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Abstract. We demonstrate that quantum fluctuations can cause, under certain conditions, the dynamical
instability of pure states that can result in their evolution into mixed states. It is shown that the degree and
type of such an instability are controlled by the environment-induced anti-Hermitian terms in Hamiltonians.
Using the quantum-statistical approach for non-Hermitian Hamiltonians and related non-linear master
equation, we derive the equations that are necessary to study the stability properties of any model described
by a non-Hermitian Hamiltonian. It turns out that the instability of pure states is not preassigned in the
evolution equation but arises as the emergent phenomenon in its solutions. In order to illustrate the general
formalism and different types of instability that may occur, we perform the local stability analysis of some
exactly solvable two-state models, which are being used in the theories of open quantum-optical and spin
systems.

1 Introduction

It is well-known that purity is exactly preserved during
unitary evolution driven by Hermitian Hamiltonians. This
property is natural for describing isolated quantum sys-
tems but in the case of open ones it is no longer com-
pulsory [1,2]. From the viewpoint of the theory of open
quantum systems, the isolated system is a mere theoretical
idealization – since in the real world all quantum systems
are embedded into a background of some kind [3,4]. Even
the process of quantum measurement itself fits into this
framework, because it involves interaction of the quantum
system, which is being measured, with an external appa-
ratus. Correspondingly, once the system is brought into
interaction with its environment, such as a heat bath, dis-
sipation usually increases its entropy and pure states are
converted into mixed ones [5,6].

Recently, the dynamical behaviour of quantum pu-
rity and pure states has become of considerable re-
search interest when studied within the framework of
the non-Hermitian (NH) formalism [7,8]. Non-Hermitian
Hamiltonians find numerous applications in many areas
of physics including studies of Feshbach resonances and
decaying states, quantum transport and scattering by
complex potentials, multiphoton ionization, free-electron
lasers and optical resonators and waveguides. But the
biggest area of application is the theory of open quan-
tum systems where the anti-Hermitian part appears as
a result of the interaction of systems with their envi-
ronment [9–21]. In this paper we demonstrate the pro-
found connection between NH Hamiltonians and dynam-
ical stability of pure states for the quantum systems of
general type. We show that quantum fluctuations can
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cause the instability of pure states whose degree and type
are governed by the environment-induced anti-Hermitian
terms in Hamiltonians.

The contents of this paper are as follows. In Section 2,
we provide a brief account of the density operator ap-
proach for NH dynamics and formulate the essence of the
stability problem for pure states. In Section 3, we derive
the general equations which are needed for stability anal-
ysis of pure states for NH-driven systems and discuss their
generic features. In Section 4, we study the linearized limit
of the stability equations, which can be used for the anal-
ysis of local stability. In Section 5, we consider some two-
level systems in order to illustrate the general formalism.
Discussions and conclusions are given in Section 6.

2 Non-Hermitian dynamics

If the Hamiltonian of a quantum system is a non-
Hermitian operator, then it can be decomposed into its
Hermitian and anti-Hermitian parts, respectively:

Ĥ = Ĥ+ + Ĥ− = Ĥ+ − iΓ̂ , (1)

where Ĥ± = ±Ĥ†
±, and Γ̂ = Γ̂ † is usually dubbed the

decay operator. The probability-conserved time evolution
of such a system is described by the normalized density
operator ρ̂, which can be cast in the form

ρ̂ = Ω̂/tr Ω̂, (2)

where Ω̂ is called the non-normalized density operator.
This operator is defined as a solution of the evolution
equation

d

dt
Ω̂ = − i

�

[
Ĥ+, Ω̂

]
− 1

�

{
Γ̂ , Ω̂

}
, (3)
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where the square brackets denote the commutator and
the curly ones denote the anti-commutator. This evolu-
tion equation can be directly derived from the Schrödinger
equation (see, for instance, Ref. [7]). Further, in this equa-
tion one can change from Ω̂ to ρ̂, and obtain the evolution
equation for the normalized density operator itself

d

dt
ρ̂ = − i

�

[
Ĥ+, ρ̂

]
− 1

�

{
Γ̂ , ρ̂

}
+

2
�
〈Γ 〉ρ̂, (4)

where we imply the standard definition for mean values,
〈A〉 = tr(ρ̂ Â).

From the mathematical point of view, equations (3)
or (4), together with the definition for computing mean
values, represent the map that allows to describe the time
evolution of system (1) in terms of the matrix differential
equation which is defined on similar axiomatic founda-
tions as the conventional master equations of the Lindblad
kind [22,23]. According to this map, the Hermitian op-
erator Ĥ+ = (Ĥ + Ĥ†)/2 takes over a role of the sys-
tem’s Hamiltonian (cf. the commutator in Eqs. (3) or (4))
whereas the Hermitian operator Γ̂ = i(Ĥ − Ĥ†)/2 in-
duces the additional terms in the evolution equation that
are supposed to account for new effects. In other words,
a theory with the non-Hermitian Hamiltonian Ĥ is dual
to a theory with the Hermitian Hamiltonian (Ĥ + Ĥ†)/2
but with the modified evolution equation which thus be-
comes the master equation of a special kind. This mapping
not only reveals new features of the dynamics driven by
non-Hermitian Hamiltonians but also facilitates their ap-
plication for open quantum systems [18].

From the viewpoint of theory of open quantum sys-
tems, the evolution equation for the non-normalized den-
sity operator Ω̂ effectively describes the original subsys-
tem (with Hamiltonian Ĥ+) and the effect of environment
(represented by Γ̂ ). Consequently, the evolution equation
for the normalized density operator ρ̂ effectively describes
the original subsystem Ĥ+ together with the effect of en-
vironment Γ̂ and the probability flow between the subsys-
tem and reservoir. From the viewpoint of the subsystem
alone, this flow is an essentially non-Hamiltonian pro-
cess since it is described not by means of any kind of
Hamiltonian but through the last term in the evolution
equation (4). This makes NH models somewhat similar
to the Lindblad-type ones, where the effect of the en-
vironment is encoded in the evolution equation through
the additional term often dubbed the dissipator. However,
the important difference is that the Lindblad dissipator,
which is a traceless operator by construction, does not af-
fect the conservation of probability of the system whereas
the last term in equation (4) restores the probability’s
conservation which is otherwise broken by the anticom-
mutator term. Besides, one can see that the last term
in equation (4) is nonlinear with respect to ρ̂, unlike its
Lindblad analogue. It is interesting that the appearance
of nonlinearities in NH-related theories has been also sug-
gested some time ago, although on different grounds of
the Feshbach-Fano projection formalism [24].

Further, if one introduces the quantum purity P =
tr(ρ̂2) then one can show that its time evolution is
governed by the equation

d

dt
P = R(ρ̂) ≡ 4

�

[
〈Γ 〉P − tr(ρ̂2 Γ̂ )

]
, (5)

where R(ρ̂) is the purity rate function [7]. It is easy to
see that the rate function vanishes identically in the case
of Hermitian evolution (Γ̂ = 0), but is otherwise an es-
sentially non-trivial function of both the density operator
and the anti-Hermitian part of Hamiltonian. As long as
the density matrix ρ̂p of a pure state, which is defined via
the property of projectivity ρ̂2

p = ρ̂p, is the equilibrium
point in both the Hermitian and non-Hermitian cases (i.e.,
R(ρ̂p) = 0), one might expect that any pure state is always
preserved during the NH evolution.

However, this could only be possible if one disregards
the other important player in the quantum realm – quan-
tum fluctuations. Indeed, if an (initially) pure state is not
protected against the fluctuations that can alter its purity,
then during time evolution it will be driven away from be-
ing pure, no matter how small these fluctuations initially
were. This phenomenon of dynamical instability is not di-
rectly seen in the evolution equation for the density op-
erator, but emerges via solutions thereof. It is somewhat
analogous to the spontaneous symmetry breaking in field
theory – except that here one deals not with the actual
field potential, but with some kind of the fictitious-particle
potential function (usually dubbed as the Lyapunov func-
tion candidate) that determines whether the equilibrium
point ρ̂p is stable or not. This also makes NH mod-
els different from the Lindblad-type ones, in which the
non-conservation of purity and pure states directly fol-
lows from the underlying evolution equation. Besides, the
Lindblad master equation approach has a different range
of applicability because it implies a number of certain ap-
proximations, such as the Markovian, Born and rotating-
wave ones, whereas NH Hamiltonians often appear in
theories in a more direct way, one example to be the
Feshbach-Fano projections [25].

It is worth mentioning also that the above-mentioned
kind of chaotic behaviour should not be confused with
the notion of “quantum chaos”, which is currently being
reserved in the field of research devoted to how classical
chaotic dynamical systems can be described by means of
methods and concepts of quantum mechanics [26–28].

3 General stability approach

In order to develop the general approach for performing
the stability analysis of pure states, let us introduce the
non-purity (mixedness) operator

M̂ = ρ̂ − ρ̂2, (6)

whose trace is known as the linear entropy [29]

SL = trM̂ = 1 − P . (7)
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In order to consider variations of the density operator
around some pure state ρ̂p, we perform the decomposition

ρ̂ = ρ̂p + Δ̂, (8)

where Δ̂ is the variation operator. As long as the main
properties of the density matrix should be left intact by
such decomposition, Δ̂ must be Hermitian and traceless;
this automatically ensures the well-defined probability and
real mean values of operators. One obtains that

ρ̂2 = ρ̂p +
{

ρ̂p, Δ̂
}

+ Δ̂2, M̂ = Δ̂ −
{

ρ̂p, Δ̂
}
− Δ̂2,

(9)

such that the operator M̂ is clearly a measure of deviation
of a state from being pure. Consequently, equations (4)
and (5) yield the equations that are more suitable for sta-
bility analysis,

d

dt
Δ̂ = − i

�

[
Ĥ+, Δ̂

]
− 1

�

{
Γ̂ , Δ̂

}
+

2
�
ρ̂p〈Γ 〉Δ

+
2
�

(〈Γ 〉p + 〈Γ 〉Δ) Δ̂, (10)

d

dt
M̂ = − i

�

[
Ĥ+, M̂

]
− 1

�

{
Γ̂ , M̂

}
+

4
�

(〈Γ 〉p + 〈Γ 〉Δ) M̂

+
2
�

[
(ρ̂p + Δ̂)Δ̂(Γ ) + Δ̂ρ̂(Γ )

p

]
, (11)

d

dt
SL =

4
�

[
(〈Γ 〉p + 〈Γ 〉Δ)SL − tr(Γ̂ M̂)

]
, (12)

where 〈Γ 〉p = tr(ρ̂p Γ̂ ) is the average of the operator Γ
with respect to the unperturbed density operator ρ̂p,
〈Γ 〉Δ = tr(Δ̂Γ̂ ) is the difference between the averages
〈Γ 〉 and 〈Γ 〉p, and we have used the notation Â(Γ ) =
Γ̂ Â − tr(Γ̂ Â)Î with Î being the identity operator. One
can easily verify that both the tracelessness and hermitic-
ity of the variation operator Δ̂ are preserved during time
evolution.

Equations (10)−(12) are matrix differential equations
that can all be used for the stability study, but it must
be emphasized that equations (11) and (12) describe only
those variations that can potentially lead to the transition
of a pure state ρ̂p into a mixed one (dubbed as the “mix-
ing” fluctuations in what follows), whereas equation (10)
alone governs the variations of a general type, regardless
on whether they alter the purity of ρ̂p or not. Therefore,
equations (11) and (12) will be of special interest here.
It is easy to see that one can apply to them the stan-
dard methods of dynamical stability analysis, such as the
Lyapunov or Vakhitov-Kolokolov criteria [30].

However, some generic features can be noticed straight
away. In particular, equation (12) reveals that stability
against the “mixing” fluctuations essentially depends on
the result of competition between the terms 〈Γ 〉 and
tr(Γ̂ M̂)/SL = (〈Γ 〉 − tr(ρ̂2Γ̂ ))/SL. If their difference is
non-negative at any time, then during evolution the fluc-
tuations will keep the initial state away from being pure.
If the difference is negative then the fluctuations will get
suppressed.

Yet another property, which can be immediately seen
from equation (12), is that, in the absence of the anti-
Hermitian part of the Hamiltonian, random fluctuations
of a given pure state would never get suppressed but their
magnitude remains at much the same level. This means
that in order to fully suppress fluctuations, suitably chosen
anti-Hermitian terms must be present to the Hamiltonian.
In those cases the anti-Hermitian part would ensure the
full stability of pure states even if it is negligibly small
compared to the Hermitian part.

4 Local stability

It is clear that the local instability of a pure state against
fluctuations leading to the mixing of a state does yet not
imply global instability (i.e., when the purity of a per-
turbed pure state never goes back to its original value 1).
However, this case is still interesting from a physical point
of view: quantum systems might exist in which the pu-
rification time (i.e., the time of return back into a pure
state) can be larger than the lifetime of the system itself or
the ultimately possible time of measurement/observation
of the system. Yet another application area of local in-
stability is that it can point to the presence of singular
points at which the density matrix components diverge;
thus indicating that the underlying system becomes crit-
ically unstable. In any of these cases, local instability of
a pure state might become the dominating chaotic-type
phenomenon, which can strongly affect the physical prop-
erties of systems’ evolution. From the technical point of
view, the advantage of the study of local instability is that
one does not have to know the whole solution for the den-
sity operator, but only a few characteristic exponents.

The analysis of local stability for a given state of the
NH quantum system can be made based on linearized
equations, which are easier to solve or analyze using well-
known methods from the theory of stability and dynamical
chaos. Indeed, once we assume that the variation operator
is small, Δ̂ = δρ̂, we can perform the linearization with re-
spect to it. Then equations (10)−(12) yield, respectively:

d

dt
δρ̂ = − i

�

[
Ĥ+, δρ̂

]
− 1

�

{
Γ̂ , δρ̂

}

+
2
�

[
〈Γ 〉pδρ̂ + ρ̂ptr(δρ̂ Γ̂ )

]
+ O(δρ̂2), (13)

d

dt
δM̂ = − i

�

[
Ĥ+, δM̂

]
− 1

�

{
Γ̂ , δM̂

}

+
2
�

[
2〈Γ 〉pδM̂ + ρ̂pΔ̂

(Γ ) + ρ̂(Γ )
p δρ̂

]
+ O(δρ̂2),

(14)

d

dt
δSL =

4
�

[
〈Γ 〉p δSL − tr(Γ̂ δM̂)

]
+ O(δρ̂2), (15)

where

δM̂ = M̂ |Δ̂→δρ̂ = δρ̂ − {ρ̂p, δρ̂}
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and
δSL = tr(δM̂) = −2tr(ρ̂p δρ̂) = −δP

are the variations of the non-purity operator and its trace,
respectively; O denotes the terms that can be neglected
in the linear order of approximation.

As discussed above, in order to study the stability of a
system against the “mixing” fluctuations, one has to con-
sider primarily equations (14) and (15). In the leading ap-
proximation (14) can be rewritten in the form d

dtX = ΛX,
where X is a column vector constructed out of the lin-
early independent components of the matrix δM̂ , and
Λ = Λ(ρ̂p, Ĥ+, Γ̂ , t) is a characteristic matrix. If all real
parts of its eigenvalues are negative then the pure state ρ̂p

is locally stable against small “mixing” fluctuations. This
condition is equivalent to the matrix ΛT P+PΛ being neg-
ative definite for some positive definite matrix P = PT .
The corresponding Lyapunov function candidate can be
determined then as V (X) = (X)T PX. Further classifica-
tion of instability types (“center”, “node”, “saddle”, “spi-
ral”, etc.) can be done for a specific system by analysis of
the characteristic matrix’s eigenvalues [30].

5 Example: two-level systems

In order to illustrate the formalism, let us consider some
models which exhibit, under certain conditions, the dy-
namical instability of pure states.

The NH two-level systems (TLS) are simple yet very
useful physical models [31], which can provide a clear vi-
sualization of different kinds of stability that may occur.
One can check that for two-level systems the non-purity
matrix has only one independent component and can be
written in the form

M̂ =
1
2
SLÎ , (16)

then one obtains

δM̂ =
1
2
δSLÎ , (17)

i.e., the scalar δSL provides complete information about
the local stability of a given pure state ρ̂p, whereas the
characteristic matrix Λ can be reduced to a 1× 1 matrix.
The linearized equation (15) takes the simple form

1
δSL

d

dt
δSL = Λ(ρ̂p, Γ̂ ) ≡ 2

�

(
2〈Γ 〉p − tr Γ̂

)
, (18)

where Λ = Λ(ρ̂p, Γ̂ ) is the characteristic exponent. Ac-
cording to the approach, the state ρ̂p is locally stable
against the “mixing” fluctuations if Λ(ρ̂p, Γ̂ ) < 0, and lo-
cally unstable otherwise. To illustrate this, let us consider
the following exactly-solvable models.

5.1 Tunneling models with non-Hermitian detuning

This is a set of NH models whose Hermitian and
anti-Hermitian parts of Hamiltonian are, respectively:

Ĥ+ = −�ωσ̂x, Γ̂ = �λσ̂z , (19)

where σ̂’s are Pauli matrices, positive parameter ω is re-
lated to the matrix element for tunneling between two
wells, and λ is a constant parameter, real-valued but other-
wise free, that can be viewed as the imaginary counterpart
of the detuning parameter [32]. Such models are popular
in many areas of quantum physics, including the theory
of open quantum-optical systems (in particular, when de-
scribing the direct photodetection of a driven two-level
atom interacting with the electromagnetic field – in which
case λ would be related to the atomic damping rate) [2,18]
and non-Hermitian quantum mechanics with real energy
spectra [33,34].

Here we would like to determine for which values of the
parameters ω and λ a pure state, say, the one defined by:

ρ̂(1)
p = |e〉〈e| =

(
1 0
0 0

)
, (20)

is locally stable against the “mixing” fluctuations. In case
of quantum-optical or spin systems, this information could
be instrumental for determining whether a system can un-
dergo, respectively, the spontaneous emission or spin-flip
transition.

The characteristic exponent Λ, which can be immedi-
ately computed from equation (18), turns out to be equal
to λ, up to a positive factor. Therefore, we expect the
state ρ̂

(1)
p to be locally stable against small fluctuations

for the models with negative λ̃ = λ/ω, and locally unsta-
ble otherwise.

To verify this, one needs to solve the evolution equation
assuming the perturbed initial conditions:

ρ̂(0) = ρ̂(1)
p + δρ̂(0), (21)

where, according to the approach, the variation matrix
can be chosen in the form

Δ̂(0) = δρ̂(0) =
(

δ2 δ1

δ1 −δ2

)
, (22)

with δi’s being arbitrary real-valued numbers (for sim-
plicity we have omitted the off-diagonal imaginary com-
ponents of Δ̂). The positivity of the total density oper-
ator ρ̂(0) can be always ensured by imposing constraints
on the values of variation matrix’s components. However,
here we assume the fluctuations to be arbitrary enough
in a sense that we do not postulate them to exactly pre-
serve the positivity of the density operator at the initial
moment of time, similarly to the approach [19]. Instead,
one might be interested to see whether this property can
be dynamically restored during evolution if it has been
initially broken by fluctuations.

Solving the evolution equation (4) with the initial
condition (21), we obtain the following expression for
the normalized density operator:

ρ̂(t) =
fx(t)
F (t)

σ̂x +
fy(t)
F (t)

σ̂y +
fz(t)
2F (t)

σ̂z +
1
2
Î , (23)
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(d) λ̃ = −2

Fig. 1. Linear entropy SL versus time (in units of ω−1) for the family of models (19), at different values of λ̃ and initial

perturbations of the state ρ̂
(1)
p . The value of δ1 is 0.01 for all curves, the values of δ2 are: −0.02 (solid curves), −0.01 (dashed

curves), 0 (dash-dotted curves), 0.01 (dotted curves) and 0.02 (dash-double-dotted curves).

where we have denoted:

fx(t) = δ1μ
2, (24)

fy(t) = sinh (μτ)
[
p2μ cosh (μτ) − λ̃ sinh (μτ)

]
, (25)

fz(t) = μ
[
p2μ cosh (2μτ) − λ̃ sinh (2μτ)

]
, (26)

F (t) = λ̃2 cosh (2μτ) − p2μλ̃ sinh (2μτ) − 1, (27)

where τ = ωt, λ̃ = λ/ω, p2 = 2δ2 + 1 and μ =
√

λ̃2 − 1.
The evolution of purity for this solution is presented

in Figure 1. The top (bottom) row of the figure shows
models for which the initial state ρ̂

(1)
p is unstable (stable)

locally, as predicted by theory. Indeed, one can see that
for positive values of λ̃, which has the same sign as λ, the
magnitude of the linear entropy initially increases from its
initial value, whereas for negative λ̃’s the magnitude of the
linear entropy decreases straight from the beginning. We
reiterate here that the local stability or instability does
not yet imply the global one. However, if the measure-
ment time or the lifetime of a system is limited and smaller
than the purification time (which is of the scale ω−1 here),
then an observer would not be able to empirically distin-
guish between the local and global (asymptotical) types
of instability.

Further, the left (right) column of Figure 1 shows mod-
els for which the initial state ρ̂

(1)
p is unstable (stable)

asymptotically. Asymptotical stability cannot be assessed
based on the linearized equation (18) but requires the us-
age of a general approach (10)−(12), which is quite bulky
and thus would bring us beyond our purposes here. In-
stead, in Figures 1b and 1d we demonstrate that corre-
sponding models contain the mechanism that asymptoti-
cally suppresses quantum fluctuations, whereas Figures 1a
and 1c reveal that in some models fluctuations may keep
the state away from being pure in an oscillatory way. As
long as both the conventional von Neumann entropy and
the NH-adapted entropy (defined in Ref. [21], see for de-
tails) would also oscillate in those cases, one can regard
this behaviour as the quantum non-Hermitian analogue of
the self-organization phenomenon.

5.2 Tunneling models with analytically continued
matrix element

This is a family of models where

Ĥ+ = −�ωσ̂x, Γ̂ = �ησ̂x, (28)
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(a) η̃ = −2
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(b) η̃ = 2

Fig. 2. Linear entropy SL versus time (in units of ω−1) for the family of models (28), at different values of η̃ and initial

perturbations of the state ρ̂
(2)
p . The value of δ2 is 0.01 for all curves, the values of δ1 are: −0.02 (solid curves), −0.01 (dashed

curves), 0 (dash-dotted curves), 0.01 (dotted curves) and 0.02 (dash-double-dotted curves).

with η being a constant parameter, real-valued but oth-
erwise free. Such models describe physical cases when a
quantum environment of some kind (external fields or vac-
uum oscillations) effectively shifts the value of the tunnel-
ing parameter into a complex domain: ω → ω + i η.

Here we would like to determine for which values of
the parameters ω and η the pure state

ρ̂(2)
p =

1
2

(
1 1
1 1

)
(29)

is locally stable against the “mixing” fluctuations. From
the physical point of view, it might be used to determine
whether a given quantum superposition of states is pro-
tected against the spontaneous decay into a mixed state.

The characteristic exponent (18), turns out to be equal
to η, up to a positive factor, hence, we expect state ρ̂

(2)
p to

be locally stable against small fluctuations in the models
with negative η̃ = η/ω, and locally unstable otherwise.

To verify this, one needs to solve the evolution equa-
tion (4) assuming the perturbed initial conditions

ρ̂(0) = ρ̂(2)
p + δρ̂(0), (30)

where δρ̂(0) is given by (22). We obtain the following
expression for the normalized density operator:

ρ̂(t) =
gx(t)
2G(t)

σ̂x +
gy(t)
G(t)

σ̂y +
gz(t)
G(t)

σ̂z +
1
2
Î , (31)

where we have denoted:

gx(t) = p1 cosh (2η̃τ) − sinh (2η̃τ), (32)
gy(t) = δ2 sin (2τ), (33)
gz(t) = δ2 cos (2τ), (34)
G(t) = cosh (2η̃τ) − p1 sinh (2η̃τ), (35)

where τ = ωt, η̃ = η/ω, and p1 = 2δ1 + 1.
The evolution of purity for this solution is presented in

Figure 2. Figure 2a illustrates the model for which the ini-
tial state ρ̂

(2)
p is stable locally, as predicted by the lin-

earized approach. It also turns out to be stable globally,

which makes this case similar to the one discussed earlier,
regarding Figure 1d.

In Figure 2b we show the model for which some fluc-
tuation modes of the initial state ρ̂

(2)
p grow indefinitely,

so that the system evolves into a singularity. This is an-
other kind of dynamical instability, which is different from
those discussed in the previous set of models. It illustrates
that for some models, quantum fluctuations either get sig-
nificantly amplified during certain interval of time (solid
and dashed curves in Fig. 2b) or destabilize the original
state up to the full destruction (dotted, dash-dotted and
dash-double-dotted curves).

6 Conclusion

Using the density operator approach for non-Hermitian
Hamiltonians, we have demonstrated that quantum fluc-
tuations can cause, under certain conditions, the instabil-
ity of pure states, which is controlled by the environment-
induced anti-Hermitian parts of Hamiltonians. This is
drastically different from the Hermitian case where both
the purity’s value and pure states are preserved during
time evolution.

It is shown that the instability of pure states is not
preassigned in the evolution equation but arises as the
emergent phenomenon in its solutions. We have derived
the equations that are necessary to study the stability
issues of any quantum system, regardless of the number
of its degrees of freedom, dimensionality of Hilbert space,
etc. Thus, the formalism and main results are applicable
for systems described by non-Hermitian Hamiltonians of
general type.

Finally, in order to illustrate the different types of in-
stability that may occur, we have considered some exactly
solvable two-state models. Apart from being instructive
examples on their own, these models can be used in a
theory of open quantum-optical and spin systems where
our stability analysis might be helpful in achieving a bet-
ter understanding of such phenomena as the spontaneous
emission, decay or spin flip (which, as a matter of fact,

http://www.epj.org
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could be one of the directions for future work). By means
of those models we have visualized the main types of sta-
bility of a pure state against small “mixing” fluctuations
that may occur in the open quantum system: fluctuations
get permanently suppressed with time (the state is locally
and globally stable), fluctuations amplify during a finite
period of time but eventually get suppressed (the state is
locally unstable but asymptotically stable), fluctuations
never get suppressed with time but stay bound by a finite
value (the state is globally unstable), and, finally, fluc-
tuations indefinitely grow thus leading to the singularity
and critical instability of the system (the state and sys-
tem are globally unstable). It should be also noticed that
for the two-state models studied above the fluctuations,
which cause the purity to acquire unphysical values, ei-
ther get suppressed or lead to the overall instability of the
system.

Discussions with D.C. Brody, E.-M. Graefe and A. Sergi at
the mini-workshop “Quantum Dynamics and Non-Hermitian
Hamiltonians” (3−8 December 2014, Pietermartizburg, South
Africa), during which the main ideas of this work have been
reported, are acknowledged. I also thank to A. Sergi for his sup-
port and hospitality during my numerous visits to the Univer-
sity of KwaZulu-Natal in Pietermaritzburg. The proofreading
of the manuscript by P. Stannard is greatly acknowledged as
well. This work is partially supported by the National Research
Foundation of South Africa.
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