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Abstract. We derive a closed set of equations for the kinetics and non-equilibrium dynamics of interacting
Luttinger Liquids with cubic resonant interactions. In the presence of these interactions, the Luttinger
phonons become dressed but still well defined quasi-particles, characterized by a life-time much larger then
the inverse energy. This enables the separation of forward time dynamics and relative time dynamics into
slow and fast dynamics and justifies the so-called Wigner approximation, which can be seen as a “local-time
approximation” for the relative dynamics. Applying field theoretical methods in the Keldysh framework,
i.e. kinetic and Dyson-Schwinger equations, we derive a closed set of dynamic equations, describing the
kinetics of normal and anomalous phonon densities, the phonon self-energy and vertex corrections for a
Gaussian non-equilibrium initial state. In the limit of low phonon densities, the results from self-consistent
Born approximation are recaptured, including Andreev’s scaling solution for the quasi-particle life-time
in a thermal state. As an application, we compute the relaxation of an excited state to its thermal equi-
librium. While the intermediate time dynamics displays exponentially fast relaxation, the last stages of
thermalization are governed by algebraic laws. This can be traced back to the importance of energy and
momentum conservation at the longest times, which gives rise to dynamical slow modes.

1 Introduction

The kinetics and non-equilibrium dynamics of low dimen-
sional, interacting quantum systems is an outstanding and
fascinating challenge in quantum many-body physics [1,2].
On the one hand, it is strongly motivated by recent
cold atom experiments performed on low entropy quan-
tum wires under out-of-equilibrium conditions [3–9]. On
the other hand, from a theoretical point of view, the
study of non-equilibrium dynamics in integrable and non-
integrable systems is currently a field of growing inter-
est [10–12]. This is triggered by the question, whether and
– if answered affirmatively – in which specific way a one-
dimensional quantum system is able to thermalize [13].

An example of a one-dimensional integrable model
is the linear Luttinger Liquid, which is the effective
long-wavelength description of one-dimensional interact-
ing quantum fluids, composed either of fermions or
bosons [14,15]. Due to integrability, even if prepared in
a non-equilibrium state, this model will never thermal-
ize, since the number of excitations for each momentum
mode q is a constant of motion [10]. However, as already
pointed out by Andreev and Haldane [14,16], there are
non-zero corrections to the linear theory, which certainly
break integrability in the Luttinger model. They are irrel-
evant in the sense of the renormalization group, and do
not affect static observables. In contrast, they lead to a
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modification of dynamical, i.e. frequency resolved, correla-
tion functions. These nonlinear corrections describe three-
body scattering processes between phonons and are, due
to their resonant nature, not straightforwardly approached
theoretically.

Apart from a wealth of numerical studies [17–24],
based on matrix product state and Bethe ansatz calcu-
lations, several field theoretical approaches have been de-
veloped [25–32]. A seminal early study was carried out
by Andreev, who used a self-consistent Born approxima-
tion to determine the phonon self-energies, establishing
a universal phonon absorbtion rate γq ∼ qη with expo-
nent η = 3

2 for a finite temperature system [33–35]. A
similar computation leads to an exponent η = 2 for the
case of a zero temperature state [36], which has been veri-
fied by several numerical methods [18]. Recently, so-called
nonlinear Luttinger Liquids have been introduced, which
are designed to capture corrections to the linear Luttinger
theory in the context of one dimensional fermions sys-
tems [27,28,37,38]. These have been very sucessful in de-
termining, for example, the power law divergences of the
dynamic structure factor, or thermalization rates for near
equilibrium systems [37]. Despite the large number of an-
alytic and semi-analytic works [10,39–43], only few ap-
proaches for far from equilibrium dynamics have been de-
veloped so far [44–46].

The purpose of this article is to provide a quantita-
tive description of the kinetics of an interacting Luttinger
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Liquid. Strong motivation comes from a recent surge of
experiments with interacting one-dimensional bosons and
fermions in ultracold atom setups performed under out-of-
equilibrium conditions [4,5,8,9,47]. Here a one-dimensional
quantum fluid is prepared in a true non-equilibrium state,
and the experiment subsequently witnesses the time evo-
lution of the system. At the present stage, the systems’
properties are still well described by linear Luttinger Liq-
uid theory with, however, a time dependent, far from equi-
librium distribution function [4–6,9]. So far, there are nu-
merous theoretical works which describe these systems in
terms of non-interacting Luttinger liquids alone, where
there is only dephasing dynamics and the evolution of
the distribution function is absent [10,39,48,49]. This de-
scribes well the pre-thermalized regime in the shorter
time dynamics. However, current experiments are steadily
pushed to larger observation times, where the thermaliza-
tion crossover caused by the residual (RG irrelevant) in-
teractions in the Luttinger liquid should occur. What is
therefore lacking at present in the theoretical literature, is
a kinetic theory for the time evolution of the distribution
function in these systems, which is able to track such a
crossover and the associated time scales. This is the aim
of the present paper.

On the technical side, achieving our goal amounts to
obtaining theoretical control over the infrared divergences
inherent to naive perturbation theory for the interact-
ing Luttinger Liquid. While this issue was solved for the
stationary equilibrium (or near equilibrium, in the sense
of linear response) long time ago by Andreev and oth-
ers [16,25,36], we focus here on getting this problem under
control in the kinetic equation, initialized with a general
Gaussian non-equilibrium distribution function.

In more detail, exploiting the resonant but subleading
character of the interactions in a one-dimensional inter-
acting quantum fluid, we apply non-equilibrium diagram-
matic theory to solve for the non-equilibrium dynamics of
an interacting Luttinger Liquid. We show that due to the
resonant but subleading nature of the interactions, ver-
tex corrections are moderate for many physical realiza-
tions and consequently the non-equilibrium dynamics and
self-energy can be solved within self-consistent Born ap-
proximation. The self-consistency is however, crucial, and
a perturbative Born approach leads to infrared divergen-
cies. The result is an effectively closed set of equations
for the time-dependent phonon density and self-energy
in the presence of resonant interactions. This approach,
without considering the vertex correction and restricted
to equilibrium systems, has been discussed also for non-
interacting one-dimensional dispersive fermions [50] and
in the context of the Coulomb drag effect for sufficiently
low temperatures [51].

As a major result of the RG irrelevant but resonant in-
teractions, the excitations remain well-defined but dressed
phonons, with a life-time τq much larger than their typical
coherent time-scale ε−1

q . The dressed spectral function re-
mains sharply peaked at the bare phonon energies εq with
width τ−1

q , such that the self-energy and distribution func-
tion of the phonons for frequencies sufficiently close to the

on-shell frequency can be approximated by their on-shell
value. This is referred to as the quasi-particle approxi-
mation. The long life-time of the dressed phonons results
in a further simplification, as it implies that the forward
time evolution of the system is much slower then the rela-
tive time evolution. This decoupling leads to a “local time
approximation”, where an effectively stationary problem
can be solved at each instant of time. We will quantify the
validity of these approximations in terms of general but
state dependent quantitative bounds below.

Our estimate of the vertex correction further supports
the validity of the self-consistent Born approximation for
the time evolution. More precisely, for zero temperature
states, the vertex correction vanishes identically, repro-
ducing previous results [52]. Away from the ground state,
the loop correction leads to a finite multiplicative renor-
malization of the vertex, which remains small for states
close to thermal equilibrium. This implies that for typ-
ical translation invariant low entropy initial states, the
equations governing the time evolution of the phonon oc-
cupation and the self-energy are effectively closed. It does
not rule out, however, the possibility of significant vertex
renormalization in general.

The strength of this approach is the simplicity of the
resulting final equations, which can directly be imple-
mented and solved numerically. This provides a useful tool
with a broad spectrum of applicability, ranging from track-
ing the thermalization process of non-integrable, weakly
interacting Bose and Fermi gases to the study of inter-
acting open system dynamics [23,24,53,54]. It is suited
for an initial state of a general Gaussian form with arbi-
trary, non-zero phonon densities, including diagonal and
off-diagonal occupations.

The structure of the kinetic equation and the equations
for the self-energy and vertex correction reveal strong as-
pects of universal behavior. This concerns two key points:
first, for an occupation function, which decreases suffi-
ciently strongly in momentum space, they are indepen-
dent of the short distance cutoff of the Luttinger liquid,
and thus of microscopic details inherited from even shorter
length scales. This property emerges via a “bootstrap”
mechanism within the self-consistent Born approximation,
as we elaborate on in the main text. Second, after a proper
rescaling of time1, all microscopic parameters are com-
pletely eliminated from the dynamic equations. Conse-
quently and remarkably, the only microscopic information
that enters the dynamics is the initial phonon density at
t = 0.

At this point, we also mention three limitations of
our approach, which however are not directly physi-
cally relevant for the ultracold atomic systems we are
targeting. First, as already briefly mentioned above,
our setting is restricted to initial quantum states with
Gaussian, although in general far-from-equilibrium corre-
lations. Such conditions have been discussed extensively
in previous works [4,5,9,10,39,44], mostly for the case
of linear Luttinger Liquids generating the subsequent

1 According to t → t
v0

, where v0 is the strength of the
nonlinearity.
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dynamics. Second, our method is not suited to describe
the asymptotic infrared behavior of a one-dimensional
quantum fluid, where for the smallest momenta2 it
has been shown that the elementary excitations are
fermions [27,28,31,32,55] with a strongly suppressed de-
cay rate γ ∼ k8. Third, it doesn’t work for frequencies (or
temperatures) above the Luttinger cutoff, where the dom-
inant interaction is given by scattering between Luttinger
phonons and mobile electronic impurities [30,37,38,56].
However, the range of validity of our approach coincides
perfectly with cold atom experiments, which consider mo-
menta 10−2Λ < p < Λ and temperatures kBT < �uΛ,
where u is the sound velocity and Λ the Luttinger cutoff.
The Luttinger cutoff scale is given by the chemical poten-
tial for these experiments, Λ ≈ √

2gn0 for weak interac-
tions g, and n0 the mean density. The infrared restriction
of the momentum range results from typical trap sizes,
with oscillator lengths roughly two orders of magnitude
larger than 1/Λ. This discards precision measurements of
frequency resolved observables in these extreme infrared
asymptotic regimes, and thus is not of foremost interest
for our study.

The remainder of the paper is organized as follows.
In Secion 2, we introduce and briefly discuss the action
of the interacting Luttinger model in the phonon repre-
sentation and in the Keldysh non-equilibrium framework.
In Section 3, we derive the non-equilibrium fluctuation-
dissipation relation (FDR) and determine the phonon self-
energies in self-consistent Born approximation for an ar-
bitrary phonon distribution. Furthermore, we discuss the
necessary approximations and quantify their justification.
Subsequently, taking advantage of Section 3, we deter-
mine the kinetic equation for the phonon density in self-
consistent Born approximation in Section 4. In Section 5,
we take into account non-zero off-diagonal (anomalous)
phonon densities and show in which way the kinetic equa-
tion and the phonon self-energy are modified in their pres-
ence. Additionally, we derive a kinetic equation for the
anomalous phonon densities. These results are applied in
Section 6 to determine the relaxation of an excited, ther-
mal state back to thermal equilibrium. Furthermore, the
analytically obtained relaxation rate is compared to the
numerical value, showing excellent agreement. Finally, in
Section 7, we go beyond the self-consistent Born approx-
imation and apply Dyson-Schwinger equations to take
into account a non-zero vertex correction. We determine a
closed set of equations for the kinetic equation, self-energy
and vertex correction for arbitrary states, and discuss the
effect of the latter.

2 Model

The action describing the interacting Luttinger model con-
sists of two parts (we set � = 1)

S = STL + SInt. (1)

2 For momenta k � √
KΛ, where K is the Luttinger param-

eter and Λ the Luttinger cutoff.

Here, STL is the well-known quadratic Tomonaga-
Luttinger (TL) action [14,57,58]

STL =
1
2π

∫
x,t

[
(∂xφ) (∂tθ) − uK (∂xθ)2 − u

K
(∂xφ)2

]
,

(2)

where
∫

x,t ≡ ∫∞
−∞ dt dx is the integral over space and

time and φ = φ(x, t) and θ = θ(x, t) are dimensionless,
real fields. The non-linear part SInt is cubic in the fields
and reads [59]

SInt =
1
2π

∫
x,t

[
κbc (∂xθ)2 (∂xφ) + κqp (∂xφ)3

]
. (3)

Starting from a microscopic derivation of the TL model
as the effective long-wavelength description of interacting
bosons or fermions in one dimension, the fields θ, φ rep-
resent local phase and density fluctuations [14,15]. In this
setting, we consider effective electron-electron (or boson-
boson) interaction to be short ranged, i.e. of δ-function
type [15]. The non-linearity corresponding to κbc as well
is of microscopic origin and is referred to as band curva-
ture. It originates from deviations from a perfectly linear
dispersion of the microscopic particles. On the other hand,
the term corresponding to κqp is generated in an effective
long-wavelength description, where the fast modes have
been integrated out already, and describes effective three-
particle interactions.

The fields θ, φ are dimensionless, i.e. they have a
canonical scaling dimension equal to zero. As a result, they
do not scale when coarse graining to larger distances, i.e.
when performing the rescaling

x → lx, t → lzt, (4)

where z = 1 is the dynamical exponent and l > 1. In
contrast

SInt → 1
2πl

SInt (5)

under the rescaling (4), such that the influence of SInt

vanishes on the longest wavelengths, i.e. it becomes ir-
relevant in the renormalization group (RG) sense. Conse-
quently, the static equilibrium properties of the interact-
ing Luttinger model (Eq. (1)) are well described by the
quadratic part of the action alone and the partition func-
tion can be approximated by

Z =
∫

D[θ, φ] eiS ≈
∫

D[θ, φ] eiSTL . (6)

Here,
∫ D[θ, φ] stands for the functional integral over the

fields θ, φ.
The Tomonaga-Luttinger action describes phonons

with a dispersion εq = u|q| linear in the momentum |q|,
propagating with the speed of sound u. In the absence of
Sint, these phonons are non-interacting and consequently
the phonon density for a specific mode q is a conserved
quantity. However, although the phonon interaction is ir-
relevant in the RG sense, it contains resonant processes
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where two phonons propagating in the same direction and
the same speed of sound can interact with each other for
an infinite time span. This leads to a non-trivial modifica-
tion of time-dependent, dynamical observables compared
to the case of non-interacting phonons. As pointed out in
a seminal work by Andreev [16] (considering finite T ) and
more recent work [18,36], the presence of SInt leads to a
finite phonon lifetime

τq ∼ |q|−η with

{
η = 3

2 for T > 0

η = 2 for T = 0
, (7)

which, in equilibrium, is visible only in dynamical, i.e. fre-
quency dependent quantities such as the dynamical struc-
ture factor

S(q, ω) =
∫

x,t

ei(ωt−qx)〈(∂xφ)x,t (∂xφ)0,0〉, (8)

with

〈. . .〉 =
1
Z

∫
D[θ, φ] . . . eiS . (9)

For dynamical quantities it is therefore important to take
into account the full action (Eq. (1)), instead of the re-
duced quadratic part only, as indicated in equation (6).

For a true non-equilibrium situation, the phonon dis-
tribution is not stationary, i.e. not a thermal or zero
temperature distribution, but instead the phonon num-
ber nq for a given momentum mode q becomes time-
dependent. The redistribution of phonons between the dif-
ferent momentum modes with exact energy conservation
is described by the resonant interactions in SInt, and in a
non-equilibrium situation the action can not be reasonably
reduced to the quadratic Tomonaga-Luttinger action, for
which the phonon density is a constant of motion.

Since we are interested in the non-equilibrium dynam-
ics in the interacting TL model, we formulate the prob-
lem in a Keldysh path integral framework, which is able
to treat both equilibrium and non-equilibrium dynamics
on equal footing [60–62]. We will now shortly introduce
the canonical Bogoliubov transformation, which switches
from the basis of real fields θ, φ to the basis of complex
fields ā,a. Those correspond to creation and annihilation
operators in an operator picture [15]. We close the model
section by placing the action (1) on the Keldysh contour
and briefly explaining the formalism.

2.1 Phonon basis

In order to use a physically more appealing representation
of the TL action, one commonly introduces a set of com-
plex fields ā,a which represent the (bosonic) eigenmodes of
the system, i.e. the discussed phonons. The corresponding

Bogoliubov transformation is

θx,t = θ0 +
i

2

∫
q

(
2π

|q|K
) 1

2

e−iqx (āq,t − a−q,t) , (10)

φx,t = φ0 − i

2

∫
q

(
2πK

|q|
) 1

2

sgn(q)e−iqx (āq,t + a−q,t) ,

(11)

with abbreviations φx,t = φ(x, t) and
∫

q
=
∫∞
−∞

dq
2π and

the Fourier transformed phonon fields

aq,t =
∫

x

e−iqxax,t. (12)

The product āx,tax,t represents a phonon density and,
therefore, in the continuum limit, the fields āx,t, ax,t are
not dimensionless, in contrast to φx,t, θx,t, but scale as
āx,t ∼ 1√

x
. The quadratic part of the action transforms

into

STL =
1
2π

∫
q,t

āq,t (i∂t − u|q|) aq,t, (13)

describing non-interacting phonons with a linear disper-
sion εq = u|q|. The cubic part becomes

SInt =
1
2π

∫
q,p,t

vq,p,p+q

√
|qp(p + q)|

×
(
āp+q,taq,tap,t +

a−q−p,taq,tap,t

3
+ h.c.

)
, (14)

with the vertex function

vq,p,k = κbc

√
π

2K

(
qp

|qp| +
kp

|kp| +
qk

|qk|
)

+ κqp

√
9K3π

2 .

(15)

The interaction (14) describes cubic phonon scattering
processes with total momentum conservation. However,
not all of the processes contained in SInt are resonant, i.e.
exactly energy conserving in the sense that εp+q = εq + εp.
As explained by Andreev [16] and pointed out above, the
resonant processes lead to a divergence of the self-energy
(and the kinetic equation, as we see later) in perturbation
theory and are therefore the only relevant terms from a
dynamical perspective. The term in equation (14) describ-
ing the annihilation (creation) of three phonons can never
be resonant. It will therefore play no role in our analysis
and we will skip it from now on. For the residual terms,
resonance requires |p + q| = |p|+ |q|. For all momenta p, q
fulfilling this condition, the vertex function takes on the
value

v0 ≡ v1,1,1 =

√
9π

2K

(
κbc + K2κqp

)
. (16)

Consequently, instead of taking the full action SInt, it is
sufficient to consider the reduced but resonant phonon
interaction

SRes =
v0

2π

∫ ′

p,q,t

√
|pq(p + q)| (āp+q,taq,tap,t + h.c.) , (17)
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where the prime in
∫ ′

p,q
indicates that the integral runs

only over momenta q, p which have the same sign. To-
gether the quadratic action and the resonant phonon inter-
action describe the dynamics of the interacting Luttinger
model in the phonon basis,

S = STL + SRes. (18)

2.2 Keldysh action

Non-equilibrium field theory is commonly performed in
the Keldysh path integral framework, which is able to
deal both with equilibrium and true non-equilibrium sit-
uations. To set up the Keldysh path integral, one first
doubles the degrees of freedom in the theory by introduc-
ing plus and minus fields a+,q,t, a−,q,t, representing for-
ward and backward time evolution on the Keldysh con-
tour [61,63]. In this representation, the partition function
is determined via

Z =
∫

D[a+, a−, ā+, ā−] eiS+−iS− , (19)

where S± is the phonon action (18) with the replacements
{ap,t, āp,t} → {a±,p,t, ā±,p,t}. The ±-representation con-
tains redundancy, and a technically and physically more
appealing representation is found by completing the trans-
formation to the Keldysh representation, introducing clas-
sical and quantum fields according to

ac =
1√
2

(a+ + a−) , aq =
1√
2

(a+ − a−) . (20)

In the Keldysh representation, the quadratic action is

S(2) =
1
2π

∫
t,t′,p

(
āc

p,t, ā
q
p,t

)( 0 DR
p,t,t′

DA
p,t,t′ DK

p,t,t′

)(
ac

p,t′

aq
p,t′

)
,

(21)

with the bare inverse retarded/advanced propagators

DR
p,t,t′ = δ(t − t′)

(
i∂t′ − u|p| + i0+

)
, (22)

DA
p,t,t′ =

(
DR

p,t,t′
)†

= δ(t − t′)
(
i∂t′ − u|p| − i0+

)
, (23)

and the Keldysh component of the inverse propagator

DK
p,t,t′ = 2i0+F (p, t, t′). (24)

Here, F (p, t, t′) is the distribution function of the ex-
citations and 0+ is the infinitesimal regularization for
the quadratic theory [61]. In an equilibrium, i.e. time-
translational invariant situation, F (p, t, t′) = F (p, t − t′)
and its Fourier transform is the bosonic distribution

F (p, ω) = coth
( ω

2T

)
= 2nB(ω) + 1, (25)

with the Bose function nB(ω) =
(
e

ω
T − 1

)−1. The reso-
nant interactions in the Keldysh representation take on

the form

SRes =
v0√
8π

∫ ′

p,k,t

√
|pk(k + p)|

[
2āc

k+p,ta
c
k,ta

q
p,t

+ āq
k+p,t

(
ac

k,ta
c
p,t + aq

k,ta
q
p,t

)
+ h.c.

]
. (26)

The bare response and correlation functions (retarded, ad-
vanced and Keldysh Green’s functions) for the phonon de-
grees of freedom are obtained according to

GR
q,t,t′ = −i〈ac

q,tā
q
q,t′〉 =

(
DR
)−1

q,t,t′

= −iΘ(t − t′) e−iu|q|(t−t′),

GA
q,t,t′ = −i〈aq

q,tā
c
q,t′〉 =

(
DA
)−1

q,t,t′

= iΘ(t′ − t) e−iu|q|(t−t′),

GK
q,t,t′ = −i〈ac

q,tā
c
q,t′〉 = − (GR ◦ DK ◦ GA

)
q,t,t′

= −i (2nB(u|q|) + 1) e−iu|q|(t−t′). (27)

Here . . .◦. . . stands for the convolution in the non-diagonal
elements, i.e. the time index, but means multiplication in
momentum space.

In the presence of interactions, the Green’s functions
are modified by the emergence of non-zero self-energies
ΣR/A/K , which replaces the infinitesimal regularization.
The corresponding formulas are

GR
q,t,t′ =

(
DR − ΣR

)−1

q,t,t′ ,

GA
q,t,t′ =

(
DA − ΣA

)−1

q,t,t′ ,

GK
q,t,t′ = − (GR ◦ ΣK ◦ GA

)
q,t,t′ , (28)

where the infinitesimal factor 0+F has been overwritten
by the finite Keldysh self-energy ΣK . The distribution
function F in the presence of interactions is determined
by the formula

GK
q,t,t′ =

(
GR ◦ F − F ◦ GA

)
q,t,t′ . (29)

This setting corresponds to the physical situation, in
which a system is initialized at time t = 0 in a Gaussian
density matrix ρ0 (Gaussian in the bosonized language).
It then evolves in time according to a Hamiltonian H ,
which constitutes the quadratic and cubic terms discussed
in equations (21) and (26). In the Keldysh setting, this dy-
namics is expressed in terms of the retarded and advanced
quadratic and cubic parts of the action. The initial density
matrix enters the action in terms of pure quantum ver-
tices. In the present case, i.e. for purely Gaussian initial
conditions, the initial density matrix is completely cap-
tured in terms of the distribution function F and equa-
tion (24). However, as has been pointed out recently, the
bosonization procedure for interacting fermions or bosons
out of equilibrium is in general not that simple, since
initial conditions (even if quadratic in the microscopic
fermionic or bosonic picture) will, in principle, generate
quantum vertices of arbitrary order [64–68], which have to
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be taken into account systematically for these cases. The
aim of this work is to determine the self-energies ΣR/A/K

and the distribution function F (q, t, t′) for a system that
is driven out of equilibrium and evolves in time, for in-
stance relaxing to an equilibrium state and approaching a
bosonic distribution.

This will be done in two parts. First, we show how one
determines the self-energies ΣR/A/K from a given (non-)
equilibrium distribution function F (q, t, t′). To this end,
we generalize Andreev’s self-consistent Born approach to
a non-thermal, non-equilibrium situation. Second, we use
the kinetic equation approach to determine the time-
evolution of the distribution function F in self-consistent
Born approximation. Combining these two approaches al-
lows us to determine the time-evolution of both the dis-
tribution function of the excitations and the self-energies,
which play the role of finite lifetimes of the system’s
excitations.

3 Self-energies

The presence of the cubic, resonant interactions SRes mod-
ifies the phonon response and correlation functions ac-
cording to equations (28) by creating finite self-energies
ΣR/A/K . These self-energies are to leading order purely
imaginary, leading to a finite decay rate of phonons or,
in other words, to a finite phonon lifetime. We will
now derive a method to determine these lifetimes for a
non-equilibrium problem, where the distribution function
F (q, t, t′) is time dependent and varies on time scales
which are larger than the individual phonon lifetimes. To
this end, we first derive the non-equilibrium version of a
fluctuation-dissipation relation for the two-point response
and correlation functions.

3.1 Non-equilibrium fluctuation-dissipation relation

Fluctuation-dissipation relations (FDR) relate the re-
sponse (i.e. spectral) properties of the system encoded in
GR/A to its correlations via the distribution function F .
A particular example for such a relation is equation (29).
Inverting this equation results in an FDR for the self-
energies,

ΣK
q,t,t′ = − ((DR − ΣR

) ◦ F − F ◦ (DA − ΣA
))

q,t,t′

= −i(∂t + ∂t′)Fq,t,t′ +
(
ΣR ◦ F − F ◦ ΣA

)
q,t,t′ .

(30)

For a time-translational invariant system, the first term
on the r.h.s. equals zero and due to the identity ΣA =(
ΣR
)†, equation (30) reduces to the well-known relation

in frequency space

ΣK
q,ω = −2i Im

(
ΣR

q,ω

)
Fq,ω . (31)

This is consistent with our initial regularization of the
quadratic sector for the case ΣR = −i0+.

A useful representation for a two-time function
F (q, t, t′) is to choose Wigner coordinates in time, i.e.
defining the forward time τ = t+t′

2 and the relative
time Δt = t − t′ [61]. Then one defines F (q, Δt, τ) ≡
F (q, τ + Δt/2, τ − Δt/2) and its Fourier transform

F (q, ω, τ) =
∫

dΔt eiΔtωF (q, t, τ). (32)

Applying Wigner coordinates and the Wigner transforma-
tion (32) to the Keldysh self-energy in equation (31) leads
to

ΣK
q,ω,τ = −i∂τFq,ω,τ +

(
ΣR ◦ F − F ◦ ΣA

)
q,ω,τ

. (33)

Equation (33) is an exact expression for the Keldysh self-
energy in Wigner representation. A complication arises
since the Wigner transform of a convolution is not the
product of the corresponding Wigner transforms, in con-
trast to the ordinary Fourier transform. In fact, one finds

(
ΣR ◦ F

)
q,ω,τ

= ΣR
q,ω,τ e

i
2

(←
∂ τ

→
∂ ω−

←
∂ ω

→
∂ τ

)
Fq,ω,τ . (34)

Without specific knowledge on the functional behavior of
ΣR and F , equation (34) is hard to evaluate explicitly.
We will now briefly discuss a situation, with two partic-
ular approximations, which applies to the present model
and for which the analytic evaluation of equation (34) is
possible.

3.1.1 Wigner approximation

For the case of scale separation in the forward and relative
time, one can approximate the exponential in (34) by the
leading order terms. The product ∂τ∂ω expresses the com-
petition between relative time and forward time dynamics,
it is small for slow forward time dynamics and fast relative
dynamics [61,69]. Comparing the zeroth order term with
the first order term in an expansion of the exponential, we
find the condition for approximating equation (34) by the
zeroth order term to be

1 

∣∣∣∣∣
∂ωΣR

q,ω,τ

ΣR
q,ω,τ

∣∣∣∣∣
∣∣∣∣∂τFq,ω,τ

Fq,ω,τ

∣∣∣∣ . (35)

If this condition is fulfilled, it allows for a separation into
fast relative time dynamics and slow forward time dynam-
ics. In general, it is a function of the Luttinger parame-
ters u, K, the strength of the nonlinearity v0, as well as
of the initial phonon distributions. Therefore, a general
criterion for the applicability of the separation of time
scales cannot be derived at this point. However, as has
been shown in a different context [70], for equilibrium or
near to equilibrium initial states, it is fulfilled for temper-
atures kBT < uΛ smaller than the Luttinger cutoff. As it
turns out, the right hand side of equation (35) is a mono-
tonic function of the quasi-particle distribution nq and a
conservative criterion for the applicability of the Wigner
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approximation is therefore nq < (e
|q|
Λ − 1)−1 for all mo-

menta q, i.e. the distribution should be smaller than the
corresponding distribution at the cutoff temperature. We
can thus apply the Wigner approximation to the FDR,
resulting in

ΣK
q,ω,τ = −i∂τFq,ω,τ + 2i Im (Σq,ω,τ ) Fq,ω,τ . (36)

The validity of the FDR in Wigner approximation is a
very important result. It is commonly used as the starting
point for deriving a kinetic equation for the distribution
function in arbitrary dimensions. However, in the present
case, we will further simplify the FDR by making use of
the fact that we are dealing with resonant interactions in
one dimension.

3.1.2 Quasi-particle approximation and on-shell FDR

The major effect of the non-linearities in the action is
the emergence of finite phonon lifetimes due to resonant
phonon-phonon scattering processes. The resonant char-
acter of this interaction – the fact that for two phonons
travelling in the same direction momentum and energy
conservation is expressed by the identical δ-constraint – is
the key property of one-dimensional systems with linear
dispersion. The resonant contributions dominate the self-
energy and the kinetic equation, while the non-resonant
processes give only subleading contributions to the life-
times and the dispersion and have therefore already been
eliminated on the basis of the action by using SRes instead
of SInt in equation (18).

The retarded self-energy is decomposed according to

ΣR
q,ω,τ = −iσR

q,τ + δΣR
q,ω,τ , (37)

where σR
q,τ is a positive, frequency independent function,

which varies slowly in forward time τ . For resonant in-
teractions δΣR

q,ω,τ = 0 and consequently, the self-energy
is frequency independent and purely imaginary. Non-
resonant contributions in the interaction lead to δΣR �= 0,
which however is generally strongly subleading compared
to σR.

For the present model, the phonon interactions are
RG-irrelevant and only their resonant character allows
them to be of non-negligible influence. However, the ef-
fect of the interactions on the properties of the phonons
will be small and subleading due to the RG-irrelevance.
As a result, even in the presence of interactions, the
phonons will have a lifetime τq

ph = −Im
(
ΣR

q

)−1 much
larger than their associated coherent time-scale 1

u|q| , i.e.
τq
ph 
 1

u|q| . Consequently, the phonons remain well de-
fined quasi-particles with a spectral function Aq,ω,τ =
i
(
GR − GA

)
q,ω,τ

sharply peaked at the phonon energy
ω = u|q|3. For well defined quasi-particles, the self-

3 This underlies the functioning of the linear Luttinger-
Liquid theory in equilibrium. In non-equilibrium situations,
the RG-irrelevant nature of the interaction leads to a slowly
varying density, and therefore the argument holds true even
for this case

energies ΣR/A/K and the distribution function are eval-
uated on-shell, i.e. the frequencies are locked according to
ω = u|q|, since frequencies ω �= u|q| do not contribute to
the dynamics. For resonant interactions, on-shell evalua-
tion is implied and

δΣR/A
q,ω,τ = 0, (38)

as stated above. This is consistent with the result of An-
dreev’s and later works for equilibrium and holds true for
the non-equilibrium case as well. The corresponding de-
composition for the Keldysh self-energy (with a convenient
prefactor) reads

ΣK
q,ω,τ = −2iσK

q,τ + δΣK
q,ω,τ with δΣK

q,ω,τ = 0 (39)

for resonant interactions. Inserting equations (38), (39)
in the non-equilibrium FDR (36) results in the on-shell,
non-equilibrium FDR for resonant interactions

σK
q,τ = ∂τnq,τ + σR

q,τ (2nq,τ + 1) . (40)

Here we have used the fact that for well defined quasi-
particles, the on-shell distribution function Fq,ω=u|q|,τ =
2nq,τ + 1 equals the time-dependent phonon density nq,τ

at momentum q.
Equation (40) is the final form of the non-equilibrium

FDR that we will use to set up the kinetic equation in
the following section and to determine the Keldysh self-
energy σK for a system, for which the time-dependent
phonon density nq,τ is known. For the latter case, the only
unknown quantity is the retarded self-energy σR and we
can now set up the diagrammatic computation of σR in
the Keldysh non-equilibrium framework.

3.2 Quasi-particle lifetimes in self-consistent
Born approximation

In this section, we perform the self-consistent Born ap-
proximation in a diagrammatic representation to obtain
the self-energies σR

q,τ . This amounts to an infinite resuma-
tion over a certain class of diagrams and cures the diver-
gence of the self-energy occurring in the perturbative di-
agrammatic approach. In Section 7, we demonstrate that
the self-energy can be determined exactly in a one-loop
computation using Dyson-Schwinger equations and show
that the deviation from the self-consistent Born approxi-
mation is negligible for many initial states.

In a diagrammatic approach, classical (quantum) fields
are represented by a full (dotted) line, while ingoing lines
represent fields a and outgoing lines their complex conju-
gate ā. This leads to a representation of Green’s functions
in terms of diagrams as indicated in Figure 1, and vertices
as depicted in Figure 2. The retarded self-energy in self-
consistent Born approximation can directly be derived by
common diagrammatic rules and is depicted in Figure 3.
Inserting the Keldysh Green’s function

GK
q,ω = GR

q,ωΣK
q,ωGA

q,ω, (41)
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Fig. 1. Green’s functions in a diagrammatic representation.
Full (dotted) lines represent classical (quantum) fields, while
ingoing (outgoing) lines represent fields a (hermitian conjugate
fields ā). The time index has been omitted.

Fig. 2. Diagrammatic representation of SRes (see Eq. (26)). In
total, there exist six different vertices, three as depicted above
and three corresponding hermitian conjugates. Each vertex has
the prefactor V (p, q) = v0√

8π

√
pq(p + q).

and the on-shell self-energies Σ
R/A
q,ω = ∓iσR

q , ΣK
q,ω =

−2iσK
q , we can perform the frequency integration indi-

cated in Figure 3 and find for momenta q > 0

σR
q = v2

0

{∫
0<p<q

pq(q − p)σK
p

σR
p

(
σR

p + σR
q−p

)

−
∫

q<p

pq(p − q)σK
p

σR
p

(
σR

p + σR
p−q

)

+
∫

0<p

pq(p + q)σK
p

σR
p

(
σR

p + σR
p+q

)
}

. (42)

Since the self-energies must be invariant under the trans-
formation p → −p, one can further simplify equation (42),
ending up with

σR
q = v2

0

∫
0<p

σK
p

σR
p

(
qp(q − p)
σR

p + σR
q−p

+
qp(p + q)
σR

p + σR
p+q

)
. (43)

Finally, σK can be replaced using the FDR (40), which
leads to

σR
q = v2

0

∫
0<p

(
∂τnp

σR
p

+ 2np + 1
)

×
(

qp(q − p)
σR

p + σR
q−p

+
qp(p + q)
σR

p + σR
p+q

)
. (44)

For a given, time dependent distribution function nq,τ ,
σR

q,τ is the only unknown function in this equation and
has to be determined self-consistently. For a general time-
dependent function nq,τ this has to be done by iterat-
ing equation (44) numerically until a self-consistent so-
lution has been found. For the particular case for which
nq,τ shows scaling behavior in a sufficiently large momen-
tum window, one can determine a scaling solution for the
self-energy as well and extract the corresponding scaling
exponent [16,36]. We will now briefly discuss the latter
case and determine possible scaling solutions for the self-
energy, and close the section with a discussion on universal
aspects of the scaling solution.

Fig. 3. The retarded self-energy is the sum of three distinct di-
agrams as shown above. The notation is Q ≡ {ω, q}, P = {ν, p}
with p, q being momenta and ω, ν the corresponding frequen-
cies. The momentum integral runs only over momenta that
fulfill the resonance condition, which requires ω = u|q|.

3.2.1 Scaling solution for the self-energy

For the case when the density nq,τ is a scaling function,
i.e.

nq,τ = aτ |q|ηn , (45)

it is easy to show that also σR
q,τ will be a scaling function

σR
q,τ = γR

τ |q|ηR

, (46)

where the exponent ηR and prefactor γR
τ solely depend on

the scaling behavior of nq,τ , i.e. on ηn and aτ . In order
to show this, we introduce the rescaled self-energy σ̃R =
σR/v0 and time τ = τ̃ /v0, leading to

σ̃R
q =

∫
0<p

(
∂τ̃np

σ̃R
p

+ 2np + 1
)

×
(

qp(q − p)
σ̃R

p + σ̃R
q−p

+
qp(p + q)
σ̃R

p + σ̃R
p+q

)
. (47)

Next, we insert equations (45), (46) into (47) and perform
the transformation p → qx, yielding

γ̃R
τ̃ qηR

=
1

γ̃R
τ̃

q4−ηR

∫
0<x

[(
x(1 − x)

xηR + |1 − x|ηR

+
x(1 + x)

xηR + |1 + x|ηR

)

×
(

1 + 2aτ̃ (qx)ηn +
∂τ̃aτ̃

γ̃R
τ̃

(qx)ηn−ηR

)]
. (48)
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The exponent ηR is bounded from below and from above
according to 1 < ηR ≤ 2. Here, 1 < ηR results from the
fact that the interaction is RG irrelevant and the self-
energy correction can only be subleading compared to the
dispersion εq = u|q|. The case ηR = 2, i.e. diffusive scaling
of the lifetimes is only reached in the zero temperature
situation, otherwise one expects superdiffusive behavior
due to finite phonon densities with ηR < 2. As a result,
equation (48) distinguishes between three regimes:

– Low temperature states (T ≈ 0):
for nq � 1 and ∂τnq ≈ 0 the only term in the second
row of equation (48) with a relevant contribution is the
constant unity and

ηR = 2, γ̃R
τ =

√
I2,0 =

√
π

2
, (49)

where the factor Ii1,i2 will be defined in the following.
– Finite temperature states:

for nq 
 1 and q > max{ ȧτ

2aτ γ̃R
,
√

ȧτ

2aτ γ̃R
}, only the

factor proportional to nq contributes and we have

ηR = 2 +
ηn

2
, γ̃R

τ =
√

2aτI2+ ηn
2 ,ηn

. (50)

For a finite temperature state, nq = T
u|q| as |q| → 0,

such that

σ̃R
q =

√
2TI 3

2 ,−1

u
q

3
2 ≈ 0.789

√
2πT

u
q

3
2 . (51)

– Non-equilibrium states:
for nq 
 1 and q < min{ ȧτ

2aτ γ̃R
,
√

ȧτ

2aτ γ̃R
}, the dom-

inant contribution stems from the time derivative in
equation (48) and one finds

ηR =
4 + ηn

3
, γ̃R = 3

√
ȧτI 4+ηn

3 , 2ηn−4
3

. (52)

The integral factor is defined as

Ii1,i2 =
∫

0<x

(
x1+i2(1 − x)

xi1 + |1 − x|i1 +
x1+i2(1 + x)

xi1 + |1 + x|i1
)

.

(53)

This gives rise to the possibility of generic non-
equilibrium scaling behavior for out-of-equilibrium
states, with an exponent ηR, which is different from the
zero and finite temperature cases. A possible scenario
of such scaling is discussed in reference [70] for a driven
system of interacting bosons with a non-equilibrium
distribution with ηn = 1 in the infrared.

The results discussed above include the case of finite and
zero temperature equilibrium. For the latter nq = 0 and
therefore ηR = 2, γR

τ = v0

√
π
4 , while for finite temper-

ature nq ≈ T
u|q| and ∂τnq = 0 and consequently ηR =

3/2, γR
τ = 0.789v0

√
2πT

u . These are the mentioned results
obtained for the zero and finite temperature equilibrium
cases [16,18,36].

therm
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 te

m

perature

Fig. 4. Integrand ji1,i2(x) in the self-energy integral Ii1,i2 =∫
x

ji1,i2(x) as a function of x = p/q, where q is the external
momentum. The integrand j(x) elucidates the contribution to
σR

q from different momenta and shows clearly that the self-
energy at momentum q is dominated by the behavior of σR

p

for p < q. For physically relevant distribution functions, with
the property nq → 0 for q → Λ, the exponent ηR → 2 for
x → ∞, which leads to a decay of the integrand ∼ x−3 and a
well-defined self-energy integral.

3.2.2 Insensitivity of the self-energy to UV-behavior

The insensitivity of the above results to the behavior of
the model in the ultraviolet (UV) regime and therefore
the non-universal properties of the system is guaranteed
by the structure of the vertex and the diagrams in Fig-
ure 3. The self-energies σR

q are dominated by loop mo-
menta p < q below the external momentum q. Therefore
the non-universal behavior in the UV does not enter the
self-energies. This is emphasized in Figure 4, where the
integrand

ji1,i2(x) =
(1 − x)x1+i2

|1 − x|i1 + xi1
+

(1 + x)x1+i2

(1 + x)i1 + xi1
(54)

in Ii1,i2 =
∫

x
ji1,i2(x), x = p/q, is plotted for the case of

thermal and zero temperature scaling. It is evident that
for ingoing momenta q only momenta p < q contribute,
which show the same scaling behavior in the distribution
function. Therefore the scaling solutions for the self-energy
are robust against modifications of the density and the
model itself when approaching the UV.

4 Kinetic equation for the phonon density

In this section, we will derive a kinetic equation for
the phonon density in the case of resonant interactions.
A kinetic equation describes the time-evolution of the
distribution function generated by the Keldysh and re-
tarded/advanced self-energies [46,61,71], which can then
often be evaluated in the perturbative Born approxima-
tion. In the present case, due to the fact that the in-
teractions are resonant, the kinetic equation perturbation
theory diverges and we have to use a self-consistent Born
approach. Therefore, we evaluate the self-energy diagrams
with full Green’s functions, as in the previous section,
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Fig. 5. Diagrammatic representation of the Keldysh self-
energy σK

q in self-consistent Born approximation. The index
Q = {u|q| ± iσR

q , q} represents the on-shell frequency and mo-
mentum relation (+ for retarded, − for advanced Green’s func-
tions), while P = {ν, p} is the inner loop frequency and mo-
mentum and

∫
P

=
∫

ν,p
. Integration over resonant processes

only is implied.

which leads to an effective vertex correction for the kinetic
equation and a time-evolution linear in the interaction pa-
rameter v0.

The time-evolution of nq,τ is determined by the so-
lution of the on-shell FDR in equation (40), which after
rearrangement reads

∂τnq = σK
q,τ − (2nq,τ + 1)σR

q,τ . (55)

Again, the retarded self-energy is determined via a dia-
grammatic approach, where the corresponding diagrams
are shown in Figure 3. However, in contrast to the pre-
vious section, we also use a diagrammatic approach to
determine the Keldysh self-energy σK . As a consequence,
we derive a non-linear differential equation for the distri-
bution function. The diagrammatic representation of the
Keldysh self-energy is depicted in Figure 5.

For the full Green’s functions, we use the results from
the previous section

GR/A
q,ω,τ = 2π

(
ω − u|q| ± iσR

q,τ

)−1
(56)

and the relation

GK
q,ω,τ = GR

q,ω,τFq,ω,τ − Fq,ω,τGA
q,ω,τ

=
−8π2iσR

q,τ (2nq,τ + 1)

(ω − u|q|)2 +
(
σR

q,τ

)2 . (57)

In equation (57), the first equality holds in Wigner ap-
proximation, while the second equality results from the
quasi-particle approximation, both discussed in the previ-
ous section.

The frequency integration in the diagrammatic rep-
resentation can be performed analytically and yields the

kinetic equation (omitting time index)

∂τnq = 2v2
0

∫
0<p<q

pq(q−p)

σR
q +σR

p +σR
q−p

× (npnq−p − nq (1 + np + nq−p))

+ 4v2
0

∫
0<p

pq(q+p)

σR
q +σR

p +σR
q+p

× (np+q (nq + np + 1) − nqnp) . (58)

After transforming to dimensionless variables σR = v0σ̃
R,

τ = τ̃
v0

, we finally arrive at

∂τ̃nq =
∫

0<p<q

2pq(q−p)

σ̃R
q +σ̃R

p +σ̃R
q−p

× (npnq−p − nq (1 + np + nq−p))

+
∫

0<p

4pq(q+p)
σ̃R

q +σ̃R
p +σ̃R

q+p

× (np+q (nq + np + 1) − nqnp) . (59)

This is the kinetic equation for the phonon density in self-
consistent Born approximation.

Comparing this equation to equation (47), one finds
that the rescaled self-energy σ̃R

q and therefore also the
kinetic equation for a rescaled time τ̃ = v0τ only depend
on the phonon distribution nq,τ̃ and is independent of all
possible microscopic details that may enter u, K, v0 in the
model. As a result, the dynamics in the rescaled variables
is very generic for an interacting Luttinger Liquid and
only depends on the initial distribution function nq,τ=0

with which the system is initialized.
The typical time-scale for the kinetic equation in the

original variables is τtyp = 1
v0

, i.e. linear in the vertex
v0. This is a non-perturbative effect resulting from the
resonant interactions. Since two vertices enter the one-loop
diagrams, one might naively (or in perturbation theory)
expect that the typical time scale is given by the square
of the non-linearity. However, this is normalized by the
self-energies, which are proportional to v0 and required to
regularize the kinetic equation.

In the kinetic equation in (59), still the self-energies
σ̃R occur. In principle, one could again replace them by
a diagrammatic expression, which would give rise to an
infinite hierarchy. However instead of doing so, we use an
iterative process in which, for a given time τ , we deter-
mine self-consistently the self-energy σR

q,τ . This result is
then used to determine the r.h.s. of the kinetic equation,
to subsequently compute the distribution function in the
next time step τ + δτ . This procedure is illustrated in
Figure 6 and allows us to compute the non-equilibrium
dynamics of an interacting Luttinger Liquid, which may
be initialized in a non-thermal state.

We will now close this section by discussing two lim-
iting cases where analytic results become available. First,
the kinetic equation for small external momenta q, and
second the kinetic equation for a phonon distribution
nq,τ = nq,T + δnq,τ close to an equilibrium distribution
nq,T .
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Fig. 6. Schematic illustration of the iteration process to de-
termine the time-dependent phonon density nq,τ . For a given
time τ , the self-energy σR

q,τ is determined via the self-consistent
Born approximation according to equation (47). Subsequently,
the time-derivative of nq,τ is computed via the kinetic equa-
tion (59). Using a Runge-Kutta solver for numerical differential
equations, the density nq,τ+δτ can be computed and used as
the starting point for the next iteration.

4.1 Kinetic equation for small external momenta

For small external momenta, the kinetic equation (59) can
be brought into an even simpler form, explicitly revealing
the evolution of nq,τ for small q. In this case, the first
integral in (59) covers only a very small momentum region
and is proportional to q4−ηR

, 1 < ηR ≤ 2. As a result, it is
negligible compared to the second integral. On the other
hand, in the second integral summations including q can
be replaced according to p + q ≈ p, σR

q + σR
p ≈ σR

p . The
kinetic equation then simplifies to

∂τ̃nq,τ̃
q�1
= |q|

∫
0<p

2p2

σ̃R
p,τ̃

np,τ̃ (1 + np,τ̃ ) = |q|Iτ̃ , (60)

where Iτ is a time dependent but momentum independent
functional. The phonon density becomes

nq,τ̃
q�1
= nq,τ̃=0 + |q|

∫
0<t<τ̃

It (61)

for sufficiently small momenta. Crucially, the change is
linear in momentum q and for q = 0 the density is time
independent, and for all times pinned to its initial value.
This is an exact result, which can be traced back to par-
ticle number conservation in the underlying microscopic
model [72].

4.2 Relaxation close to equilibrium

A stationary solution of the kinetic equation ∂τnq,τ = 0
is given by the Bose distribution function

nq,τ = nB(u|q|, T ) =
(
eu|q|/T − 1

)−1

(62)

for arbitrary temperature T . Sometimes one is interested
in the relaxation of the distribution function close to equi-
librium

nq,τ = nB(u|q|, T ) + δnq,τ , (63)

where the variation δn � nB. For small momenta u|q| �
T , nB(u|q|, T ) = T

u|q| and we can expand the kinetic equa-
tion in the variation δn. The zeroth order part solves the
kinetic equation, and the leading order contribution stems
from the first order of the expansion. After eliminating
negligible terms, it reads

∂τ̃ δnq = −2Tq2δnq

u

(∫
0<p<q

1
σ̃R

q + σ̃R
p + σ̃R

q−p

+
∫

0<p

2
σ̃R

q + σ̃R
p + σ̃R

q+p

)
. (64)

For a distribution close to thermal equilibrium, the self-
energy will take on the thermal form (51) and

∂τ̃δnq ≈ −αT δnq

√
2πT

u
q

3
2 = −αTσ̃R

q δnq, (65)

where σ̃R
q is the thermal self-energy and αT ≈ 1.1 is a

universal number. This result can also be seen as an ex-
pansion of equation (55) in δnq, which is

∂τ̃δnq =−2δnqσ̃
R
q +

∂

∂δnq

(
σ̃K

q − (2nB+1) σ̃R
q

)∣∣
δnq=0

δnq.

(66)

The second term thus gives a correction to the simple
factor of 2 in equation (65). We thus obtain a nonpertur-
bative estimate for the relaxation time of the interacting
Luttinger Liquid

τq =
0.868

v0

√
u

2πT
q−

3
2 (67)

reflecting the very slow asymptotic approach to equilib-
rium of the long-wavelength modes. It is very similar to
the lifetime of a single thermal phonon (cf. Eq. (51)), only
modified by the prefactor αT = 1.1. This modification
arises due to in-scattering processes of excitations p �= q
scattering into the mode q. Since the main relaxation pro-
cess is caused by out-scattering processes, the above result
is quite intuitive and supports the statement that relative
time dynamics ∼ 1

εq
are fast compared to forward time

dynamics ∼ τq.

5 Kinetic equation and diagrams in presence
of anomalous densities

In this section, we consider the effect of non-zero anoma-
lous (off-diagonal) phonon density, i.e. āqā−q �= 0 on the
diagonal kinetic equation and self-energy, and derive the
kinetic equation for the anomalous density. Off-diagonal
phonon densities can be populated due to external per-
turbations, as for instance density modulation due to a
Bragg beam or a global interaction quench [10,43], and
their impact on the kinetics and non-equilibrium dynam-
ics is therefore non-negligible. Summarizing the results of
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this section, due to the structure of the resonant interac-
tions, the kinetic equation for the diagonal phonon density
and the diagonal retarded/advanced self-energies are not
modified in the presence of anomalous densities and re-
main unchanged compared to equations (59) and (44). In
contrast, the kinetic equation for the anomalous densities
is fed by the normal occupations (cf. Eq. (92)).

For a generic equilibrium situation and for certain real-
izations of systems brought out of equilibrium, the anoma-
lous (off-diagonal) phonon density and consequently the
corresponding response and correlation functions are
zero, i.e.

〈aα
q,ta

α′
−q,t′〉 = 0, (68)

where α, α′ = c, q represent classical or quantum indices.
However, when a system is driven out of equilibrium, it
is possible to populate off-diagonal terms. A simple situ-
ation for which this is indeed the case is an interaction
quench in a one dimensional quantum fluid, where the
off-diagonal densities are non-zero after the quench and
lead to non-equilibrium dynamics even in the absence of
phonon-phonon scattering processes [10].

In order to deal with the situation of anomalous den-
sities, we first have to modify the FDR accordingly. The
Keldysh Green’s function in the presence of off-diagonal
terms, expressed in Nambu space, is

GK
q,t,t′ =

(
gK

q,t,t′ hK
q,t,t′

− (hK
q,t,t′

)∗
gK
−q,t′,t

)

= −i

(
〈ac

q,tā
c
q,t′〉 〈ac

q,ta
c
−q,t′〉

〈āc
−q,tā

c
q,t′〉 〈āc

−q,ta
c
−q,t′〉

)
. (69)

For the quadratic theory in the absence of phonon scat-
tering, i.e. S = STL only, the Keldysh Green’s function
can be evaluated explicitly. In a operator representation,
it reads

GK
q,t,t′ = −i

( 〈{aq,t, a
†
q,t′}〉 〈{aq,t, a−q,t′}〉

〈{a†
−q,t, a

†
q,t′}〉 〈{a†

−q,t, a−q,t′}〉

)
, (70)

with the anti-commutator {·, ·}. In Wigner representation
it is

GK
q,ω,τ = −i

(
δ(ω − εq)(2nq + 1) δ(ω)2mqe

−i2εqτ

δ(ω)2m∗
qe

i2εqτ δ(ω + εq)(2n−q + 1)

)
,

(71)

where mq is the anomalous phonon density (mq =
|〈aqa−q〉| in an operator representation in terms of annihi-
lation operators a). In the quadratic theory, both the nor-
mal and the anomalous densities are constants of motion.

The Keldysh Green’s function in (71) has two essential
drawbacks. For the case of non-zero but slowly (compared
to εq) varying anomalous density mq, the off-diagonal
terms of GK are not slow but oscillate with the fastest
scale in the problem, i.e. ttyp = 1

2εq
. The Wigner approx-

imation is therefore not applicable for the off-diagonal

terms of GK . Furthermore, the Keldysh Green’s function
in frequency representation is peaked at three different fre-
quencies, ω = (εq, 0,−εq). Both prevents an FDR in the
form of equation (36) to exist in this representation.

In order to cure this problem, we switch to a rotat-
ing frame by introducing the fields αq,t = aq,te

iεqt, ᾱq,t =
āq,te

−iεqt, which modifies the quadratic action accord-
ing to

S(2) =
∫

t,p

(
ᾱc

p,t, ᾱ
q
p,t

)( 0 i∂t + i0+

i∂t − i0+ 2i0+ coth
(

ω
2T

)
)

×
(

αc
p,t

αq
p,t

)
. (72)

The resonant phonon interaction is invariant under the
transformation

SRes =
v0√
2

∫ ′

p,k,t

√
|pk(k + p)|

[
2ᾱc

k+p,tα
c
k,tα

q
p,t

+ ᾱq
k+p,t

(
αc

k,tα
c
p,t + αq

k,tα
q
p,t

)
+ h.c.

]
. (73)

since the phase eit(εp+k−εk−εp) = 1 in the case of reso-
nance, i.e. for |k + p| = |k|+ |p|. The corresponding corre-
lation function in Nambu space and Wigner coordinates
after the rotation is

G̃K
q,ω,τ = −iδ(ω)

(
2nq + 1 2mq

2m∗
q 2n−q + 1

)
, (74)

while the bare retarded Green’s function reads

G̃R
q,ω,τ =

(
1

ω+i0+ 0

0 1
−ω−i0+

)
= σz

1
ω + i0+

, (75)

where σz is the Pauli matrix. Respecting the symplectic
structure in bosonic Nambu space, the FDR in the pres-
ence of off-diagonal densities is

G̃K
q,ω,τ =

(
G̃R ◦ σz ◦ F̃ − F̃ ◦ σz ◦ G̃A

)
q,ω,τ

= −iδ(ω)F̃q,ω,τ . (76)

Here F̃ is the physical distribution function for the
phonons, with the on-shell value

F̃q,ω=0,τ =

(
2nq,τ + 1 2mq,τ

2m∗
q,τ 2n−q,τ + 1

)
. (77)

Both the transformation to a rotating frame by switch-
ing from {aq, āq} to {αq, ᾱq} as well as the symplectic
factors σz in equation (76) are necessary modifications in
order to obtain an FDR with a physically relevant distri-
bution function F̃ . The latter should consist of diagonal
and anomalous densities that are slowly varying in time
and reproduce the matrix structure of G̃K .

Inversion of equation (76) yields the kinetic equation

i∂τFq,ω,τ = σzΣ
R
q,ω,τFq,ω,τ − Fq,ω,τΣA

q,ω,τσz

− σzΣ
K
q,ω,τσz. (78)
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Fig. 7. Diagrammatic representation of the diagonal and off-
diagonal retarded/advanced and Keldysh Green’s functions. In
the presence of anomalous densities, the off-diagonal Keldysh
components will be generally non-zero, hK 	= 0. The retarded
and advanced Green’s functions only differ from zero if a finite
off-diagonal self-energy is present (cf. Eq. (79)).

In the absence of off-diagonal terms in both self-energies
and the distribution function, this equation reduces to the
ordinary kinetic equation discussed in the previous sec-
tion. We will now set up the diagrammatic computation
of the self-energies Σ

R/A/K
q,ω,τ in order to derive the kinetic

equation in the presence of anomalous phonon densities.

Diagrammatics for off-diagonal terms

In the presence of off-diagonal densities, one can no
longer generally exclude non-zero off-diagonal self-energies
and consequently non-zero off-diagonal Green’s functions
from the action. In this section we set up the diagram-
matic computation of the self-energies in Nambu space.
We obtain two key results, which crucially rely on the
resonant character of the interaction. First, in the re-
tarded/advanced sector, the off-diagonal self-energies are
exactly zero even in the presence of anomalous densities.
Second, we compute the off-diagonal self-energies in the
Keldysh sector, which are different from zero.

The retarded Green’s function in Nambu space is (we
use a general index Q = (q, ω, τ), −Q = (−q,−ω, τ) for
this paragraph)

GR
Q =

(
gR

Q hR
Q

hA
−Q gA

−Q

)
=

(
ω − ΣR

Q −Γ R
Q

−Γ A
−Q −ω − ΣA

−Q

)−1

=
1

(ω − ΣR
Q)(ω + ΣA

−Q) + Γ R
Q Γ A

−Q

×
(

ΣA
−Q + ω −Γ R

Q

−Γ A
−Q ΣR

Q − ω

)
, (79)

with the off-diagonal self-energies Γ R
Q and the Green’s

functions gR
Q = −i〈αc

Qᾱq
Q〉, gA

Q = −i〈αq
Qᾱc

Q〉, hR
Q =

−i〈αq
Qαc

−Q〉 and hA
Q = −i〈ᾱq

−Qᾱc
Q〉. The diagrammatic

representation for the retarded and Keldysh Green’s func-
tions in Nambu space is depicted in Figure 7.

With this at hand, we can set up diagrammatic rules
in Nambu space, as we do in the following. To this end, we
start from the most general diagram contributing to the
retarded sector of the Green’s function, which is shown
in Figure 8. Here we replaced the fields αQ → αQ,1 and

Fig. 8. Diagrammatic representation of all possible one-
loop diagrams contributing to the retarded sector of the self-
energy. The additional index zQ,P,K = ±1 represents ingo-
ing lines (αQ,P,K fields) for z = 1 and outgoing lines (ᾱQ,P,K

fields) for z = −1. The δ-constraints stem from the momen-
tum/frequency conservation in the Green’s function and the
momentum/frequency conservation in the two vertices. Two
additional constraints, one for each vertex, are caused by the
resonance condition. This results in six crucial constraints dis-
cussed in the main text.

ᾱQ → αQ,−1 in order to find a generalized representation
of diagrams in Nambu space. Exploiting frequency and
momentum conservation in the Green’s functions (diago-
nal and off-diagonal ones) and the vertices, together with
the resonance condition at each vertex, we end up with
the following relations

zQQ = zQ′Q
′, (80)

zP P = zP ′P
′, (81)

zKK = zK′K
′, (82)

zQQ = −zKK − zP P, (83)
zQ|q| + zp|p| = −zK |zQq + zP p|, (84)

zKzK′ + zQzQ′ = 2zP zP ′ . (85)

Equation (85) is a result of the two independent reso-
nance conditions in Figure 8 and reduces the number of
diagrams for the retarded self-energy significantly. As a re-
sult of equation (85), the product of all the corresponding
z-factors must be identical. For the diagonal self-energy,
where zQzQ′ = −1, this means that zP zP ′ = zKzK′ = −1
and consequently only loops consisting of two diagonal
Green’s functions contribute to the diagonal self-energy.
Consequently, the diagrammatic representation of the di-
agonal self-energy is still given by the loops shown in Fig-
ure 3 even in the presence of off-diagonal Green’s func-
tions, i.e.

−iΣR
Q =

v2
0

4π2

∫
P

|pq| (|q − p|gK
P gR

Q−P + |p + q|gK
Q+P gA

P

+|p + q|gK
P gR

P+Q

)
. (86)

In order to obtain the off-diagonal self-energy Γ R
Q , one has

to flip the sign of zQ′ → 1, such that zQzQ′ = zP zP ′ =
zKzK′ = 1 in the corresponding loops. This means that
the diagrams contain only off-diagonal terms. Γ R

Q is then
obtained by the diagrams in Figure 3, but with all arrows
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from the right vertex flipped. We thus obtain

−iΓ R
Q =

v2
0

4π2

∫
P

|pq| (|q − p|hK
P hR

Q−P + |p + q|hK
Q+P hA

P

−|p + q| (hK
P

)∗
hR

P+Q

)
. (87)

The diagonal self-energy ΣR diverges when the inte-
gral (86) is performed with the bare Green’s functions.
This hints that a non-trivial self-energy is generated on the
diagonal to regulate the integral, which can be computed
in self-consistent Born approximation as explained in pre-
vious sections. On the other hand, for off-diagonal Green’s
functions hR = hA = 0 (e.g. for the bare off-diagonal val-
ues), the off-diagonal self-energy is zero, as visible from
equation (87). Consequently, off-diagonal self-energies are
not generated in the retarded sector even in self-consistent
Born approximation and we have

Γ R
Q = 0. (88)

In the absence of off-diagonal self-energies in the retarded
sector, we can directly apply the quasi-particle approx-
imation discussed in the previous sections and evaluate
the self-energies and distribution function on-shell. Con-
sequently, the intermediate kinetic equation is

∂τFq,ω=0,τ = −2σR
q,τFq,ω=0,τ + iσzΣ

K
q,ω=0,τσz (89)

with the scalar, on-shell self-energy σR
q,τ as discussed in

Section 3.2.
For the on-shell Keldysh self-energy,

ΣK
q,ω=0,τ = −2i

(
σK

q,τ Γ K
q,τ

Γ K
q,τ σK

q,τ

)
(90)

the diagrammatic rules from the previous section do not
have to be modified. This immediately yields the diag-
onal, on-shell Keldysh self-energy σK

q,τ according to Fig-
ure 5. For the off-diagonal, on-shell Keldysh self-energy
Γ K

q the corresponding diagrams are obtained by revers-
ing the arrows associated to the vertices on the right in
Figure 5, resulting in the diagrammatic representation of
Γ K

q shown in Figure 9. The Keldysh Green’s functions are
obtained via the parametrization used in equation (76),
which yields for the off-diagonal elements

hK
q,ω,τ =

16π2iσR
q,τmq,τ

(ω − u|q|)2 +
(
σR

q,τ

)2 . (91)

Evaluation of the off-diagonal diagrams and insertion into
the kinetic equation completes the set of equations for a
system including anomalous phonon densities.

Finally, the off-diagonal retarded/advanced self-
energies are exactly zero and the kinetic equation for the

Fig. 9. Diagrammatic representation of the off-diagonal
Keldysh self-energy Γ K

q . Compared to the diagonal component,
for the vertex of the left ingoing and outgoing lines have been
replaced. The diagrams containing only retarded/advanced
Green’s functions, which contributed to σK

q , are absent because
of the absence of off-diagonal retarded and advanced Green’s
functions.

off-diagonal terms is

∂τ̃mq =
∫

0<p<q

2pq(q − p)
σ̃R

q + σ̃R
p + σ̃R

q−p

× (mpmq−p − mq (1 + np + nq−p))

+
∫

0<p

4pq(q + p)
σ̃R

q + σ̃R
p + σ̃R

q+p

× (np+qmq + mpmp+q − mqnp) . (92)

Here, we have again used the transformed basis to
eliminate the factor v2

0 in front of the integrals. The time
evolution for the off-diagonal terms depends on both the
diagonal and off-diagonal densities, and the stationary so-
lution of this equation is mq = 0 due to the uncompen-
sated spontaneous decay term in the first integral. To-
gether with equations (44), (59) and (92) represents the
complete set of equations determining the time evolution
of the phonon density and the self-energies of an interact-
ing Luttinger Liquid for a system that has been initialized
in an out-of-equilibrium state nq �= nB(u|q|), mq �= 0.

6 Relaxation of an excited thermal state

In this section, we will analyze the relaxation dynamics
of a nearly thermal initial state and compare it to the
analytical results from the previous sections. We consider
an initial state with the densities

nq,τ=0 = nB(Ti = 2u|q0|) + δq

=
1

e
0.5
∣∣∣ q

q0

∣∣∣ − 1
+ α1e

− (q−q0)2

2α2
2 , (93)

mq,τ=0 = δmq,τ=0 = 2α1e
− (q−q0)2

2α2
2 . (94)

A state of this form can be created by perturbing a ther-
mal state with initial temperature Ti = 0.5u|q0| in cou-
pling the operator ∝ ∂xφ to a classical field with mo-
mentum q0, i.e. in a microscopic fermionic or bosonic
model by a small density modulation with momentum
q0 [15]. For a specific simulation, we chose the parame-
ters α1 = 0.2, α2 = 4q0 and express momentum in units
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of q0. The perturbation increases the energy

E(τ) =
∫

q

u|q|nq,τ (95)

of the system. As a result, the final state in the limit
τ → ∞ will be a thermal state with increased temper-
ature Tf > Ti. Since the kinetics is energy conserving,
E(τ) = E(τ = 0) for all τ > 0, the temperature can
be determined according to

E =
∫

q

u|q|
eu|q|/Tf − 1

=
T 2

f π2

6u
(96)

from the system energy. In the present case, this leads to
Tf = 0.52u|q0| and a final state of the system

lim
τ→∞nq,τ = nB(Tf). (97)

The quantity of interest is the deviation of the time-
dependent phonon density from the final phonon density
in the limit τ → ∞,

δnq,τ ≡ nq,τ − nB(Tf). (98)

In Figure 10, we show δnq,τ and mq,τ for different time
steps τl, and we see in which way both quantities decay
to zero momentum as a function of time and momentum.

The evolution of this excited state to its new equilib-
rium proceeds in two different stages[73]: for short times,
the set of excited modes is much more strongly occupied
than all other modes, and the dominant effect is the de-
cay of these modes into the continuum of non-excited ones.
In this step, there is no back-action from the continuum,
which acts as a bath for the excited states. As a conse-
quence, the dynamics is described by the corresponding
equilibrium linear response. According to equation (65),
δnq then follows the effective equation of motion

∂τ log (δnq,τ ) = −1.1σR
q . (99)

As a result, for short times δnq,τ decays exponentially in
time with a momentum dependent decay time τdec(q) =(
1.1σR

q

)−1.
In Figure 11, we compare the numerical value of

∂τ log (δnq,τ ) with the analytical estimate

∂τ log (δnq,τ ) ≈ −1.1σR
q,τ ≈ 0.87

√
2πTf

u
q

3
2

and find a good agreement in the momentum region where
δnq deviates from zero.

For larger times instead, many modes deviate only
very weakly from the thermal occupation, but the sys-
tem has still not found its equilibrium. In this case, back-
action from the mode continuum can no longer be ignored.
More precisely, due to energy and momentum conserva-
tion, this dynamics, which now is dominated by in- and
out-scattering events on an equal footing, is very slow. It
is no longer described by an equilibrium response theory,

Fig. 10. Time evolved phonon density nq,τ after initializ-
ing the system in a state described by equations (93), (94).
The time τ is expressed in units of 1

v0q2
0
. (a) The deviation

n̄q,τ of nq,τ from the final thermal density nB(Tf) divided by
nB(Tf). n̄q,τ decays to zero with a momentum dependent rate
γq ≈ −1.1σR

q . For smaller momenta, this rate decreases and fi-
nally becomes zero for q → 0. (b) Anomalous density mq,τ for
different times τ . The pinning of mq=0,τ is the consequence of
global particle number and current conservation of the present
model.

Fig. 11. Comparison of the decay rate γq = −∂τ log (n̄q,τ ) as
a function of momentum for different times τ with the analyt-
ically estimated decay factor γA

q = 2.2σR
q . The time is given

in units of 1
v0q2

0
. The exact decay coincides very well with the

analytical prediction. Only for n̄q,τ ≈ 0, small numerical errors
leading to ∂τ n̄q 	= 0 lead to a divergence of the logarithm.

which is determined solely by the retarded self-energy. In-
stead the presence of dynamical slow modes is revealed,
which are not captured by a simple exponential decay
but have to be implemented as additional modes due to
symmetries [74] and favor an algebraic decay in time, i.e.
δnq(τ) ∼ τ−β with some exponent β. In Figure 12, the
two different stages of the time evolution are visible in
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Fig. 12. Decay of the deviation δnq(τ ) of the phonon den-
sity to its corresponding thermal value for fixed momenta
(q1, q2, q3) = (0.75, 1, 1.25)q0. (a) Log-Log plot of the devi-
ation δnq(τ ) (blue dots: simulations; line: algebraic fit): for
long times, the decay is described by a power law in time, i.e.
δnq(τ ) ∼ τ−β with an exponent β ≈ 0.58. (b) Semi-logarithmic
plot of the deviation δnq(τ ): for short times, the decay is de-

scribed by an exponential, δnq(τ ) ∼ e−1.1σR
q0

τ , where σR is the
corresponding thermal self-energy (blue dots: numerical simu-
lation; red line: exponential fit, obtained from the self-energy).

the numerical simulation of the quasi-particle occupation.
The algebraic decay for long times, and the exponential
decay for shorter times, are clearly distinguished. In order
to estimate the algebraic exponent, we do not linearize
the kinetic equation but instead take equation (59) and
insert on the right hand side the solution for the phonon
occupations nq(τ)−nB(Tf) ∼ e−1.1σR

q τ . Due to the scaling
of the thermal self-energy σR

q ∼ q
3
2 , this yields the esti-

mate β = 2
3 . In the numerical simulations presented in

Figure 12, we find for the algebraic exponent β ≈ 0.58.
As mentioned already, this algebraic decay is a con-

sequence of energy and momentum conservation in the
dynamics, which leads to additional slow modes in the
time evolution. The separation of the relaxation into two
different time regimes, with first exponential decay ac-
cording to bare phonon decay and then algebraic decay
due to energy conservation, has already been found in a
recent work using an equilibrium formalism [73]. In this
work, energy conservation is ensured by an effective, time-
dependent temperature, which can, however, not account
for local energy fluctuations. On the other hand, in the
formalism presented in this manuscript, both spatial and
temporal energy fluctuations are naturally incorporated in
the kinetic equation. The algebraic decay of the phonon
occupations can be explained in terms of dynamical slow
modes, resulting from conservation laws, i.e. symmetries,
in the system. The analytical exponent β = 2

3 would be-
long to a system with exact momentum and energy con-
servation with a classical distribution function nq ∼ 1

|q| .
The deviation of the numerical result β ≈ 0.58 from the
analytical one might be a result either of subleading cor-

rections that will vanish on even larger time scales [74] or
the fact that the system is not described by a classical dis-
tribution function nq ∼ 1

|q| for the complete momentum
range but by a Bose distribution, which seriously differs
from the classical one at intermediate and large momenta.

7 Dyson-Schwinger equations
and vertex corrections

In this section we apply Dyson-Schwinger equa-
tions [75,76] to the interacting Luttinger Liquid and deter-
mine the self-energy and three-point vertex as a function
of the phonon distribution. We show that the vertex cor-
rection is always real and will be exactly zero for a zero
temperature state. More generally it leads to a modifi-
cation v0 → v0(1 + I), where I is a small (1 
 I) di-
mensionless function with weak momentum dependence,
whose precise form is determined by the time-dependent
phonon density. Based on these findings, we conjecture
that also the corrections to the four-point and higher order
vertices, which do not occur in the microscopic action, are
small. As a result, the kinetic equation and the equation
for the self-energies in self-consistent Born-approximation
are modified according to the vertex correction, and we
derive a coupled but closed set of equations.

In general, Dyson-Schwinger equations (DSE) repre-
sent an exact hierarchy for one-particle irreducible (1PI)
correlation functions, generated by the effective action
functional Γ [aα, aβ] [75–77]. It relates the full vertices (e.g.
the Green’s function, which is the inverse two-point ver-
tex) to their bare, microscopic counterparts, which form
the microscopic action S. The hierarchy built up by the
DSE is in general infinite and therefore lacking an exact
solution. The main goal is then to find a physically rea-
sonable truncation of the effective action, for which the
main physical effects are captured and in which the DSE
can be solved.

The effective action, as the generator of 1PI correlation
functions, can be expandend according to [75–77]

Γ [aα, aβ] =
∞∑

n=2

1
n!

Γ (n)
α1,...αn

aα1 . . . aαn , (100)

where Γ
(n)
α1,...αn is the nth order functional derivative of

the effective action,

Γ (n)
a1,...an

=
δnΓ

δan . . . δa1

∣∣∣∣
aai

=0

, (101)

i.e. the full n-point vertex function, and aα are the
fields with collective index α = (ω, q, τ, c/q). The inverse
Green’s function and the full three-point vertex are the
second and third order functional derivatives, respectively.
In terms of formulas we have

G−1 = G−1
0 − Σ = Γ (2) and V = Γ (3). (102)
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Fig. 13. Schematic diagrammatic representation of the self-
energy Σ and the full three-point vertex V in terms of the full
Green’s function G, bare three-point vertex Ṽ , and the full
four-point vertex Γ (4).

In the present case, the DSE relate the n-point vertex to
the n + 1 point vertex of the theory. More specifically, we
obtain for the full Green’s function

(
G−1

)
αβ

=
(
G−1

0

)
αβ

− i
2S

(3)
αγδGγμVμβνGνδ, (103)

and for the full three-point vertex

Vαβγ = S
(3)
αβγ + iS

(3)
αδνGδμVμβηGησVσγεGεν

− i
2S

(3)
αδνGδμΓ

(4)
μβγηGην . (104)

Here, S(3) is the bare (microscopic) three-point ver-
tex. A schematic diagrammatic representation of equa-
tions (102), (103) and (104) is depicted in Figure 13.

We will show in the following that there are correc-
tions to the bare three-point vertex, with the same scal-
ing dimension as the bare three-point vertex itself. It is
determined by a dimensionless function I whose precise
form is dictated by the time dependent phonon density
nq,τ . This is in contrast to the two-point vertex, i.e. the
inverse Green’s function, where the correction due to the
cubic vertex is subleading but introduces an imaginary
part and therefore is of great qualitative importance. Here
the correction is purely real, as the bare vertex itself, but
on the other hand not subleading. It therefore can not be
discarded directly without further discussion.

For the āq
Q+P ac

P ac
Q term, the vertex correction δV =

V −S(3) is illustrated in a diagrammatic representation in
Figure 14. It is equivalent to all other vertices that incor-
porate a single quantum and two classical fields. The low-
est order contribution, incorporating only bare vertices,

Fig. 14. Diagrams contributing to the vertex correction of the
three-point vertex Vq,p,p+q illustrated for the particular exam-
ple of an outgoing quantum field and two incoming classical
fields, i.e. ∝ āq

Q+P ac
Qac

P . In total there are twelve distinct di-
agrams contributing to the vertex correction, six are depicted
above and six further can be found by interchanging the ingo-
ing momenta P ↔ Q.

reads (for q, p > 0)

δV ccq
q,p,p+q =

v3
0√
8

√
|qp(p + q)|

×
∫

k>0

{
k(q + k)(k − p)
σR

k+q + σR
k−p

×
[

nk−p − nk

σR
k + σR

k−p

+
nq+k − nk

σR
k + σR

k+q

]

+
k(p + k)(k − q)
σR

k+p + σR
k−q

×
[

nk−q − nk

σR
k−q + σR

k

+
np+k − nk

σR
k+p + σR

k

]}
. (105)

Here σR
k = −Im(ΣR

K) > 0 are the on-shell self-energies
obtained by the DSE in Figure 13. The vertex correction
due to cubic vertices is identical to zero for a zero tem-
perature system (nk = 0 for all momenta). This is an
exact statement for the interacting Luttinger Liquid and
can be seen on the level of the diagrams in Figure 14.
For T = 0, GK = GR − GA and the individual diagrams
cancel each other4 due to the pole structure of GR and
GA. In general, for a constant quasi-particle distribution
function, the cubic vertex correction is exactly zero in ar-
bitrary dimensions [52].

In order to find a compact expression for the vertex
correction, we replace σR → v0σ̃

R and compare the inte-
grand in equation (105) with the expression for the self-
energy σ̃R in equation (47). We immediately see, that the

4 Strictly speaking GK = sgn(ω)(GR − GA), which however
leaves the result invariant as can be seen from equation (105).
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I(x, n) =
1√
8

∫
k̃>0

⎧⎨
⎩

k̃(1 + k̃)(k̃ − x)
(
1 + I

(
k̃

|1−k̃| , n
))(

1 + I
(

k̃
x
, n
))

σ̃R
k̃+1

+ σ̃R
k̃−x

[
nk̃−x − nk̃

σ̃R
k̃

+ σ̃R
k̃−x

+
n1+k̃ − nk̃

σ̃R
k̃

+ σ̃R
k̃+1

]

+
k̃(x + k̃)(k̃ − 1)

(
1 + I

(
x

|k̃−x| , n
))(

1 + I
(
k̃, n
))

σ̃R
k̃+x

+ σ̃R
k̃−1

[
nk̃−1 − nk̃

σ̃R
k̃−1

+ σ̃R
k̃

+
nx+k̃ − nk̃

σ̃R
k̃+x

+ σ̃R
k̃

]⎫⎬
⎭ , (108)

vertex correction is linear in v0 and the integral has scal-
ing dimension zero5. In perturbation theory, this yields
the vertex

V
(1st)
q,p,q+p = v0

√
|pq(p + q)|

(
1 + I0

(
p

q
, n

))

= S
(3)
q,p,p+q

(
1 + I0

(
p

q
, n

))
. (106)

Here, I0

(
p
q , n
)

is a dimensionless function of the ratio
p/q and the phonon density n, which is determined by
the integral in equation (105). The scaling behavior of the
one-loop vertex correction suggests the parametrization of
the full vertex according to

Vq,p,q+p = v0

√
|pq(p + q)|

(
1 + I

(
p

q
, n

))
, (107)

where the functional I encodes the full vertex correction.
According to the DSE in Figure 13, it is determined via

see equation (108) above

where k̃ = k
q and the integral is dimensionless. In equa-

tion (108), we have already exploited the fact that the
ingoing momenta of a vertex can be exchanged with-
out modifying the vertex itself, and consequently the in-
tegral is invariant under q ↔ p. This is equivalent to
I (x, n) = I ( 1

x , n
)
. The self-energy in the DSE approach is

σ̃R
q =

∫
0<p

(
∂τ̃np

σ̃R
p

+ 2np + 1
)

×
{[

1 + I
(

p
|p−q|

)] qp(q − p)
σ̃R

p + σ̃R
q−p

+
[
1 + I

(
p
q

)] qp(p + q)
σ̃R

p + σ̃R
p+q

}
. (109)

In the same way the kinetic equation can be modified to
incorporate the vertex correction as well, and we find a
set of coupled equations⎛

⎝∂τn
σ̃R

I

⎞
⎠ = F(n, σ̃R, I). (110)

They can be solved numerically according to the proce-
dure described in Figure 6. Including the vertex correc-
tion, the second step of the iteration additionally includes
the self-consistent determination of I.

5 This holds true for an arbitrary phonon density nq since
the dimensions cancel exactly, independent of the form of nq .

Fig. 15. Vertex correction I(x, nB(T )) for an infinite temper-
ature state. In the limit T → ∞, the temperature drops out
in equation (108), and the vertex correction becomes temper-
ature independent. Due to the invariance of I under x → 1

x
,

the plot is restricted to 0 ≤ x ≤ 1. The dependence of I on
x is weak, especially for x ≈ 1, where it takes its maximum
I(x,nB) ≤ Imax ≈ 0.093.

We will now give an estimate of the order of the vertex
correction for the case for which it is non-zero to estimate
its impact on the dynamics and the kinetic equation. In
the limit T → ∞ the relevant phonon density is nq ≈ T

u|q|

and the self-energies have the thermal form σ̃R
q ∝

√
T
u q3/2.

Consequently, the factor T
u drops out and I(x, n) does

no longer depend on temperature. In this case, I(0, n) ≈
0.012, I(1, n) ≈ 0.09 and I(0, n) ≤ I(x, n) ≤ I(1, n). As
can be seen in Figure 15, the correction is small, with
a weak momentum dependence. Consequently, the self-
energy is only negligiably modified if instead of the full
three-point vertex in equation (103), the bare value Ṽ is
used. This is precisely the self-consistent Born approxima-
tion that we used to determine the self-energies and the
kinetic equation for the interacting Luttinger Liquid.

8 Conclusion

In this article, we used non-equilibrium field theory, in
particular kinetic and Dyson-Schwinger equations, to de-
termine the kinetics and non-equilibrium dynamics of res-
onantly interacting Luttinger Liquids. Exploiting the fact
that the interactions lead to dressed but still well defined
phonons, which enables a separation of timescales into
slow forward and fast relative dynamics, we applied the
Wigner and quasi-particle approximation and derived a
closed set of simple yet powerful equations for the normal
and anomalous phonon density, the phonon self-energy
and vertex correction. These equations determine the dy-
namics of an interacting Luttinger Liquid initialized in
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a Gaussian (non-) equilibrium state. The resulting equa-
tions show strong aspects of universality, on the one hand
being independent of any UV-scale, in particular indepen-
dent of the Luttinger cutoff. On the other hand, after a
proper rescaling of the forward time, all microscopic pa-
rameters entering the Hamiltonian can be eliminated and
the only microscopic information entering the dynami-
cal equations is the initial phonon density. We further
used our approach to analytically determine the relax-
ation rate of a thermally excited state. For this dynam-
ics, we found an initial exponential decay corresponding
to previous results computed from linear response the-
ory [16,18,19,25,36]. However, for longer times, the decay
of the excitations follows a power law in time, revealing
the presence of dynamical slow modes due to energy con-
servation. These latter modes are not contained in a plain
equilibrium linear response theory but have to be build
in by hand on the basis of symmetry arguments and con-
servation laws [73,74]. Here, the dynamics based on the
kinetic equation approach reveals the presence of these
modes due to the algebraic decay at long times without
any further modification, which shows the strength of our
approach in a simple yet nontrivial example.

The results of this work can be used in order to deter-
mine the kinetics and non-equilibrium dynamics of one-
dimensional interacting quantum fluids prepared in a non-
thermal initial state, which might occur as a consequence
of a quantum quench or a sudden external perturbation.
On the other hand, it paves the way to compute the dy-
namics of quantum fluids subject to drive and dissipa-
tion, and to determine the dynamics towards the steady
state of an excited closed system. Of special interest and
a strength of our approach is the treatment of long time
dynamics in non-equilibrium systems, which are neither
reachable by present numerical procedures nor by analyt-
ical approaches based on perturbation theory. Both exam-
ples belong to the uprising field of one-dimensional quan-
tum fluids out-of-equilibrium and we leave their discussion
open for future work.
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