properties in the formation
of solitons and the generation of MI. Some bright, dark
and combined solitary waves in metamaterials have been
investigated [15–18]. The previous study shows that the
anomalous self-steepening effect can be used to manip-
ulate the MI [19], the second-order nonlinear dispersion
induced by the dispersive magnetic permeability makes
MI possible in the normal-GVD regime, or in the case of
no GVD in metamaterials [20], the saturable nonlinearity
suppresses the MI gain in abnormal dispersion regime and
the fourth-order dispersion induces the additional side-
band of MI [21–24], and the combination of cubic-quintic
nonlinearities increases the MI gain in metamaterials [23].
It has been demonstrated that in metamaterials, the third-
order nonlinear polarization χ(3) can cause pseudo-χ(5)

nonlinear effect, which enhances cubic nonlinear effect in
negative index region, while quenches the cubic nonlinear-
ity in positive index region [11–13]. This means that the
pseudo-quintic nonlinearity may play a different role in
the occurrence of MI. On the other hand, DRR in meta-
materials has seldom been studied except that Boardman
et al. [25] investigated the propagation of temporal soli-
ton with Raman scattering and magnetooptic control, and
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Xiang et al. [14] discussed the controllable Raman soliton
self-frequency shift in nonlinear metamaterials. In fibers,
it has been identified that DRR significantly alters the
properties of MI, which makes MI occur in all dispersion
regimes and exerts different influences on the Stokes and
anti-Stokes components [26–28]. To the best of our knowl-
edge, MI induced by the combination of the pseudo-quintic
nonlinearity and the self-steepening effect along with the
DRR in metamaterials remains unexplored.

The aim of this paper is to present the new features
of MI induced by the combination of the pseudo-quintic
nonlinearity, the self-steepening effect and the DRR in
self-focusing and self-defocusing nonlinear metamaterials.
Compared to the previous ones that the saturable or quin-
tic nonlinearities are considered [21,22], it is found that
there exist a rich variety of MI in metamaterials with dif-
ferent threshold behaviors depending on the combinations
of dispersion and nonlinearity and the competition of the
pseudo-quintic nonlinearity and the self-steepening, which
means that one can make the MI happen in different re-
gions with different gains and spectral widths by tuning
the power and frequency of the incident waves. In addi-
tion, we discuss the additional features of MI induced by
the DRR, showing that the DRR dominates MI gain in
the additional regions and additional cases, and the self-
steepening and the pseudo-quintic nonlinearity effects en-
tirely govern the MI gain in primary ones. The obtained
results in this paper may provide new ways to manipulate
or tune the MI gain in metamaterials.

2 Theoretical model and linear stability
analysis

2.1 Theoretical model

The propagation of ultrashort pulses in uniform nonlin-
ear metamaterials is described by an extended nonlinear
Schrödinger equation [14,25]

∂A

∂Z
= − iβ2

2
∂2A

∂T 2
+

β3

6
∂3A

∂T 3
+ i γ0

×
[
|A|2A−σ|A|4A+iS1

∂

∂T
(|A|2A) − TRA

∂|A|2
∂T

]
,

(1)

where A(Z, T ) is the complex envelope of electric field in
the moving reference frame Z = z and T = t − z/vg.

β2 = [αγ + ω(εγ′ + μα′)/2 − 1/v2
g ]/k0

and

β3 = 3[ω(εγ′′ + μα′′)/6+(αγ′ + α′γ)/2 − β2/vg]/k0

are the respective coefficients of the GVD and the
third-order dispersion. γ0 = ω0μrχ

(3)/2cn and S1 =
(1 + γ/μ)/ω0 − 1/k0vg stand for the Kerr nonlinearity
and the self-steepening effect, and σ = γ0/2k0 denotes

the pseudo-quintic nonlinearity that arises from χ(3) non-
linear polarization, respectively. TR is the DRR parameter
independent of frequency for a given pulse length [14,25].
Here vg = 2k0/ω(εγ + μα) is the group velocity, k0 is the
wave number at the carrier frequency ω0, ε and μ are the
dispersive dielectric permittivity and magnetic permeabil-
ity, respectively.

α = ∂ [ωε(ω)]/∂ω|ω=ω0
, α′ = ∂2 [ωε(ω)]/∂ω2

∣∣
ω=ω0

,

γ = ∂ [ωμ(ω)]/∂ω|ω=ω0
, γ′ = ∂2 [ωμ(ω)]/∂ω2

∣∣
ω=ω0

,

and
n = ±

√
ε(ω)μ(ω).

The mentioned-above linear and nonlinear coefficients in
equation (1) are directly related to the dispersive magnetic
permeability, which is different from those in conventional
materials [10–13].

For convenience, we take the transforms U = A/A0,
τ = T/T0 and ξ = Z/LDwith LD = T 2

0 /|β2| to rewrite
equation (1) in normalized form as below

∂U

∂ξ
= −i

δ

2
∂2U

∂τ2
+

b3

6
∂3U

∂τ3
+ i ϑN2

×
[
|U |2U−p5|U |4U +is1
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(|U |2 U)−τRU

∂|U |2
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]
,

(2)

where b3 = sgn[β3]LD/L
′
D, p5 = σA2

0, s1 = S1/T0 and
τR = TR/T0 are the normalized parameters of the third-
order dispersion, the pseudo-quintic nonlinearity, the self-
steepening and the DRR, respectively. Here T0 and A0

are the respective duration and amplitude of input pulse,
δ = sgn[β2] = ±1 denotes normal or abnormal disper-
sion, and ϑ = sgn[γ0] = ±1 denotes focusing or defo-
cusing nonlinearity, N2 = LD/LNL is the soliton order,
LD = T 2

0 /|β2|, L
′
D = T 3

0 /|β3| and LNL = 1/|γ0|A2
0 are the

lengths of the GVD dispersion, the third-order dispersion
and the nonlinearity, respectively.

2.2 Linear stability analysis

Starting from the normalized equation (2), we adopt stan-
dard linear stability analysis to investigate the MI in meta-
materials with the pseudo-quintic nonlinearity, the self-
steepening effect and the DRR. It is easy to find that
equation (2) admits the steady-state solution U(ξ, τ) =√

P0 exp[i ϑ(P0 − p5P
2
0 )ξ], where P0 is the initial power.

Introducing a perturbation a(ξ, τ) (|a| � √
P0) into the

steady-state solution and inserting the perturbed solution
into equation (2), one can obtain a linearized equation
for a(ξ, τ)
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∂ξ
= −i

δ

2
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∂τ2
+

b3

6
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+ i ϑP0

×
[
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2
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) ]
, (3)
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where a∗ is the complex conjugate of a. Separating
a(ξ, τ) = u(ξ, τ) + iv(ξ, τ), we can get

∂u

∂ξ
− δ

2
∂2v

∂τ2
− b3

6
∂3u

∂τ3
+ 3ϑP0s1

∂u

∂τ
= 0, (4)
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+

δ
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− b3

6
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− ϑP0

(
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∂v

∂τ
+ 2τR

∂u

∂τ

)
= 0. (5)

Considering the solutions of equations (4) and (5) in the
form [26]

(
u

v

)
=

(
u0

v0

)
exp[i(Kξ − Ωτ)], (6)

where K and Ω represent the wave number and the
frequency of the perturbation, respectively. Substituting
equation (6) into equations (4) and (5), we can obtain the
dispersion relation

K =
Ω3b3

6
+ 2ϑP0Ω s1 − 1

2
i |Ω|

× [
4δϑP0(2P0p5−1)−Ω2−4P 2

0 s2
1−i 4δϑP0ΩτR

]1/2
.

(7)

It is well-known that the steady-state solution will become
unstable when K has a nonzero imaginary part. The ex-
pression for the MI gain can be obtained from equation (7)

g(Ω) = 2Im(K)

=
1√
2
|Ω|

×
{[

(Ω2−Ω2
c )2+(4P0τRΩ)2

]1/2−Ω2+Ω2
c

}1/2

,

(8)

where Ω2
c = 4δϑP0(2P0p5−1)−4P 2

0 s2
1, and the occurrence

condition of MI is given by:

[
(Ω2 − Ω2

c )2 + (4P0τRΩ)2
]1/2 − Ω2 + Ω2

c > 0. (9)

It is straightforward from equations (8) and (9) that the
MI gain is a function of Ω, β2, γ0, p5, s1,τR and P0. In
general, τR is a constant independent of operational fre-
quency [25], while the parameters β2, p5 and s1 are di-
rectly related to ε(ω) and μ(ω) which are described by
the Drude model [29]

ε(ω) = ε0

[
1 − ω2

pe/ω(ω + iγe)
]

and
μ(ω) = μ0

[
1 − ω2

pm/ω(ω + iγm)
]
,

where ε0 and μ0 are the respective vacuum permittivity
and permeability, ωpe and ωpm are the respective electric
and magnetic plasma frequencies, and γe and γm are the
respective electric and magnetic losses. Generally, these

Fig. 1. Variations of n, β2 and p5 with the normalized fre-
quency ω̃ at ω̃p = 0.8 in self-focusing and self-defocusing non-
linear metamaterials. Here β2 is plotted in units of 1/cωpe.

losses originate from the intrinsic absorption and reso-
nant nature of the magnetic response, which are inevitable
in metamaterials [29,30]. However, several measures have
been adopted to reduce or compensate the losses such as
optical gain [31,32] and novel fabrication methods [33].
Here we neglect the losses for simplicity. Thus the param-
eters that contribute to the MI gain can be written as:

β2 = [
(
1 + 3ω̃2

p/ω̃4
)−(

1 − ω̃2
p/ω̃4

)2
/n2]/cnωpeω̃,

p5 = χ(3)A2
0

(
1 − ω̃2

p/ω̃2
)
/4n2,

s1 =
[
1 − (

ω̃2
p + ω̃2

)
/
(
ω̃2

p − ω̃2
)

+
(
ω̃2

p − ω̃4
)
/n2ω̃4

]
/T0ωpeω̃,

where ω̃ = ω/ωpe, ω̃p = ωpm/ωpe and the refractive in-
dex n = ±(1 − 1/ω̃2)1/2(1 − ω̃2

p/ω̃2)1/2, respectively. Ob-
viously, these parameters are strongly dependent on the
normalized frequency ω̃. Here we take the typical param-
eter values ωpe = 1.3672 × 1016 Hz, χ(3) = 10−10 esu,
T0 = 50 fs [34] and present the variations of the parame-
ters n, β2, p5 and s1 with ω̃ at ω̃p = 0.8 for self-focusing
and self-defocusing nonlinear metamaterials in Figure 1.
It should be noted that β2, which is independent of nonlin-
earity, may be either negative or positive in negative index
region (ω̃ < 0.8) and always be negative in positive index
region (ω̃ > 1). However, p5 has opposite signs in nega-
tive and positive index regions whether for self-focusing
or self-defocusing nonlinearity, as shown in Figure 1. This
characteristics of the model parameters will directly influ-
ence the MI gain and the existence ranges (see Eqs. (8)
and (9)). Moreover, the DRR not only contributes to the
MI gain, but also is related to the occurrence condition.
In the subsequent section, we will focus our attention on
the novel features of MI induced by the different com-
binations of dispersion and nonlinearity in self-focusing
(ϑ = 1) and self-defocusing (ϑ = −1) metamaterials with
the pseudo-quintic nonlinearity, the self-steepening effect
and the DRR.
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Table 1. The existence regions and occurrence conditions of
MI without the DRR.

MI existence regions MI occurrence
δ = sgn [β2] , ϑ = sgn[γ0] conditions

Case A ϑ = 1 δ = −1 n < 0 without constraints
Case B ϑ = 1 δ = −1 n > 0 P0 < 1/(2p5 + s2

1)
Case C ϑ = −1 δ = −1 n < 0 P0 > 1/(2p5 − s2

1)
Case D ϑ = −1 δ = 1 n < 0 P0 < 1/(2p5 + s2

1)

3 Results and discussion

It is easy to see from equation (9) that in the presence
of the DRR, the occurrence condition of MI can be satis-
fied in both negative and positive index regions whether
for self-focusing or self-defocusing nonlinear metamateri-
als, however, in the absence of the DRR, MI can only
exist in four different cases for the different combinations
of dispersion and nonlinearity in negative and positive in-
dex, as will be demonstrated below. The features of MI
will be firstly investigated in these four cases without the
DRR and then the significance of the DRR in MI gain will
be discussed.

3.1 In the absence of the DRR

In the absence of the DRR, i.e. τR = 0, the MI gain equa-
tion (8) is reduced to

g(Ω) = |Ω|
√

Ω2
c − Ω2 (10)

with the requirement

Ω2
c = 4δϑP0(2P0p5 − 1) − 4P 2

0 s2
1 > 0, (11)

and a peak gain

gmax = 2P0{δϑ(2P0p5 − 1) − P0s
2
1}, (12)

at the maximum growth-rate frequency

Ωmax =
√

2
[
P0δϑ(2P0p5 − 1) − P 2

0 s2
1

]1/2
. (13)

It is clear to see that the self-steepening s1 always sup-
presses the MI gain regardless of its sign, which is agree-
ment with the previous results [19–24]. Compared to
the MI gain spectrum obtained for saturable nonlinear-
ity [21–24], the MI gain (10) shows more interesting de-
pendence on the sign of δϑ and the sign of p5. For the
case δϑ < 0, negative p5 promotes the MI gain, while pos-
itive p5 suppresses the MI gain. But it is opposite for the
case δϑ > 0. This suggests that the MI features are quite
different for different combinations of dispersion and non-
linearity. By analyzing the occurrence requirement (11),
we find that the MI in the absence of the DRR can ap-
pear in four cases with different constraints depending on
the competition of the pseudo-quintic nonlinearity and the
self-steepening, as shown in Table 1.

It can be seen from Table 1 that for the self-focusing
nonlinearity (ϑ = 1), MI may occur in abnormal GVD

(δ = −1) regime of negative index region without any con-
straints and positive index region with P0 < 1/(2p5 + s2

1);
for self-defocusing nonlinearity (ϑ = −1), MI may occur
in abnormal (δ = −1) and normal (δ = 1) GVD regimes
of negative index region with the occurrence conditions
P0 > 1/(2p5 − s2

1) and P0 < 1/(2p5 + s2
1), respectively. In

comparison with those in fibers where the MI gain occurs
only in the abnormal dispersion regime for self-focusing
nonlinearity and in the normal dispersion regime for self-
defocusing nonlinearity [3], there exists rich and unusual
MI in metamaterials. The physical origin of the unusu-
alness is due to the unique parameter characteristics of
metamaterials. From the sign and magnitude of p5 and s1

in different index regions shown in Figure 1, it can be seen
that pseudo-quintic nonlinearity enhances cubic nonlin-
earity in negative index region and weakens it in positive
index region for both focusing and defocusing nonlineari-
ties, while the magnitude of the self-steepening parameter
may be a positive value or a very large negative value,
which means these nonlinear effects interact each other
to different extent in different regions. Hence the different
combinations of p5 and s1 in different refraction regions
with different nonlinearities can result in rich MI char-
acteristics with different constraints reflecting different
competitive relationship, as shown in Table 1. Note that
Case A, C and D happen in negative regions of metam-
terials, which is obviously impossible in fibers. Case B is
very similar to the traditional MI in fiber, where the peak
value and the band of MI gain increase with the increase of
incident power without constraint conditions [3], however,
the occurrence of MI in Case B must satisfy the constraint
P0 > 1/(2p5 − s2

1) in metamaterials. Physically, these con-
straints for each case are a competition among P0, p5

and s1. This means there exist the maximum or mini-
mum initial powers for the occurrence of MI in four cases,
which is different from that in fibers. In fact, the constraint
conditions represent the relationship between the initial
power P0 and the normalized threshold frequency ω̃ be-
cause both p5 and s1 are a function of ω̃ in metamaterials.
Therefore we plot the constraints of the initial power P0

on the normalized frequency ω̃ for each case in Figure 2,
where the curves correspond to the threshold values (Pth,
ω̃th) and the gray areas correspond to all (P0,ω̃) which
satisfy the occurrence conditions of MI in each case. Obvi-
ously, in Figure 2a for Case A, the threshold power Pth < 0
which suggests that no power constraint is required for
all ω̃; for the other three cases, MI exhibits threshold re-
quirements. Concretely, for Case B in Figure 2b. MI can
occur for P0 < Pth at a given ω̃ or ω̃ > ω̃th at a given
P0, and the threshold power Pth increases monotonously
with the threshold frequency ω̃th; for Case C in Figure 2c,
MI can occur for P0 > Pth at a given ω̃ or ω̃ > ω̃th at
a given P0, and the Pth decreases monotonously with the
increasing ω̃th; for Case D in Figure 2d, MI can occur for
P0 < Pth at a given ω̃ or ω̃ < ω̃th at a given P0, and
the threshold power Pth decreases monotonously with the
increasing ω̃th.

Naturally, the cutoff frequency Ωc = 2{δϑP0(2P0p5 −
1) − P 2

0 s2
1}1/2 is also the function of P0 and ω̃ in each

case. Figure 3 illustrates the variations of Ωc with P0
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Fig. 2. The constraint conditions of the initial power P0 and
the normalized frequency ω̃ for each case, respectively.

Fig. 3. Variations of the cutoff frequency Ωc with P0 and ω̃
for each case, respectively.

and ω̃ for each case, respectively. As shown in Figure 3a,
due to no threshold requirements in Case A, Ωc increases
monotonously with P0 and ω̃ from very low power. For
Case B, it is easy to see from Figure 3b that Ωc increases
as ω̃ increases for a given P0, and Ωc increases first and
then decreases and cuts off finally as P0 increases to the
threshold power Pth for a certain frequency ω̃. This means
the spectrum width experiences a process of first increas-
ing and then decreasing with P0, which is totally different
from that in conventional fibers where the spectrum width
increases monotonously with P0 [3]. Also, unlike Case B,
Ωc increases monotonously with P0 above the threshold
value Pth at a certain frequency ω̃ in Case C, and Ωc also
increases monotonously with ω̃ at a certain P0, as shown in
Figure 3c. By comparing Case D with Case B, it is found
that the variation of Ωc with P0 in Case D is similar to

Fig. 4. Variations of the MI gain spectra with the initial power
P0 and the normalized frequency ω̃ in each case. Here (a1)
ω̃ = 0.6 and (a2) P0 = 1 are for Case A, (b1) ω̃ = 1.2 and
(b2) P0 = 0.8 are for Case B, (c1) ω̃ = 0.7 and (c2) P0 = 5 are
for Case C, (d1) ω̃ = 0.74 and (d2) P0 = 0.5 are for Case D,
respectively.

that in Case B, namely, as P0 increases, Ωc increases first
and decreases then and cuts off finally for a certain ω̃, but
the variation of Ωc with ω̃ for a given P0 is opposite to
that in Case B.

The differences of the threshold requirements and the
cutoff frequencies in each case lead to the difference of the
gain spectra. Figure 4 shows the variations of the MI gain
spectra with the initial power P0 and the normalized fre-
quency ω̃ in each case, respectively. It is clearly seen from
Figures 4a1 and 4a2 that the peaks and spectral widths
increase monotonously with P0 and ω̃ without threshold
behaviors in spite of different growth rates. As discussed
above, there exist different threshold requirements in Case
B, C and D. In Case B shown respectively in Figures 4b1

and 4b2, MI can occur below the threshold power Pth and
above the threshold frequency ω̃th; in Case C shown re-
spectively in Figures 4c1 and 4c2, MI can occur above
the threshold power Pth and above the threshold fre-
quency ω̃th; in Case D shown respectively in Figures 4d1

and 4d2, MI can occur below the threshold power Pth

and below the threshold frequency ω̃th. The correspond-
ing threshold power Pth at a given ω̃ and the threshold
frequency ω̃th at a given P0 are in full accord with the
curves for each case in Figure 2, respectively. Moreover,
for each case, the cutoff frequency Ωc and the gain peak
given in equation (12) follow the similar change laws as
shown in Figure 3, respectively. It should be pointed out
that the spectral features will not change for each case,
even though the peak gain and the spectrum width will
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Fig. 5. Gain spectral profiles with τR = 0.05 for the corre-
sponding cases in the absence of τR. (a1) and (a2) for Case A;
(b1) and (b2) for Case B; (c1) and (c2) for Case C; and (d1)
and (d2) for Case D, respectively. The adopted parameters are
the same as in the corresponding subplots of Figure 4 for each
case, respectively.

change when we change P0 and ω̃ of the incident wave.
This suggests that we can manipulate or tune the gain
and the spectral width by adjusting the initial power and
the frequency of the incident waves in each case at will.
It is very useful for generating solitary waves in different
regions of dispersion and nonlinearity.

3.2 In the presence of the DRR

Let us discuss the features of MI in metamaterials when
DRR is taken into account. From equations (8) and (9),
it is clear to see that the DRR parameter τR affects not
only the gain but also the occurrence condition of MI.
Owing to the presence of τR, equation (9) is always sat-
isfied in all GVD dispersion regimes for self-focusing or
self-defocusing nonlinearity, which implies that no thresh-
old requirements are needed. The influences of the DRR
on MI gain spectral profiles for the four cases with the
DRR are shown in Figure 5. For comparison, here we take
the same parameters as in the corresponding subplots of
Figure 4 for each case except for τR = 0.05. By compar-
ing Figure 5 with Figure 4 correspondingly, it is found
that the DRR gives rise to an additional instability region
expanding to unlimited high frequency for each case in
addition to the primary instability region. Also, the MI
may occur beyond the threshold power or the threshold
frequency in the absence of the DRR, where the MI gains
increase monotonously as the perturbation frequency Ω

Fig. 6. Gain spectral profiles with different τR for (a) Case
A P0 = 1, ω̃ = 0.6; (b) Case B P0 = 0.5,ω̃ = 1.2; (c) Case C
P0 = 5, ω̃ = 0.7; (d) Case D P0 = 0.5, ω̃ = 0.74, respectively.

increases. It is worth noting that the DRR only influences
the gain profiles in the additional regions |Ω| > Ωc and
beyond the threshold power Pth and the threshold fre-
quency ω̃th, where the gain increases with the increasing
τR; interestingly, the DRR has little scarcely effects on the
MI gain in the primary regions for all four cases, where
the self-steepening s1 and the pseudo-quintic nonlinear-
ity p5 play a critical role in the gain, as shown in Fig-
ure 6. It can be also seen from Figure 6 that the peak gain
gmax and the bandwidth remain unchanged for different
DRR τR in primary instability regions, while the MI gain
monotonously increase with τR in the additional instabil-
ity regions. This means that the nonlinear competition of
the self-steepening, the pseudo-quintic nonlinearity and
the DRR results in an interesting feature that the self-
steepening and the pseudo-quintic nonlinearity dominate
the MI properties in the primary instability regions, while
the DRR governs the MI properties in the additional in-
stability regions. This may be explained by the fact that
it is just the DRR that induces the MI in additional in-
stability regions and naturally governs the distributions
of the MI spectra. These novel features have never been
disclosed in previous papers.

In addition, when the DRR is considered, MI can occur
not only in the discussed-above four cases, but also in the
other three regimes: in zero-GVD regimes of self-focusing
and self-defocusing nonlinearity; in normal-GVD regime
of self-focusing negative index region; and in abnormal-
GVD regime of self-defocusing positive index region, re-
spectively. For convenience, we call them Case E, F and G,
respectively. It is easy to know that the MI gain in zero-
GVD regimes of self-focusing and self-defocusing meta-
materials are the same according to equation (8). The
MI gain spectral profile with the initial power P0 for
Case E (ω̃ = 0.707) is presented in Figure 7a, which can
be seen that the gain monotonous increases with both
the initial power P0 and the perturbation frequency Ω.
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Fig. 7. Gain spectra profiles with τR = 0.03 for (a) Case E ω̃ =
0.707; (b) Case F P0 = 1 and (c) Case G P0 = 1, respectively.

Figures 7b and 7c illustrate the gain spectral profiles with
the corresponding ω̃ for Case F and G, respectively. Quite
different from the cases in absence of the DRR, the gain
spectra for Case F and G are substantially altered by the
DRR, exhibiting monotonous increase with the perturba-
tion frequency Ω over the whole frequency band although
the variations of gain with ω̃ are different. On the whole,
the spectral features of the MI induced by the DRR in
these three cases are the same as those in conventional ma-
terials with the DRR [3], which suggest that the gain band
may extend to unlimited high frequency. These results
mean that it is also possible to observe MI at arbitrary
high frequency and provide more ways of generating ultra-
short pulses with ultrahigh repetition rate for future high-
speed optical communication based on the metamaterials.

4 Numerical confirmation

In this section, we numerically solve equation (2) to ex-
amine the MI induced by the self-steepening, the pseudo-
quintic nonlinearity and the DRR by using the sym-
metric split-step Fourier method. The incident field is
a cosinusoidally modulated continuous wave U(0, τ) =
U0[1 + a0 cos(Ωτ)], where the perturbed wave is set to
be a0 = 0.05 and the initial amplitude of the background
is set to be U0 =

√
P0 according to the different critical

powers for different cases of MI.
Firstly, we simulate the evolution of the modulated

continuous wave in primary and additional instability re-
gions of Case A, as illustrated in Figure 8. To verify the
analytical results, here we adopt the same self-steepening
and pseudo-quintic nonlinearity parameters as in Fig-
ure 6a. In the primary MI region, for different DRR pa-
rameters τR, the modulated continuous wave has the same
amplitudes after propagating a certain distance, as shown
in Figure 8a. This confirms that the DRR scarcely in-
fluences the MI gain in primary MI region, which is in
agreement with the results in Figure 6a. In the additional
MI region, as shown in Figure 8b, the intensities of the
modulated continuous wave appear a periodically oscilla-
tory growth induced by the DRR with the propagation
distance, and the higher the modulation frequency, the

Fig. 8. Numerical evolutions of the modulated continuous
wave in (a) the primary MI region at maximum modulation
frequency Ω = 1.6 and (b) the additional MI region of Case A,
respectively.

shorter the oscillating period; the lager the DRR parame-
ter τR, the faster the amplitude increases, which also well
coincide with the properties shown in Figure 6a.

Furthermore, we numerically confirm the modulation
instabilities of the continuous wave for the other Case B,
C and D in primary and additional MI regions, as shown
in Figures 9a and 9b, respectively. Here we adopt the same
initial powers P0 and generalized frequencies ω̃ as the cor-
responding cases in Figure 6 and take the modulation
frequencies located in primary and additional regions for
each case. From Figure 9a, it can be seen that in primary
regions of each case, the distributions of the modulated
waves in the presence of DDR are well coincident with
those without DRR. As shown in Figure 9b, the numer-
ical evolutions of the modulated continuous waves verify
that the modulation instability can occur in the additional
regions of Case B, C and D when the DRR is considered.

Finally, we simulate the evolutions of the modulated
continuous waves for Case E, F and G, respectively, as
shown in Figure 10. For Case E, the evolutions of the
modulated continuous waves in zero-GVD regimes of both
self-focusing and self-defocusing nonlinearity are almost
the same by comparing Figure 10a with Figure 10b. For
Case F in normal-GVD regime of self-focusing negative
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Fig. 9. Numerical evolution of the modulated continuous
waves in (a) the primary and (b) the additional regions of
Cases B, C and D. In addition to the parameters shown in the
diagram, the other parameters are the same as in Figure 6.

index region and Case G in abnormal-GVD regime of
self-defocusing positive index region, the continuous waves
with the same Ω and τR show a similar evolution except
for different velocities and period of oscillation that results
from the different dispersion and nonlinear parameters.

5 Conclusions

To conclude, we have investigated the MI in metamate-
rials induced by the pseudo-quintic nonlinearity and the
self-steepening effects along with the DRR in the frame-
work of an extended NLS equation. By employing stan-
dard linear stability method, the analytical expression for
MI gain is presented and the novel features of the MI
are demonstrated in detail. Firstly, we considered the MI
under the competition of the pseudo-quintic nonlinearity
and the self-steepening effect in the absence of the DRR.
It is found that MI can appear in four different cases:
Case A in abnormal GVD regime of self-focusing negative
index region; Case B in self-focusing positive index region;
Case C in abnormal GVD regime of self-defocusing neg-
ative index region and Case D in normal GVD regime of
self-defocusing negative index region. Compared to the MI
gain spectra obtained for saturable nonlinearity, the MI

Fig. 10. Contours of the modulated continuous waves in (a)
self-focusing (ϑ = 1) and (b) self-defocusing (ϑ = −1) nonlin-
earity of Case E ω̃ = 0.707 (β2 = 0), in (c) Case F ω̃ = 0.71
(δ = 1, n < 0) and (d) Case G ω̃ = 1.2 (δ = −1, n > 0), respec-
tively. The other parameters for all cases are adopted P0 = 1,
Ω = 3 and τR = 0.04.

gain shows more interesting dependence on the combina-
tions of dispersion and nonlinearity and the competition
of the pseudo-quintic nonlinearity and the self-steepening,
exhibiting different threshold power and threshold fre-
quency in each regions. This suggests that we can make
the MI occur in different regions with different gains and
the spectral widths by tuning the power and the frequency
of the incident waves at will. It is very useful for generating
solitary waves in different regions of dispersion and non-
linearity. Secondly, we discussed the influence of the DRR
on the MI gain. It is found that when the DRR is consid-
ered, MI can occur not only in Cases A, B, C and D, but
also in the other three cases: Case E in zero-GVD regimes
of self-focusing or self-defocusing nonlinearity; Case F in
normal-GVD regime of self-focusing negative index region;
and Case G in abnormal-GVD regime of self-defocusing
positive index region, respectively. For Cases A, B, C and
D, the DRR leads to additional MI regions besides the
primary ones, moreover, the DRR dominates the MI gain
in the additional regions, while the self-steepening and
the pseudo-quintic nonlinearity effects entirely govern the
MI gain in primary ones. For Cases E, F and G, the MI
gain exhibits monotonous growth with the perturbation
frequency over the whole frequency band. These results
mean that it is also possible to observe MI at arbitrary
high frequency. Finally, we examined the analytical re-
sults by numerical simulations. The obtained results are
useful in manipulating or tuning the MI gain in meta-
materials and provide more ways to generate ultrashort
pulses with ultrahigh repetition rate for high-speed opti-
cal communication.
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