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Abstract. The formalism for the description of open quantum systems (that are embedded into a common
well-defined environment) by means of a non-Hermitian Hamilton operator H is sketched. Eigenvalues and
eigenfunctions are parametrically controlled. Using a 2 × 2 model, we study the eigenfunctions of H at
and near to the singular exceptional points (EPs) at which two eigenvalues coalesce and the corresponding
eigenfunctions differ from one another by only a phase. Nonlinear terms in the Schrödinger equation
appear nearby EPs which cause a mixing of the wavefunctions in a certain finite parameter range around
the EP. The phases of the eigenfunctions jump by π at an EP. These results hold true for systems that
can emit (“loss”) particles into the environment of scattering wavefunctions as well as for systems which
can moreover absorb (“gain”) particles from the environment. In a parameter range far from an EP, open
quantum systems are described well by a Hermitian Hamilton operator. The transition from this parameter
range to that near to an EP occurs smoothly.

1 Introduction

The basic features of quantum mechanics are worked out
about 90 years ago: the Schrödinger equation is linear
and allows superpositions of quantum states to be solu-
tions of the Schrödinger equation; the Hamiltonian HB

describing the system is Hermitian, its eigenvalues EB
i are

real and its eigenfunctions ΦB
i are normalized according

to 〈ΦB
i |ΦB

j 〉 = δi,j . The system described in this manner is
closed since its coupling to an environment is not involved
in the theory. The finite lifetime of most states of a (small)
system is calculated by means of tunneling, without tak-
ing into account any feedback from the environment onto
the system. This theory is proved experimentally during
multi-year studies performed on different systems at low
level density.

For the last years, not only the resolution of most ex-
perimental devices has increased considerably but also cal-
culations with higher accuracy have become possible. As
a result, the standard quantum theory has shown its limit
to describe successfully experimental results. Counterin-
tuitive results are obtained in different experiments. An
example is the observation of an unexpected regularity of
the measured transmission phases (so-called phase lapses)
in mesoscopic systems [1] which could not explained in
the framework of Hermitian quantum physics in spite of
much effort [2,3]. They are explainable however by con-
sidering the feedback from the environment onto the sys-
tem [4]. Another example is the experimental observation
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and theoretical description of a dynamical phase transi-
tion (DPT) in the spin swapping operation [5,6]. While
Fermi’s golden rule holds below the DPT, it is violated
above it. In a new experimental paper [7], the formation
of a protected sub-band for conduction in quantum point
contacts under extreme biasing is found, see also [8]. This
sub-band is a collective robust mode of non-equilibrium
transport that is immune to local heating. It has poten-
tial practical implications for nanoscale devices made of
quantum point contacts and quantum dots.

In order to improve the theoretical description, in some
papers the coupling of the system to an environment is
taken into account explicitly. Mostly, this is done by re-
placing the Hermitian Hamilton operator, or part of it, by
a non-Hermitian one, see e.g. the reviews [9,10] and the
book [11]. In other papers, nonlinearities are added to the
Schrödinger equation. An example is the review [12] where
the role of nonlinear Fano resonances in theoretical and
experimental studies of light propagation in photonic de-
vices and charge transport through quantum dots (nanos-
tructures) is reviewed. By this means, the description of
experimental results could be improved considerably in all
cases.

A non-Hermitian Hamiltonian in the Schrödinger
equation appears when the system is considered to be
open, i.e. to be embedded into an environment, and the
coupling between the system and its environment is taken
into account from the very beginning. A natural envi-
ronment is the continuum of scattering wavefunctions to
which the states of the system are coupled and into which
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they decay. It can be changed by external fields, however
never be deleted. The finite lifetime of the states of the
system is calculated directly from the non-Hermitian part
of the Hamiltonian [9,10]. The feedback from the environ-
ment onto the system is involved in the non-Hermitian
Hamiltonian H and therefore also in its eigenvalues Ei

and eigenfunctions Φi. The basic assumption of this de-
scription is supported experimentally by the recent ob-
servation that remote states are coupled through the
continuum [13].

Meanwhile there are many calculations performed with
a non-Hermitian Hamiltonian. Usually, the behavior of the
system is controlled by means of varying a certain param-
eter. The restriction of the parameter dependence of the
Hamiltonian H to its explicitly non-Hermitian part (by ne-
glecting the parameter dependence of its real Hermitian
part) allows us to receive a quick overview on the spec-
troscopic redistribution processes occurring in the system
under the influence of the coupling to the environment (see
e.g. [4,14,15]). Most interesting is the appearance of unex-
pected collective coherent phenomena in different systems.
They are similar to the phenomenon of Dicke superradi-
ance [16] which is known in optics for many years. It has
been shown, moreover, that the reorganization of the spec-
trum of the system under the influence of the coupling to
the environment at a critical value of the control param-
eter, occurs globally over the whole energy range of the
spectrum [14]. It takes place by a cooperative action of all
states, and the length scale diverges as well as the degree
of non-Hermiticity of the Hamiltonian. It has been shown
further that the reordering of the spectrum corresponds,
indeed, to a second-order phase transition [14], justifying
the notation dynamical phase transition. The states below
and beyond the DPT are non-analytically connected. This
method is shown to describe also phase transitions in, e.g.,
biological systems [17].

The calculation of the eigenvalues Ei and eigenfunc-
tions Φi of the non-Hermitian Hamiltonian H hits upon
some mathematically non-trivial problems due to the exis-
tence of singular points in the continuum. At these points,
two eigenvalues coalesce and the two corresponding eigen-
functions differ from one another only by a phase [10]1.
The geometric phase of these points differs from the Berry
phase of a diabolic point by a factor 2. These singular
points, called usually exceptional points (EPs), are well-
known in mathematics [18]. Their meaning for the dynam-
ics of open quantum systems and the behavior of the two
eigenfunctions at an EP is however studied only recently.
Numerical results for the eigenvalues and eigenfunctions
of H under the influence of an EP in a concrete system
are obtained, e.g., for atoms [19,20], for the transmission
through quantum dots [21–24] and for charge transport in
molecular networks [25]. In the early papers, the EPs are

1 The coalescence of two eigenvalues of a non-Hermitian op-
erator should not be confused with the degeneration of two
eigenstates of a Hermitian operator. The eigenfunctions of two
degenerate states are different and orthogonal while those of
two coalescing states are biorthogonal and differ only by a
phase (see Eqs. (15) to (18)).

called mostly branch points in the complex plane or double
poles of the S matrix. Phase transitions in open quantum
systems which are associated with the formation of long-
lived and short-lived states according to [14], are related
to EPs first in reference [26]. More recent results can be
found in the review [10]. The drawback of all these studies
is the unsolved question how different EPs influence one
another and how they are related to a DPT.

The eigenfunctions of a symmetric non-Hermitian op-
erator H are biorthogonal according to 〈Φ∗

i |H = Ei〈Φ∗
i |

and H|Φi〉 = Ei|Φi〉 (where Ei is a complex eigenvalue
of H). They have to be normalized therefore by means
of 〈Φ∗

i |Φj〉 which is a complex number (in difference to
the norm 〈Φi|Φj〉 which is a real number). In order to
guarantee a smooth transition from the description of an
open quantum system to an almost (and eventually re-
ally) closed one, the eigenfunctions of H should be normal-
ized according to 〈Φ∗

i |Φj〉 = δij . This is possible only by
the additional requirement Im〈Φ∗

i |Φj〉 = 0. This condition
implies that the relation between the phases of the two
states i and j is, generally, not rigid: far from an EP, the
two wavefunctions are (almost) orthogonal to one another
in (nearly) the same manner as the eigenfunctions of a
Hermitian operator while they become linearly dependent
in approaching an EP [10] such that the biorthogonality
of them cannot be neglected. This is quantitatively ex-
pressed by the phase rigidity ri ≡ 〈Φ∗

i |Φj〉/〈Φi|Φj〉 which
is reduced in approaching an EP, ri → 0. Here, the envi-
ronment can put its information into the system by align-
ing states of the system with states of the environment,
i.e. by enhancing their decay width.

The phase rigidity of the eigenfunctions and its re-
duction near to the singular EP is the most interesting
value when a realistic quantum system is described by
a Schrödinger equation with non-Hermitian Hamiltonian.
Since the environment is able to change the spectroscopic
properties of the system only if ri < 1, an EP may in-
fluence strongly the dynamics of an open quantum sys-
tem. This is in contrast to a closed system described by
a Hermitian operator and rigid phases (ri = 1) of its
eigenfunctions. In references [21,22], the correlation be-
tween non-rigid phases of the eigenfunctions Φi of the non-
Hermitian Hamiltonian in the neighborhood of an EP and
the transmission through a quantum dot is demonstrated
in calculations for a special quantum dot. The enhance-
ment is a collective effect caused by ri < 1 for many lev-
els i in a certain finite parameter range. It has been shown
further [10] that the Schrödinger equation of the system
contains nonlinear terms when ri < 1, i.e. in the neigh-
borhood of EPs. In contrast to the usual calculations, it
is therefore not necessary to introduce nonlinear terms
into the Schrödinger equation by hand. They are part and
parcel of the non-Hermitian quantum physics, and appear
only in the vicinity of EPs (where ri < 1).

Recently, non-Hermitian Hamiltonians are studied
the eigenvalues of which are real in a broad parame-
ter range [27]. Under certain conditions, the eigenvalues
of the Hamiltonian become complex as shown theoreti-
cally [27] as well as experimentally [28–31]. The meaning
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of EPs for these processes is studied in different papers
(e.g. [32–39]). Less studied is the question whether or not
these processes can be considered to be a DPT in the
sense described above. The main problem is similar to that
appearing in the description of the Dicke superradiance,
an effect known for many years [16], however not fully
understood up to today. In both cases, the experimental
studies are performed in optics. While the formal equiv-
alence of the quantum mechanical Schrödinger equation
and the optical wave equation in symmetric optical lat-
tices [40–43] is explored in the first case for an interpreta-
tion of the experimental results, a comparable theoretical
study does not exist in the second case, i.e. for the Dicke
superradiance.

It is the aim of the present paper to study the mean-
ing of the mathematical non-trivial properties of non-
Hermitian operators for the physics of open quantum
systems that are embedded into a common well-defined
environment. The mathematical properties are the exis-
tence of singular points (EPs); the reduced phase rigid-
ity (ri) in their vicinity; the appearance of nonlinear
terms in the Schrödinger equation due to ri < 1; and
the appearance of constructive interferences. The phys-
ical observable effects are DPTs known to appear at
high level density. They will be discussed in the following
paper [44].

In our calculations we use a schematic model to sim-
ulate typical features of open quantum systems that
are induced coherently by the common environment. The
obtained results are generic. The basic formalism used
by us, is worked out in nuclear physics many years
ago [45,46] where it is, however, used by introducing the
non-Hermiticity by means of a perturbation and, further-
more, by using statistical assumptions for the individ-
ual states (mostly according to random matrix theory).
In contrast to this, we consider directly the individual
eigenvalues Ei and eigenfunctions Φi of the non-Hermitian
Hamiltonian H. In particular, we are interested in the
influence of the EPs onto these values. As very well
known, the eigenvalues show level repulsion and (or)
width bifurcation. We show that the eigenfunctions con-
tain new information, because they characterize the pa-
rameter range over which the influence of the EPs can be
seen and the manner how different EPs may influence each
another.

In the present paper, we consider a two-level system
with real, complex and imaginary coupling coefficients be-
tween system and environment with loss (emission) of par-
ticles to the environment (Sect. 2) which is the usual situ-
ation of quantum systems embedded into the environment
of scattering wavefunctions. In Section 3 we consider sys-
tems in which additionally gain (absorption) of particles
from the environment occurs what is discussed recently in
literature, e.g. [36–39].

In a following paper [44], we address finally the prob-
lem of the relation between EPs and DPTs in systems
with more than two nearby states coupled via a com-
mon environment. Here different EPs may influence each
other.

2 Crossing of two states in an open quantum
system with symmetric non-Hermitian
Hamiltonian

2.1 Basic equations, Hamiltonian near
an exceptional point

In an open quantum system, the discrete states described
by a Hermitian Hamiltonian HB, are embedded into the
continuum of scattering wavefunctions, which exists al-
ways and can not be deleted. Due to this fact the discrete
states turn into resonance states the lifetime of which is
usually finite. The Hamiltonian H of the system which
is embedded into the environment, is non-Hermitian. Its
eigenvalues are complex and provide not only the ener-
gies of the states but also their lifetimes (being inverse
proportional to the widths).

According to [45,46], the non-Hermitian Hamiltonian
of an open quantum system reads [10]

HF = HB + VBCG
(+)
C VCB (1)

where the second term is the non-Hermitian perturbation;
VBC and VCB stand for the interaction between system
and environment; and G

(+)
C is the Green function in the

environment. The so-called internal (first-order) interac-
tion between two discrete states i and j is involved in
HB while their external (second-order) interaction via the
common environment is described by the last term of (1).
Generally, the coupling matrix elements that determine
the external interaction of two states consist of the prin-
cipal value integral

Re
〈
ΦB

i |H|ΦB
j

〉 − EB
i δij =

1
2π

P
∫ ε′c

εc

dE′ γ0
icγ

0
jc

E − E′ (2)

which is real, and the residuum

Im 〈ΦB
i |H|ΦB

j 〉 = −1
2

γ0
icγ

0
jc (3)

which is imaginary [10]. Here, the ΦB
i and EB

i are the
eigenfunctions and (discrete) eigenvalues, respectively, of
the Hermitian Hamiltonian HB which describes the states
in the subspace of discrete states without any inter-
action of the states via the environment. The γ0

ic ≡√
2π 〈ΦB

i |V |ξE
c 〉 are the (energy-dependent) coupling ma-

trix elements between the discrete states i of the system
and the environment of scattering wavefunctions ξE

c . The
γ0

kc have to be calculated for every state i and for every
channel c (for details see [10]). When i = j, (2) and (3)
give the selfenergy of the state i. The coupling matrix el-
ements (2) and (3) (by adding EB

i δij in the first case) are
often simulated by complex values ωij , e.g. [47]2.

In order to study the interaction of two states via
the common environment it is best to start from a non-
Hermitian Hamiltonian H in which HB in (1) is replaced

2 In difference to [47], the definitions εi = ei + i
2
γi and Ei =

Ei + i
2
Γi (with γi ≤ 0 and Γi ≤ 0 for decaying states) are used

in the present paper.
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by a non-Hermitian Hamilton operator H0 the eigenvalues
of which are complex (and not discrete as those of HB).
Let us consider, for example, the symmetric 2× 2 matrix

H(2) =

(
ε1 ≡ e1 + i

2γ1 ω12

ω21 ε2 ≡ e2 + i
2γ2

)

(4)

with γi ≤ 0. The diagonal elements of (4) are the two
complex eigenvalues εi (i = 1, 2) of the non-Hermitian
operator H0. That means, the ei and γi denote the en-
ergies and widths, respectively, of the two states when
ωij = 0. The ω12 = ω21 ≡ ω stand for the coupling matrix
elements of the two states via the common environment
which are, generally, complex due to (2) and (3). The self-
energy of the states is assumed to be included into the εi.
The Hamiltonian H(2) allows us to consider the proper-
ties of the system near to and at an EP because here the
distance between the two states, that coalesce at the EP,
relative to one another is much smaller than that relative
to the other states of the system. Note that the coupling
matrix elements γ0

kc in (2) and (3) have the dimension of
square root of energy while the widths γk of the individual
eigenstates in (4) have, of course, the dimension of energy.

2.2 Eigenvalues of H(2)

The eigenvalues of H(2) are

Ei,j ≡ Ei,j +
i

2
Γi,j =

ε1 + ε2

2
± Z;

Z ≡ 1
2

√
(ε1 − ε2)2 + 4ω2 (5)

where Ei and Γi stand for the energy and width, respec-
tively, of the eigenstate i. When the energy detuning of
the two levels is varied, different behaviors of the eigen-
values (5) will be observed which depend on the coupling
strength ω between the states and their environment. Gen-
erally, resonance states with nonvanishing widths Γi repel
each other in energy according to Re(Z) while the widths
bifurcate according to Im(Z). The transition from level
repulsion to width bifurcation is studied numerically in
e.g. [48]. The two states cross when Z = 0. This crossing
point is an EP according to the definition of Kato [18].
Here, the two eigenvalues coalesce, E1 = E2.

According to (5), two interacting discrete states (with
γ1 = γ2 = 0 and e1 �= e2) avoid always crossing since ω
and ε1 − ε2 are real in this case and the condition Z = 0
can not be fulfilled,

(e1 − e2)2 + 4 ω2 > 0. (6)

In this case, the EP can be found only by analytical con-
tinuation into the continuum. This situation is called usu-
ally avoided crossing of discrete states. It holds also for
narrow resonance states if Z = 0 cannot be fulfilled due
to the small widths of the two states. The physical mean-
ing of this result is very well known since many years: the
avoided crossing of two discrete states at a certain criti-
cal parameter value [49,50] means that the two states are

exchanged at this point, including their populations (pop-
ulation transfer).

When ω = iω0 is imaginary,

Z =
1
2

√

(e1−e2)2− 1
4
(γ1−γ2)2+i(e1−e2)(γ1−γ2)−4ω2

0

(7)
is complex. The condition Z = 0 can be fulfilled only when
(e1 − e2)2 − 1

4 (γ1 − γ2)2 = 4ω2
0 and (e1 − e2)(γ1 − γ2) = 0,

i.e. when γ1 = γ2 (while e1 �= e2). In this case

(e1 − e2)2 − 4 ω2
0 = 0 → e1 − e2 = ± 2 ω0, (8)

and two EPs appear. It holds further

(e1 − e2)2 > 4 ω2
0 → Z ∈ 
 (9)

(e1 − e2)2 < 4 ω2
0 → Z ∈ � (10)

independent of the parameter dependence of the ei. In
the first case, the eigenvalues Ei = Ei + i/2 Γi differ from
the original values εi = ei + i/2 γi by a contribution to
the energies and in the second case by a contribution to
the widths. The width bifurcation starts in the very neigh-
borhood of one of the EPs and becomes maximum in the
middle between the two EPs. This happens at the cross-
ing point e1 = e2 where ΔΓ/2 ≡ |Γ1/2 − Γ2/2| = 4 ω0.
A similar situation appears when γ1 ≈ γ2, see numerical
results in Section 2.4. The physical meaning of this result
is completely different from that discussed above for dis-
crete and narrow resonance states. It means that different
time scales may appear without any enhancement of the
coupling strength to the continuum (for details see [51]).

The cross section can be calculated by means of the S
matrix σ(E) ∝ |1 − S(E)|2. For an isolated resonance, it
gives the well-known Breit-Wigner line shape according to

S = 1 + i
Γ1

E − E1 − i
2Γ1

(11)

where E is the energy and E1 and Γ1 are defined in equa-
tion (5). This expression can be rewritten as [52]

S =
E − E1 + i

2Γ1

E − E1 − i
2Γ1

(12)

which is explicitly unitary when the energy dependence
of the Ei and Γi is taken into account [10]. Extending
the problem to that of two closely neighboring resonance
states that are coupled to one common continuum of scat-
tering wavefunctions the unitary representation (12) of the
S matrix reads (up to a background term) [10]

S =
(E − E1 + i

2Γ1) (E − E2 + i
2Γ2)

(E − E1 − i
2Γ1) (E − E2 − i

2Γ2)
. (13)

In this expression, the influence of an EP onto the cross
section is contained in the eigenvalues Ei = Ei + i/2 Γi

of H(2). Reliable results can be obtained therefore also
when an EP is approached and the S matrix has a dou-
ble pole at the parameter value corresponding to the EP.

http://www.epj.org


Eur. Phys. J. D (2015) 69: 229 Page 5 of 14

Here, the line shape of the two overlapping resonances is
described by

S = 1 + 2i
Γd

E − Ed − i
2Γd

− Γ 2
d

(E − Ed − i
2Γd)2

(14)

by rewriting (13), where E1 = E2 ≡ Ed and Γ1 = Γ2 ≡ Γd.
It deviates from the Breit-Wigner line shape of an iso-
lated resonance due to interferences between the two res-
onances. The first term of (14) is linear (with the factor 2
in front) while the second one is quadratic. As a result,
two peaks with asymmetric line shape appear in the cross
section (for a numerical example see Fig. 9 in Ref. [53]).

2.3 Eigenfunctions of H(2)

The eigenfunctions of a non-Hermitian H must fulfill the
conditions H|Φi〉 = Ei|Φi〉 and 〈Ψi|H = Ei〈Ψi| where Ei

is an eigenvalue of H and the vectors |Φi〉 and 〈Ψi| de-
note its right and left eigenfunctions, respectively. When
H is a Hermitian operator, the Ei are real, and we arrive
at the well-known relation 〈Ψi| = 〈Φi|. In this case, the
eigenfunctions can be normalized by using the expression
〈Φi|Φj〉. For the symmetric non-Hermitian Hamiltonian
H(2), however, we have 〈Ψi| = 〈Φ∗

i |. This means, the eigen-
functions are biorthogonal and have to be normalized by
means of 〈Φ∗

i |Φj〉. This is, generally, a complex value, in
contrast to the real value 〈Φi|Φj〉 of the Hermitian case.
To smoothly describe the transition from a closed system
with discrete states, to a weakly open one with narrow
resonance states, we normalize the Φi according to

〈Φ∗
i |Φj〉 = δij (15)

(for details see Sects. 2.2 and 2.3 of Ref. [10]). It follows

〈Φi|Φi〉 = Re (〈Φi|Φi〉); Ai ≡ 〈Φi|Φi〉 ≥ 1 (16)

and

〈Φi|Φj �=i〉 = i Im (〈Φi|Φj �=i〉) = −〈Φj �=i|Φi〉
|Bj

i | ≡ |〈Φi|Φj �=i| ≥ 0. (17)

At an EP Ai → ∞ and |Bj
i | → ∞. The Φi contain (like the

Ei) global features that are caused by many-body forces
induced by the coupling ωik of the states i and k �= i via
the environment (which has an infinite number of degrees
of freedom). The eigenvalues Ei and eigenfunctions Φi con-
tain moreover the self-energy contributions of the states i
due to their coupling to the environment.

At the EP, the eigenfunctions Φcr
i of H(2) of the two

crossing states differ from one another only by a phase,

Φcr
1 → ± i Φcr

2 ; Φcr
2 → ∓ i Φcr

1 (18)

according to analytical as well as numerical and experi-
mental studies, see Appendix of [51], Section 2.5 of ref-
erence [10] and Figures 4 and 5 in reference [35]. That
means, the wavefunction Φ1 of the state 1 jumps, at

the EP, via the wavefunction Φ1 ± iΦ2 of a chiral state
to ±iΦ2

3.
The Schrödinger equation with the non-Hermitian op-

erator H(2) is equivalent to a Schrödinger equation with
H0 and source term [54]

(H0 − εi) |Φi〉 = −
(

0 ωij

ωji 0

)

|Φj〉 ≡ W |Φj〉. (19)

Due to the source term, two states are coupled via the
common environment of scattering wavefunctions into
which the system is embedded, ωij = ωji ≡ ω. The
Schrödinger equation (19) with source term can be rewrit-
ten in the following manner [54],

(H0 − εi) |Φi〉 =
∑

k=1,2

〈Φk|W |Φi〉

×
∑

m=1,2

〈Φk|Φm〉|Φm〉. (20)

According to the biorthogonality relations (16) and (17)
of the eigenfunctions of H(2), (20) is a nonlinear equa-
tion. Most important part of the nonlinear contributions
is contained in

(H0 − εn) |Φn〉 = 〈Φn|W |Φn〉 |Φn|2 |Φn〉. (21)

The nonlinear source term vanishes far from an EP where
〈Φk|Φk〉 → 1 and 〈Φk|Φl�=k〉 = −〈Φl�=k|Φk〉 → 0 as follows
from the normalization (15). Thus, the Schrödinger equa-
tion with source term is linear far from an EP, as usually
assumed. It is however nonlinear in the neighborhood of
an EP.

The biorthogonality of the eigenfunctions Φk of the
non-Hermitian operator H(2) is determined quantitatively
by the ratio

rk ≡ 〈Φ∗
k|Φk〉

〈Φk|Φk〉 = A−1
k . (22)

Usually rk ≈ 1 for decaying states which are well sep-
arated from other decaying states (according to the fact
that Hermitian quantum physics is a good approach at low
level density). The situation changes however completely
when an EP is approached:

(i) When two levels are distant from one another, their
eigenfunctions are (almost) orthogonal, 〈Φ∗

k|Φk〉 ≈
〈Φk|Φk〉 ≡ Ak ≈ 1.

(ii) When two levels cross at the EP, their eigenfunc-
tions are linearly dependent according to (18) and
〈Φk|Φk〉 ≡ Ak → ∞.

These two relations show that the phases of the two
eigenfunctions relative to one another change dramatically
when the crossing point (EP) is approached. We call rk,
defined by (22), the phase rigidity of the eigenfunction

3 In studies of other researchers, the factor i in (18) does
not appear. This difference is discussed and compared with
experimental data in the Appendix of [51] and in Section 2.5
of reference [10], see also Figures 4 and 5 in reference [35].
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Φk. Generally 1 ≥ rk ≥ 0. The non-rigidity rk of the
phases of the eigenfunctions of H(2) follows directly from
the fact that 〈Φ∗

k|Φk〉 is a complex number (in difference
to the norm 〈Φk|Φk〉 which is a real number) such that the
normalization condition (15) can be fulfilled only by the
additional postulation Im〈Φ∗

k|Φk〉 = 0 (what corresponds
to a rotation).

When rk < 1, an analytical expression for the eigen-
functions as function of a certain control parameter can,
generally, not be obtained. The non-rigidity rk < 1 of
the phases of the eigenfunctions of H(2) in the neighbor-
hood of EPs is the most important difference between the
non-Hermitian quantum physics and the Hermitian one. It
expresses the fact that two nearby states can strongly in-
teract with one another, when their wavefunctions are not
supposed to be everywhere orthogonal (as in Hermitian
quantum physics). Mathematically, rk < 1 causes non-
linear effects in quantum systems in a natural manner,
as shown above. Physically, it gives the possibility that
one of the states of the system aligns at (or near to) the
EP with the common environment and receives, by this,
a large width. This alignment is nothing but a quantita-
tive measure of the influence of the environment onto the
spectroscopic properties of the system [10].

It is meaningful to represent the eigenfunctions Φi of
H(2) in the set of basic wavefunctions Φ0

i of H0

Φi =
N∑

j=1

bijΦ
0
j ; bij = |bij |eiθij . (23)

Also the bij are normalized according to the biorthogonal-
ity relations of the wavefunctions {Φi}. The angle θij can
be determined from tg(θij) = Im(bij)/Re(bij).

It should be mentioned here that the eigenfunctions
Φk of H(2) represent only the part of the resonance wave-
function that is localized inside the system. The wavefunc-
tion of the resonance state k in the whole function space
of discrete and scattering states contains additionally a
“tail” due to its coupling to the scattering wavefunctions,
see [10].

2.4 Numerical results

In our calculations, the mixing coefficients bij , defined
in (23), of the wavefunctions of the two states are cal-
culated by taking into account the fact that the mixing
depends on the distance (in energy) of the two states, what
can be simulated by assuming a Gaussian distribution

ωi�=j = ω e−(ei−ej)
2

(24)

for the coupling coefficients. The results reproduce very
well [47]2 those obtained numerically exact in refer-
ence [54] for two levels and real coupling ω. Further, the
selfenergies of the states are assumed, in our calculations,
to be included into the εi.

Let us first consider the 2 × 2 matrix (4) with e1 =
1 − a

2 ; e2 = a and with γi (i = 1, 2) and ω12 = ω21 ≡ ω

independent of a. For illustration, we show in Figure 1 the
eigenvalue trajectories Ei(a) and Γi/2(a) and in Figure 2
the mixing coefficients bij = |bij |eiθij (defined in (23))
of the eigenfunctions of H(2) as a function of a in the
neighborhood of an EP. The calculations are performed
with real, complex and imaginary coupling coefficients ω.
Both, the upper (real ω) and middle (complex ω) rows
of Figures 1 and 2 show an EP at the critical parameter
value a = acr. Here the eigenvalue trajectories cross and
|bij | → ∞. The lower row is calculated with imaginary
ω and γ1 = γ2. Here two EPs appear, and |bij | → ∞ at
every EP.

The main difference of the eigenvalue trajectories with
real to those with imaginary coupling coefficients ω are
related to the relations (6) to (10) obtained analytically
and discussed in Section 2.2. For real and complex ω and
γ1 �= γ2, the results show one EP (when the condition
Z = 0 is fulfilled (see Fig. 1), upper and middle rows).
This EP is isolated from other EPs, generally. In the case
of imaginary ω and γ1 ≈ γ2, however, two related EPs
appear (Fig. 1, lower row). Between these two EPs, the
widths Γi bifurcate: the width of one of the two states
increases by varying a although the coupling strength ω
between system and environment remains constant.

As can be seen from Figure 2 left panel, the critical pa-
rameter range has a finite extension at both sides of the
EPs. When ω is imaginary, the critical parameter range
includes both EPs and their vicinity. Between the two EPs
the eigenfunctions are strongly mixed (1:1) with one an-
other. Beyond the critical parameter region, the eigenval-
ues trajectories Ei(a) approach the trajectories εj(a) after
exchange of i and j.

Interesting are also the phases of the eigenfunctions
in the neighborhood of an EP (see Fig. 2 right panel).
The phases of all components of the eigenfunctions jump
at the EP either by −π/4 or by +π/4. That means the
phases of both eigenfunctions jump in the same direction
by the same amount. Thus, there is a phase jump of −π/2
(or +π/2) when one of the eigenfunctions passes into the
other one at the EP. This result is in agreement with (18).
It holds true for real as well as for complex and imaginary
ω as can be seen from Figure 2 right panel.

The position of an isolated EP can always be found
by varying another parameter. For example, with e1 =
1 − a

2 + r cosθ; e2 = a + r sinθ one EP appears in any
case in the parameter range 0 ≤ θ ≤ π. The results ob-
tained in the neighborhood of and at this EP show the
same characteristic features as those in Figures 1 and 2:
around the crossing point (EP) of the eigenvalue trajec-
tories, the eigenfunctions are mixed and |bij | → ∞ at the
EP. The phase jumps are of the same type as those shown
in Figure 2, confirming the relation (18) between the two
eigenfunctions at the EP also by these calculations.

Now we explore numerically the phase difference Ω
between the two eigenfunctions of the operator H(2) that
describes a 2-level open quantum system. The calculations
are performed by starting from the unperturbed energies
εk = ek + 1

2γk (diagonal matrix elements of (4)), with the
assumptions that e1 = const while e2 = e2(d) depends on
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Fig. 1. Energies Ei (left panel) and widths Γi/2 (right panel) of N = 2 states coupled to a common channel as a function of a.
Parameters: e1 = 1 − 0.5 a; e2 = a; γ1/2 = −0.5 (a,b); –0.5505 (c,d); –0.6 (e,f); γ2/2 = −0.6; ω = 0.05 (a,b); 0.025 (1+i) (c,d);
0.05 i (e,f). The dashed lines in (a, c, e) show ei(a).

the distance d between the two states which cross at d = 0.
The widths of both states are assumed to be constant,
γk = const for k = 1, 2. The angle Ω between the two
eigenvectors of H(2) is represented in the figures by cos(Ω)
in order to illustrate the changes of Ω in approaching an
EP. The coupling strength ω is chosen to be real (Fig. 3),
complex (Fig. 4 left panel), and imaginary (Fig. 4 right
panel). In the first and second case, we have one EP while
in the last case, there are two EPs according to (8).

The results shown in Figures 3 and 4 are the following.
(i) For distant levels, the two eigenfunctions are almost or-
thogonal. Here, asymptotically cos(Ω) ≈ 0, however the
value cos(Ω) never vanishes (see Fig. 3d in logarithmic
scale). (ii) At the EP, the eigenfunctions are linearly de-
pendent from one another according to (18), what is ex-
pressed by cos(Ω) → ±1 in approaching the EP. These
results confirm the statements according to which the nor-
malization of the eigenfunctions of a non-Hermitian oper-
ator by means of the complex value (15) is possible only
by rotating the eigenvector such that Im〈Φ∗

k|Φk〉 = 0. The
rotation angle, represented by cos(Ω), is shown in Fig-
ures 3c and 4c and 4f for different values of the coupling
coefficient ω.

As can be seen from the eigenvalue equations (5)
and from Figures 1 to 4, two states may avoid crossing
at the EP by level repulsion (as very well known since

many years [49,50]), or they may cross freely while their
widths bifurcate. In the last case, the lifetimes of the two
states may finally differ strongly from one another, even
bound states in the continuum may arise. The existence of
these states is discussed already in the very early days
of quantum mechanics [55], later considered in atomic
physics [56,57] and other systems, e.g. [24]. The eigenval-
ues of the Hamiltonian show the existence and position of
the critical parameter values (corresponding to the EPs)
at which level repulsion or width bifurcation takes place.

Figures 1 to 4 illustrate furthermore how an EP influ-
ences its neighborhood and determines the dynamics of an
open quantum system. (i) The wavefunctions of the two
crossing states are mixed and the phases of the wavefunc-
tions of the two states relative to one another vary in a
finite parameter range in the neighborhood of the EP. The
reduction of the phase rigidity rk (corresponding to (22))
allows one of the states to align to the states of the en-
vironment, i.e. to receive a large width, while the other
state almost decouples from the environment. (ii) When
the interaction of the two states via the environment is
imaginary and the widths of both states are similar to
one another (γ1 ≈ γ2), width bifurcation occurs between
the two EPs according to (8) and (10) without any en-
hancement of the coupling strength to the environment.
The phases jump at the two EPs in different directions and

http://www.epj.org
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Fig. 2. Mixing coefficients bij = |bij |eiθij of N = 2 states coupled to a common channel as a function of a. The parameters are
the same as in Figure 1.

Fig. 3. Energies Ei (full lines) (a), widths Γi/2 (b), and cos(Ω), (c) in linear scale, (d) in logscale, as function of the distance
d for N = 2 states coupled to one channel. The unperturbed energies are e1 = 2/3 and e2 = 2/3 + d (dashed lines in (a)). The
other parameters are ω = 0.05, γ1/2 = −0.5, γ2/2 = −0.5999. The dashed lines in (c, d) show | cos(Ω)| for the two orthogonal
states of the Hermitian operator HB.
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Fig. 4. The same as Figure 3a–3c, but ω = 0.05 (1 + i)/
√

2, γ1/2 = −0.5, γ2/2 = −0.57 (left panel, a–c) and ω = 0.05i,
γ1/2 = −0.5, γ2/2 = −0.5 (right panel, d–f).

the eigenvalues approach the original values only beyond
the two EPs.

Figures 1 to 4 illustrate the most important difference
between Hermitian and non-Hermitian quantum physics:
the phases of the eigenfunctions of a Hermitian opera-
tor relative to one another are fixed by the orthogonal-
ity relations at all parameter values, while those of H(2)

are not everywhere rigid. They are influenced by the sin-
gular points (EPs) at which two eigenvalues of the non-
Hermitian operator H coalesce. Here, the two eigenstates
are exchanged, what is accompanied by a change of the
angle between the two eigenvectors according to (18).
This process occurs not only at the position of the EP
but is characteristic for a certain finite parameter range
around it, as can be seen from the numerical results for
the phase rigidity rk and for the angle Ω between the two
eigenvectors.

Of prime importance for physical processes induced by
an EP in an open quantum system that is embedded into
a common well-defined environment, are the nonlinear
terms occurring in the Schrödinger equation in the whole
function space where rk < 1 (see Eqs. (20) and (21)).
Eventually, they allow for some stabilization of the sys-
tem by putting information on the environment into the
system with the aim to accumulate as much as possible

of the total coupling strength between system and envi-
ronment onto one of the states (in the one-channel case).
By this, this state becomes short-lived while the other one
decouples more or less from the environment and becomes
long-lived. These two states are not analytically connected
to the original individual states of the system.

While the mathematical properties of the eigenvalues
of H(2) are studied in many papers for isolated EPs, their
influence onto the vicinity of the EPs and onto the eigen-
functions is considered in only a few papers, see e.g. the
review [10]. The interesting question how the ranges of
different EPs may influence each other is not at all con-
sidered in the literature. It will be discussed in detail in
the following paper [44] by using the results shown in Fig-
ures 1 to 4.

3 Crossing of two states in quantum systems
with loss and gain

3.1 Basic equations, Hamiltonian with loss and gain

As has been shown in references [40–43], the quantum
mechanical Schrödinger equation and the optical wave
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equation in symmetric optical lattices are formally equiv-
alent. Complex symmetric structures can be realized by
involving symmetric index guiding and an antisymmetric
gain/loss profile.

The main difference of these optical systems to open
quantum systems consists in the symmetry of gain and
loss in the first case while the states of an open quantum
system can only decay (Im(ε1,2) < 0 and Im(E1,2) < 0
for both states). Thus, the modes involved in the non-
Hermitian Hamiltonian in optics appear in complex con-
jugate pairs while this is not the case in an open quan-
tum system. As a consequence, the Hamiltonian for the
description of the structures in optical lattices may have
real eigenvalues in a large parameter range [33,34], similar
as in, e.g., the papers [27–30].

The 2×2 non-Hermitian Hamiltonian may be written,
in this case, as [28,29,32]

HPT =

(
e − iγ

2 w

w e + iγ
2

)

, (25)

where e stands for the energy of the two modes, ±γ de-
scribes gain and loss, respectively, and the real coupling
coefficient w stands for the coupling of the two modes via
the lattice. When optical lattices are studied with vanish-
ing gain, the Hamiltonian reads

H′
PT =

(
e − iγ

2 w

w e

)

. (26)

In realistic systems, w in (25) and (26) is mostly real (or
at least almost real).

3.2 Eigenvalues of the Hamiltonian with loss and gain

The eigenvalues of the Hamiltonian (25) differ from (5),

EPT
± = e ± 1

2

√
4|w|2 − γ2 ≡ e ± ZPT . (27)

A similar expression is derived in references [28,29]. Since
e and γ are real, the EPT± are real when 4|w|2 > γ2. Un-
der this condition, the two levels repel each other in en-
ergy what is characteristic of discrete interacting states.
When the interaction w is fixed, the level repulsion de-
creases with increasing γ. When 4|w|2 = γ2 the two states
cross. Here, EPT

± = e and γ = ±√
4|w|2. With further

increasing γ and 4|w|2 < γ2 (w fixed for illustration),
width bifurcation (called PT-symmetry breaking) occurs
and EPT± = e ± i

2

√
γ2 − 4|w|2.

These relations are in accordance with (6) to (10) for
open quantum systems. Since |w| is real, two EPs exist
according to

4|w|2 = (±γ)2. (28)

Further

γ2 < 4 |w|2 → ZPT ∈ 
 (29)

γ2 > 4 |w|2 → ZPT ∈ � (30)

independent of the parameter dependence of γ.

In the case of the Hamiltonian (26), the eigenvalues
read

E ′PT
± = e − i

γ

4
± 1

2

√

4|w|2 − γ2

4
≡ e − i

γ

4
± Z ′

PT . (31)

We have level repulsion as long as 4|w|2 > γ2

4 . While level
repulsion decreases with increasing γ, the loss increases
with increasing γ. At the crossing point, E ′PT

± = e − i γ
4 .

With further increasing γ and 4|w|2 � γ2

4

E ′PT
± → e − i

γ

4
± i

γ

4
=

{
e

e − i γ
2 .

(32)

The two modes (32) behave differently. While loss in one
of them is large, it is almost zero in the other one. Thus,
only one of the modes effectively survives. Equation (32)
corresponds to high transparency at large γ.

Further, two EPs exist according to

4|w|2 = (±γ/2)2 (33)

and

γ2/4 < 4 |w|2 → Z
′
PT ∈ 
 (34)

γ2/4 > 4 |w|2 → Z
′
PT ∈ �. (35)

In analogy to (28) up to (30) these relations are indepen-
dent of the parameter dependence of γ.

Thus, there exist similarities between the eigenvalues
Ei of H(2) of an open quantum system and the eigenval-
ues of the Hamiltonian of a system with gain and loss.
Interesting is the comparison of the eigenvalues Ei of H(2)

obtained for imaginary non-diagonal matrix elements ω,
with the eigenvalues of (25) or (26) for real w. In both
cases, there are two EPs. In the first case, the energies Ei

are constant and the widths Γi bifurcate between the two
EPs. This situation is characteristic of an open quantum
system at high level density with complex (almost imagi-
nary) ω (see Eqs. (8) to (10)). In the second case however
the difference |E1 − E2| in the energies increases (level
repulsion) while the widths Γi of both states are equal in
the parameter range between the two EPs, see (28) to (30)
and (33) to (35), respectively. Between the two EPs, level
repulsion causes the two levels to be distant from one to
another and w is expected to be (almost) real according
to (2) and (3). Formally, the role of energy and width is
exchanged in the two cases.

It should be underlined here that the non-Hermitian
Hamiltonian describing an open quantum system may also
have real eigenvalues if certain conditions are fulfilled.
Such a case is studied already more than 80 years ago [55],
later in atomic physics [19,20,56,57] and also in other sys-
tems such as double quantum dots [10,24]. The so-called
bound states in the continuum are caused by width bi-
furcation and, consequently, the width of the long-lived
resonance state may approach zero. This mechanism is
different from that considered here since it creates real
eigenvalues of the non-Hermitian Hamiltonian only at a
few special parameter values.
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Fig. 5. Energies Ei (top), widths Γi/2 (mid) and mixing coefficients |bij | (bottom) of the eigenfunctions Φi of N = 2 states
coupled to a common channel as a function of a. Parameters: e = 0.5; w = 0.05; γ1/2 = −0.05 a; and γ2 = −γ1 (left
panel); γ2 = 0 (right panel). In order to illustrate the symmetry properties, the results are shown for positive as well as for
negative values a. The dashed lines in (a, b) show e.

3.3 Eigenfunctions of the Hamiltonian with loss
and gain

The eigenfunctions of the two 2 × 2 Hamiltonians (25)
and (26) show the same characteristic features as those of
the Hamiltonian (4). The eigenmodes can be normalized,
generally, according to (15) where ΦPT

i (Φ
′PT
i ) denotes

the right eigenmode. Far from an EP, the eigenfunctions
ΦPT

i (Φ
′PT
i ) are almost orthogonal to one another. The or-

thogonality is lost in approaching the crossing point of the
eigenvalue trajectories. Here, the modes show some skew-
ness according to (16). As in the case of open quantum
systems, the phase rigidity ri can be defined according
to (22). It varies between 1 and 0 and is a quantitative
measure for the skewness of the modes. Thus, the phases
of the eigenmodes of the non-Hermitian Hamiltonians (25)
and (26) are not rigid, and spectroscopic redistribution
processes may occur under the influence of the environ-
ment (lattice).

The eigenfunctions ΦPT
i of HPT (and Φ

′PT
i of H′

PT )
can be represented in a set of basic wavefunctions in full
analogy to the representation of the eigenfunctions Φi of
H(2) in (23). They contain valuable information on the
mixing of the wavefunctions under the influence of the

non-diagonal coupling matrix elements w in (25) and (26),
respectively, as well as its relation to EPs.

3.4 Numerical results for a quantum system with loss
and gain

In realistic systems, the non-diagonal matrix elements w
of the non-Hermitian Hamiltonians (25) and (26) are real
(or almost real) as follows from the level repulsion occur-
ring between the two EPs (see above, Section 3.2). Nev-
ertheless, we did some calculations also for complex and
imaginary w (results are not shown).

According to (25) and (26), the energies ei and widths
γi of the two states are the same. We choose e1 = e2 ≡ e
independent of the parameter a in the considered region
and γi (gain and loss) to be parameter dependent.

In Figure 5, the eigenvalues EPT and E ′PT of (25), left
panel, and (26), right panel, are shown. The corresponding
eigenfunctions are shown in the lower part of Figure 5. As
can be seen from the results, the level repulsion appearing
between the two EPs is accompanied by a complete (1:1)
mixing of the eigenfunctions. The mixing vanishes only far
from the EP (Figs. 5e and 5f).
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Fig. 6. The same as Figure 5 but e1 = 0.500 and e2 = 0.495.

This result is in full analogy to the results shown in
Figures 1e, 1f and 2e for open quantum systems with imag-
inary ω where width bifurcation is accompanied by a com-
plete mixing of the eigenfunctions between the two EPs;
and the mixing vanishes only far from the EPs. Further
numerical studies have shown that also the phases of the
eigenfunctions always jump by π/4 at the EPs (not shown
in Fig. 5).

We state therefore the following. The results of Fig-
ure 5 obtained from calculations for systems with gain and
loss and with real w are formally similar to those received
for open quantum systems with imaginary coupling coef-
ficients ω (lower row in Figs. 1 and 2). In the two cases,
the role of energy and width is formally exchanged.

In order to receive a better understanding of the role
of gain in Figure 5, we performed another calculation with
slightly different energies ei of the two states. The results
shown in Figure 6 are very similar to those in Figure 5.
The differences are of the same type as those obtained
in corresponding calculations for open quantum systems
with ω = 0.05i, see Figure 1 (left panel) in reference [48]
with γ1 = γ2 and Figure 2 (left panel) in reference [48]
with γ1 ≈ γ2, respectively.

Finally, we perform calculations with the
Hamiltonian (4) but different signs for the two γi

(and ω = ω12 = ω21). In this case, the eigenvalues

Ei,j ≡ Ei,j + i
2Γi,j are given by (5) with

Z =
1
2

√

(e1−e2)2− 1
4
(γ1−γ2)2+i (e1−e2)(γ1−γ2) +4ω2.

(36)
According to the condition Z = 0 for the appearance of
an EP, we have one EP at the crossing point a = acr of
the two ei trajectories (where e1(a) = e2(a)), if γ1 = −γ2

is parameter independent and ω = |γi/2| is real. There is
however no EP when ω is imaginary. If ω is complex and
the widths γi of the two states have different signs, there is
also one EP. We show the corresponding numerical results
with one EP in Figure 7.

We underline here that the results of Figure 7 are ob-
tained by using the Hamiltonian (4) for a system with pa-
rameter independent values of loss and gain. As usual, the
EP appears at the crossing point of the energy trajectories
if ω is real. The system shows the characteristic features
of an open quantum system. A balance between gain and
loss may appear, is however not necessary. Systems of this
type will surely allow many different applications.

4 Conclusions

The results presented in the present paper show clearly the
common features as well as the main difference between
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Fig. 7. Energies Ei (top), widths Γi/2 (mid) and mixing coefficients |bij | (bottom) of N = 2 states of an open quantum system
with gain and loss which is coupled to one common channel, as a function of a. The parameters are e1 = 1− a/2; e2 = a/2 and
γ1/2 = −0.05; γ2/2 = 0.05; ω = 0.05 (left panel); γ1/2 = −0.05; γ2/2 = 0.0205; ω = 0.05 (1 + i)/

√
2 (right panel).

Hermitian and non-Hermitian quantum physics when de-
scribing small systems coupled to a small number of
well-defined decay channels. Far from the singular EPs
in non-Hermitian quantum physics, everything is (al-
most) analytical as in Hermitian quantum physics: Fermi’s
golden rule holds and counterintuitive results do not oc-
cur; the eigenfunctions of the Hamiltonian are nearly or-
thogonal; and the differences between Hermitian and non-
Hermitian quantum physics practically vanish. At (and
near to) EPs, however, the functional change of the de-
pendence of the observables changes radically. It is non-
analytical and Fermi’s golden rule does not hold. Instead,
so-called counterintuitive results appear. This happens
under the influence of the environment which is extremely
large in the neighborhood of EPs where the eigenfunctions
of the Hamiltonian are really biorthogonal. The environ-
ment itself represents an infinitely large number of degrees
of freedom (continuum of scattering wavefunctions). It can
be changed by means of external forces, however it can
never be deleted from an open quantum system. Since all
the individual states of the system are coupled to the com-
mon environment, their wavefunctions become mixed due
to this coupling. Although this is a second-order process,
it becomes the dominant one near to an EP.

This conclusion is based on the analytical and numer-
ical results shown and discussed in the present paper. On
the one hand, the differences between calculations with
Hermitian and non-Hermitian Hamilton operator almost
vanish far from EPs (see Fig. 3d). On the other hand,
counterintuitive results determine the dynamics of the sys-
tem in the neighborhood of EPs. Most visible (and known
for quite a long time) is the reduction of the lifetime of
one of the two neighboring states in spite of increasing
(imaginary) coupling strength between system and com-
mon environment. This result originates at the EP as all
our calculations show.

The strong influence of an EP onto the dynamics of
an open quantum system can be expressed quantitatively
by the phase rigidity of the eigenfunctions of the non-
Hermitian Hamilton operator which is defined in (22).
The eigenfunctions are biorthogonal, and the phase rigid-
ity vanishes in approaching an EP. Here, the wavefunc-
tions differ from one another by only a phase factor. Such
a result is, of course, completely different from that what is
known in Hermitian quantum physics. It explains why the
results obtained in non-Hermitian quantum physics dif-
fer substantially from those of Hermitian quantum physics
only in the neighborhood of EPs.
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The meaning of the environment for the physics of
open quantum systems is confronted recently with existing
experimental data in the review [58]. Further experimen-
tal and theoretical studies along the lines sketched in the
present paper are necessary in order to receive more in-
formation on open quantum systems (which are embedded
into a common well-defined environment) and to describe
them by means of a non-Hermitian Hamilton operator.
The results are basic also for a better understanding of
processes occurring in optics, e.g. of the Dicke superra-
diance, as mentioned above. By choosing an appropriate
environment, it is possible to manipulate the system and
to produce, by doing this, systems with desired properties.
These results are of importance for basic research as well
as for applications.
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