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Abstract. Entanglement and non-Gaussianity are investigated in cavity QED containing a high optical
nonlinear medium and a quantum well. It is shown that the dynamical behavior of the entanglement
and the non-classicality are very sensitive to the initial state and the optical nonlinearities. By filling the
cavity with the optical nonlinear medium, the non-Gaussianity as well as the light-matter entanglement
is enhanced. For certain parameter sets, it is possible to control the degree and the dynamics of these
quantum effects.

1 Introduction

Research into the nanosystems with exceptional propri-
eties is now a flourishing field in science and engineering.
Thanks to their extremely small dimensions, they present
an opportunity for new concepts and new applications
such as biosensor, oriented medications, genetic manip-
ulations [1–4] and quantum information [5,6].

Quantum correlation and more specifically the entan-
glement is the key concept for the quantum computation,
quantum processing and quantum information [7–11].
In real quantum systems, quantum correlations are in-
evitably effected by the environment. Where the deco-
herence effects due to surrounding environment lead gen-
erally to the annihilation of these correlations [12–15].
This is a challenging problem for practical implementa-
tion of qubits and quantum gates in quantum informa-
tion processing system. Hence, it is required to circumvent
or reduce the environmental effects on quantum systems.
To preserve the quantum correlation against decoherence,
several approaches were proposed in reference [16–20].

It has been shown that cavity QED, including atomic
or semiconductor systems, interacting with the environ-
ment exalt nonlinear and quantum effects [21–26] such as
chaos [27], antibunching [28], squeezing [29] and entan-
glement [30,31]. Many typical quantum protocols depend
crucially on the entanglement between the considered sys-
tem, such as quantum cryptography [32,33], teleporta-
tion [34,35], and quantum computation [36]. A genera-
tion of entanglement is required. Recently, entanglement
in semiconductor cavity QED is generated for particular
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initial states [37]. However the considered system contains
only the excitonic nonlinearity. In our present work we ex-
plore the non-classical effects of a high nonlinear optical
medium inside a cavity QED containing a quantum well.

The quantum phase-space concept has a wide popu-
larity in several fields of physics [38,39]. There are dif-
ferent quantum phase-space distribution functions such
as the Wigner function [40], Husimi function [41], and
P function [42].

These functions are equivalent to one another, i.e., any
of them can be used for the evaluation of the expecta-
tion value of any arbitrary operator. But Wigner function
stands out among all distribution functions in quantum
mechanics due to its real and non-singular proprieties. It
gives correct expectation values of the operators in phase
space. So, the positive and negative regions of WF are
recently studied in different work [43–47].

In this work we analyze the entanglement dynamics
and the time evolution of the WF in a cavity with a quan-
tum well and a high nonlinear medium inside.

2 Model

The considered system is a good finesse cavity containing
a nonlinear medium with the (2q−1)th optical nonlinear-
ity and a semiconductor quantum well (The schematic of
this system is presented in Fig. 1). The system is pumped
by a coherent light creating a long lived photons inside
the cavity. The intracavity electromagnetic wave interacts
with the quantum well. A photon can excite an electron,
in the quantum well, from the filled valence band to the
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Fig. 1. Schematic model for a cavity containing a quantum
well (QW) and a high nonlinear optical medium.

conduction band creating a hole in the valence band. The
interaction between the excited electron and the hole cre-
ates an exciton. The exciton is then coupled coherently to
an intracavity photon. In order to maximize the photon-
exciton coupling, the quantum well (QW) is placed in the
middle of the cavity where the intracavity electromag-
netic field is at its maximum. For cavity QED systems,
it is known that the nonlinearity is responsible for the
appearance of nonclassical effects such as squeezing and
entanglement [29–31]. In our system, the cavity is filled
with a high nonlinear optical medium in contemplation
of increasing the nonclassical effects and in particular the
entanglement.

The Hamiltonian of the considered system is given by:

H = Hnl +Hc +Hex +Hp, (1)
where Hnl represents the Hamiltonian of the (2q − 1)th
nonlinear media [48]

Hnl = �χ(2q−1)(â†)qâq, (2)

â and â† represent the creation and annihilation opera-
tors of the optical mode. χ(2q−1) is the nonlinear optical
susceptibility of the nonlinear medium. Hex designs the
Hamiltonian of the exciton [49–51]

Hex = �ωexb̂
†b̂+ �α′b̂†b̂†b̂b̂, (3)

where b̂ and b̂† are the excitonic annihilation and creation
operators. The second term describes the interaction be-
tween neighbor excitons inside the quantum. α′ and ωex

are respectively the non-linearity and the frequency of the
exciton. The Hamiltonian of the exciton-photon interac-
tion is given by:

Hc = �g′
(
â+b̂+ b̂+â

)
. (4)

The system is pumped by a coherent laser light. The
Hamiltonian corresponding to the pump is given by:

Hp = �ε′
(
â+eiωLt + âe−iωLt

)
, (5)

where ωL and ε′ design the frequency and the amplitude of
the pump laser. We restrict our analysis to the case of the
resonance (ωex = ωL). In the interaction representation
the Hamiltonian becomes

Hint = �χ(2q−1)
(
â†

)q
âq + �g′

(
â+b̂+ b̂+â

)

+�α′b†b†b̂b̂+ �ε′
(
â+ + â

)
. (6)

Further more, we neglect the nonlinear dissipations [23]
and we suppose that the thermal reservoir temperature
T = 0, then we can write [52–54]

∂ρ

∂t
= i�[Hint, ρ] + κ

(
2âρâ− â†âρ− ρâ†â

)

+
γ

2

(
2b̂ρb̂− b̂†b̂ρ− ρb̂†b̂

)
. (7)

t represents a unitless time normalized to τc, where τc is
the round trip time for a photon inside the cavity. We
normalize also the parameters of the system to 1/τc as:
g = gτc, α = α′τc, ε = ε′τc. γ

2 and κ represent respectively
the normalized excitonic spontaneous emission and the
cavity dissipation rates.

For the weak pumping regime ε
κ � 1, 2âρâ and 2b̂ρb̂

can be neglected in (3) [49,51]. Thus we obtain [51,55,56]

i
d

dt
ρ = Ĥeffρ− (ρĤeff)†, (8)

where Heff is defined as the effective non-Hermitian
Hamiltonian

Heff = χ(2q−1)
(
a†

)q
âq + g

(
â+b̂+ b̂+â

)
+ �αb̂†b̂†b̂b̂

+ε
(
â+ + â

) − iκâ†â− i
γ

2
b̂†b̂. (9)

Equation (8) can be reduced to

d

dt
|ψ(t)〉 = −i Ĥeff |ψ(t)〉, (10)

where

|ψ(t)〉 =
∑

Aij |ij〉. (11)

|ij〉 = |i〉 ⊗ |j〉, i and j represent the numbers of photons
and excitons inside the cavity.

Let us define the number of excitations N for each
state |ij〉 as N = i + j, the number of excitons added to
the number of photons inside the cavity.

For the weak pumping regime, the maximum number
of excitations can be limited to Nmax = 6, we then get

|ψ(t)〉 =
∑

i+j≤6

Aij |ij〉. (12)

It is worth to note that in order to explore the dy-

namics of this system, we need in general
Nmax+1∑

k=1

k =

[ (Nmax+1)(Nmax+2)
2 ] differential equations for the ampli-

tudes Aij (examples of the differential equations of Aij

in similar systems are presented in Refs. [37,55,56]).
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The amplitudes Aij(t) verify the following differen-
tial equations (derived from the non-Hermitian Shrödinger
equation):

Ȧ00 = −μ00A00 − iεA10,

Ȧ01 = −μ01A01 − igA10 − iεA11,

Ȧ02 = −μ02A02 − ig
√

2A11 − iεA12,

Ȧ03 = −μ03A03 − ig
√

3A12 − iεA13,

Ȧ04 = −μ04A04 − i2gA13 − iεA14

Ȧ05 = −μ05A05 − ig
√

5A14 − iεA15,

Ȧ06 = −μ06A06 − ig
√

6A15,

Ȧ10 = −μ10A10 − igη10 − iε(A00 +
√

2A20),

Ȧ11 = −μ11A11 − igη11 − iε(A01 +
√

2A21),

Ȧ12 = −μ12A12 − igη12 − iε(A02 +
√

2A22),

Ȧ13 = −μ13A13 − igη13 − iε(A03 +
√

2A23),

Ȧ14 = −μ14A14 − igη14 − iε(A04 +
√

2A24),

Ȧ15 = −μ15A15 − igη15 − iεA05,

Ȧ20 = −μ20A20 − igη20 − iε(
√

2A10 +
√

3A30),

Ȧ21 = −μ21A21 − igη21 − iε(
√

2A11 +
√

3A31),

Ȧ22 = −μ22A22 − igη22 − iε(
√

2A12 +
√

3A32),

Ȧ23 = −μ23A23 − igη23 − iε(
√

2A13 +
√

3A33),

Ȧ24 = −μ24A24 − igη24 − iε
√

2A14,

Ȧ30 = −μ30A30 − igη30 − iε(
√

3A20 +
√

4A40),

Ȧ31 = −μ31A31 − igη31 − iε(
√

3A21 +
√

4A41),

Ȧ32 = −μ32A32 − igη32 − iε(
√

3A22 +
√

4A42),

Ȧ33 = −μ33A33 − igη33 − iε
√

3A23,

Ȧ40 = −μ40A40 − igη40 − iε(
√

4A30 +
√

5A50),

Ȧ41 = −μ41A41 − igη41 − iε(
√

4A31 +
√

5A51),

Ȧ42 = −μ42A42 − igη42 − iε
√

4A32,

Ȧ50 = −μ50A40 − igη50 − iε(
√

5A40 +
√

6A60),

Ȧ51 = −μ51A51 − igη51 − iε
√

5A41,

Ȧ60 = −μ60A60 − igη60 − iε
√

6A50. (13)

Here μmn = mκ + n
2 γ + i(m2 − m)α + iβm, ηmn =√

m(n+ 1)A(m−1)(n+1) +
√

(m+ 1)nA(m+1)(n−1)) and

βn = n!χ(2q−1)

(n−q)! . In order to compute the wave function
|ψ(t)〉, we should solve the system of differential equa-
tions above. For the density matrix (of state (12)) given
by ρce(t) = |ψ(t)〉〈ψ(t)|, the reduced system density ma-
trix of the cavity (exciton) can be written as

ρc(e)(t) = Tre(c){|ψ(t)〉|ψ(t)|} =
∑
m,n

ρc(e)
m,n(t). (14)

The reduced density matrices allow us to determine any
property related to the excitonic or the optical modes. In
the next section we explore the dynamics of the entangle-
ment and the Wigner function.

3 Entanglement and Wigner function

3.1 Entanglement via von Neumann entropy

Methods of quantifying entanglement have only been
found in the last decades [57]. For pure bipartite quan-
tum states several physically measures of entanglement
have been established (see for example [58,59]), while for
general mixed state of n-partite systems, the measure of
entanglement still under development. As a measure of
entanglement between the photons and excitons, we use
the reduced quantum entropy. More precisely, we adopt
the von Neumann entropy to measure the entanglement of
the generated state. It is defined as [60]: S(ρ) = −Trρ ln ρ.
For the reduced density matrix ρc = Tre{|ψ(t)〉|ψ(t)|}, the
reduced entropy of the resulted state ρc is

Sc = −
∑

i

λi lnλi, (15)

where λi are the eigenvalues of the reduced density matrix
ρc of the optical mode. The entropy of a general two-
components quantum system are linked by the theorem of
Araki and Lieb [61]: |Sc − Se| ≤ Sce ≤ Sc + Se, where Sce

is the total entropy of the photons-exciton system. We
note that the Sce depends on ρce which has an unitary
time evolution, and consequently the total entropy Sce is
time independent. Since we assume that the photons and
excitons are initially in a disentangled pure state, the total
entropy vanishes.

One immediate consequence of this assumption is
Sc = Se. Consequently, we only need to calculate one
of them, say Sc, to discuss the photon-exciton entangle-
ment. If a bipartite system is in a pure state and com-
posed of subsystems A and B (with the density matrix
ρAB), where each subsystem of them has (n + 1)-states,
{|0〉, |1〉, ..., |n〉}, the maximum value of the sub-entropy is
given by: 0 ≤ Si ≤ Smax

i = ln(n+ 1), (i = A,B) [62].
For example, if the subsystems A and B are (qubits),

{|0〉, |1〉}, then the value of the maximum entropy is
Smax

i = ln 2 ≈ 0.7.
In our work, the allowed states for the optical mode

as well as for the exciton are: {|0〉, |1〉, . . . , |6〉} which give
Smax

i = ln 7 = 1.9459. We note that the maximum value
of the entropy used to measure the level of entanglement,
differs from the maximum value of the other entanglement
measures such as the concurrence and the negativity.

We numerically compute the solutions of the sys-
tem of the differential equations (13) in order to study
the entanglement between the excitonic and the opti-
cal modes. The von Neumann entropy for the initial
state |ψ(0)〉 = 1√

3
(|11〉 + |22〉 + |33〉) with different

values of (κ, γ) is shown in Figure 2 for fixed values
(g, q, ε, χ, α) = (1, 3, 10−3, 10−3, 10−9). For weak dissipa-
tion rates (κ, γ) = (0.01, 0), von Neumann entropy oscil-
lates periodically with time. Therefore, the entanglement
is generated and lost via the interaction between the ex-
citonic and optical modes. For different values of the dis-
sipation rates (κ, γ), von Neumann entropy decays expo-
nentially to zero. The finishing of von Neumann entropy
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Fig. 2. Von Neumann entropy for the initial state |ψ(0)〉 =
1√
3
(|11〉 + |22〉 + |33〉) with (κ, γ) = (0.01, 0) (solid curve),

(κ, γ) = (0.1, 0) (dashed curve) and (κ, γ) = (0.3, 0.4)
(dot curve). The normalized values of the parameters are:
(g, q, ε, α) = (1, 3, 10−3, 10−9), χ = 10−3 for (a) and χ = 0.9
for (b).
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Fig. 3. Von Neumann entropy for |ψ(0)〉 = 1√
2
(|00〉 + |22〉)

with different values of κ = 0.01 (solid curve), 0.1 (dashed
curve), 0.3 (dot curve) in (a) and for different values of γ in (b)
γ = 0.05 (solid curve), 0.1 (dashed curve) and 0.5 (dot curve).
The normalized values of the parameters are: (g, q, χ, ε, α) =
(1, 3, 10−3, 10−310−9), γ = 0 for (a) and κ = 0.01 for (b).

depends on excitonic spontaneous emission and cavity dis-
sipation rates. The effect of the high optical nonlinearity
(χ, q) = (0.9, 3) is shown in Figure 2b, where the regular-
ity of von Neumann entropy disappears.

For the initial states |ψ(0)〉 = 1√
2
(|00〉 + |22〉) and

|ψ(0)〉 = 1√
2
(|00〉 + |33〉), the effect of the excitonic spon-

taneous emission and cavity dissipation rates are shown in
Figures 3 and 4 respectively with the parameters values
(g, q, χ, ε, α) = (1, 3, 10−3, 10−3, 10−9). These initial states
generate entanglement more than that is generated by the
initial state |ψ(0)〉 = 1√

3
(|11〉 + |22〉 + |33〉). With the in-

crease of the dissipation rates κ and γ, von Neumann en-
tropy decays exponentially to its stationary entanglement
(non-zero values for von Neumann entropy). The station-
ary entanglement values do not dependent on the excitonic
spontaneous emission and cavity dissipation rates. How-
ever the entanglement attains its stationary state earlier
in time for higher dissipation rates.

From Figures 5 and 6, we can conclude that the en-
tanglement is reduced for some initial states and enhanced
for others. This effect can be seen for the following entan-
gled pure states: 1√

2
(|00〉 + |11〉), 1√

3
(|00〉 + |11〉 + |22〉)

and 1√
4
(|00〉+ |11〉+ |22〉+ |33〉). These initial states have
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Fig. 4. Von Neumann entropy for |ψ(0)〉 = 1√
2
(|00〉 + |33〉)

with κ = 0.01 (solid curve), 0.1 (dashed curve), 0.3 (dot curve)
and for different values of γ in (b) γ = 0.05 (solid curve),
0.1 (dashed curve) and 0.5 (dot curve). The normalized values
of the parameters are: (g, q, χ, ε, α) = (1, 3, 10−3, 10−310−9),
γ = 0 for (a) and κ = 0.01 for (b).

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

(b)

Fig. 5. Von Neumann entropy for the initial state 1√
2
(|00〉 +

|11〉) (solid curve), 1√
3
(|00〉 + |11〉 + |22〉) (dashed curve)

and 1√
4
(|00〉 + |11〉 + |22〉 + |33〉) (dot curve). The nor-

malized values of the parameters are: (g, q, γ, κ, ε, α) =
(1, 3, 0, 10−2, 10−3, 10−9), χ = 10−3 for (a) and χ = 0.9 for (b).
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Fig. 6. Von Neumann entropy for the initial state 1√
2
(|11〉 +

|22〉) (solid curve), 1√
2
(|11〉 + |33〉) (dashed curve) and

1√
2
(|22〉 + |33〉) (dot curve). The normalized values of the

parameters are: (g, q, γ, κ, ε, α) = (1, 3, 0, 10−2, 10−3, 10−9),
χ = 10−3 for (a) and χ = 0.9 for (b).

periodic oscillations of their entanglement see Figures 5a
and 6a. This regularity of the entanglement dynamics dis-
appears for high nonlinear optical media (χ, q) = (0.9, 3)
(see Figs. 5b and 6b).

The effect of the 3rd order optical nonlinearity (2q −
1 = 3) is shown in Figures 7 and 8. By comparing the
effect for 3rd and 5th order nonlinearities (see Figs. 2, 3, 7
and 8) on the dynamical behavior of the entanglement,

http://www.epj.org


Eur. Phys. J. D (2015) 69: 191 Page 5 of 8

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

(b)

Fig. 7. Von Neumann entropy for the initial state 1√
2
(|00〉 +

|11〉) (dashed curve) and 1√
2
(|22〉 + |33〉) (solid curve) with

(γ, κ, ε) = (0, 10−2, 10−3) in two upper curves and (γ, κ, ε) =
(0.5, 0.3, 0.03) in lower upper curves in (a) and for 1√

2
(|00〉 +

|33〉) (dashed curve) and 1√
2
(|11〉 + |33〉) (solid curve) in (b).

The normalized values of the parameters are (g, χ, q, α) =
(1, 0.9, 2, 10−9).
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Fig. 8. As Figure 7 but for 1√
2
(|00〉+ |22〉) (dashed curve) and

1√
2
(|11〉+|22〉) (solid curve) in (a) and for 1√

3
(|00〉+|11〉+|22〉)

(dashed curve) and 1√
3
(|11〉 + |22〉 + |33〉) (solid curve) in (b).

we observe a notable changes. We can deduce that the
entanglement dynamics is very sensitive not only to the
initial states as mentioned before but also to the order of
the optical nonlinearity.

3.2 Wigner function

The Wigner function (WF) is a powerful tool to study
the non-classicality of optical fields. The partial negativ-
ity of WF implies non-classical proprieties of the quan-
tum states. The WF presents several advantages compared
to the other quasi-probability distributions in quantum
mechanics [41]. Namely, it is non-singular and real. It
yields to correct quantum mechanical operator averages
in phase space and posses defined marginal distributions.
Furthermore, the phase space concept of the Wigner func-
tion describes the dynamics of quantum systems.

The Wigner function for any system with density ma-
trix ρ is defined in terms of coherent state parameters α
and β as [63,64]

W (α, t) =
1
π2

∫
Tr[ρ̂eβâ+−β∗â]eαβ∗−α∗βd2β, (16)

Fig. 9. Wigner function for the optical mode for the initial
state 1√

3
(|11〉+|22〉+|33〉) in (a). WF at tmax = 2.3 for different

values of (κ, γ, χ, q): (0.01, 0, 10−3, 3) in (b), (0.01, 0, 0.9, 3) in
(c) and (0.1, 0.2, 0.9, 3) in (d). (e, f) as (c, d) with q = 2. The
other normalized values are (g, ε, α) = (1, 0.001, 10−9).

where β is the amplitude of the coherent state |β〉 =
D̂(β)|0〉 and D̂(β) = exp(βâ+ − β∗â) is the displacement
operator. Wigner function is experimentally measured for
a field stored inside a high-Q cavity [65,66]. The expression
of the Wigner function for the optical mode is [43–45],

W (α, t) =
2
π

∞∑
p=0

∞∑
n,m=0

(−1)pρc
m,n(t)〈α, p|n〉〈m|α, p〉,

where

〈m|α, p〉 = e
−|α|2

2

min(p,m)∑
j=0

(−α∗)(p−j)(α)m−j
√
p!m!

(m− j)!(p− j)!j!
.

ρc
m,n are the matrix elements of the reduced density ma-

trix ρ̂c(t) of the optical mode given by equation (13),
α represents a complex number (the amplitude of the
coherent state), in our work, we take the phase-space:
Re(α) ∈ [− 8π

10 ,
8π
10 ] and Im(α) ∈ [0, 8π

10 ]. The range cho-
sen intervals of the phase-space are due to the symmetries
of the Wigner Function on Re(α) and Im(α). The second
goal of this paper is to explore the effects of the nonlin-
ear medium on the non-classicality of the optical mode by
analyzing the Winger function behavior.

The non-classicality of the optical mode can be de-
duced from the nature of the Wigner function. In Fig-
ures 9–13, The Wigner function of the optical mode is

http://www.epj.org
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Fig. 10. Wigner function for the initial state 1√
2
(|11〉 +

|22〉) in (a). WF at tmax = 2.1 for different values of
(κ, γ, χ, q): (0.01, 0, 10−3, 3) in (b), (0.01, 0, 0.9, 3) in (c) and
(0.1, 0.2, 0.9, 3) in (d). (e, f) as (c, d) with q = 2. The other
normalized values are: (g, ε, α) = (1, 0.001, 10−9).

Fig. 11. Wigner function for the initial state 1√
2
(|11〉 +

|33〉) in (a). WF at tmax = 2.0 for different values of
(κ, γ, χ, q): (0.01, 0, 10−3, 3) in (b), (0.01, 0, 0.9, 3) in (c) and
(0.1, 0.2, 0.9, 3) in (d). (e, f) as (c, d) with q = 2. The other
normalized values are: (g, ε, α) = (1, 0.001, 10−9).

Fig. 12. Wigner function for the initial state 1√
2
(|00〉 +

|33〉) in (a). WF at tmax = 1.8 for different values of
(κ, γ, χ, q): (0.01, 0, 10−3, 3) in (b), (0.01, 0, 0.9, 3) in (c) and
(0.1, 0.2, 0.9, 3) in (d). (e, f) as (c, d) with q = 2. The other
normalized values are: (g, ε, α) = (1, 0.001, 10−9).

Fig. 13. Wigner function for the initial state 1√
2
(|00〉 +

|22〉) in (a). WF at tmax = 2.35 for different values of
(κ, γ, χ, q): (0.01, 0, 10−3, 3) in (b), (0.01, 0, 0.9, 3) in (c) and
(0.1, 0.2, 0.9, 3) in (d). (e, f) as (c, d) with q = 2. The other
normalized values are: (g, ε, α) = (1, 0.001, 10−9).
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Eur. Phys. J. D (2015) 69: 191 Page 7 of 8

plotted for different initial entangled states. For each ini-
tial state, we investigate the following: (i) WF for the state
of the optical mode at the times t = 0 and tmax(at which
the von Neumann entropy has a maximum value). (ii) the
effects of the optical nonlinearity and the dissipation rates.

In Figure 9a, we plot the Wigner function for the ini-
tial state 1√

3
(|11〉+ |22〉+ |33〉) (at t = 0). The other plots

of Figure 9 represent the evolution of the Wigner func-
tion at tmax = 2.3 where the Von Neumann entropy is
maximum for different values of the optical nonlinearity
parameters (χ and q). By increasing the optical nonlinear-
ities (χ and q) more pronounced negative regions of the
Wigner function appear. This effect clearly indicates an
increasing of the non-classicality for the final states. For
two different initial states (namely 1√

3
(|11〉 + |22〉 + |33〉)

for Fig. 10 and 1√
2
(|11〉 + |22〉) for Fig. 11), we observe

similar behavior by increasing the nonlinear optical pa-
rameters. This confirms the fact that the increase of the
optical nonlinearity enhances the non-classicality of the
optical states. As expected, Figures 12 and 13 affirm that
the dissipations destroy the non-classicality of the optical
states. It is worth to note that the observed parameter
effects on the non-classicality (Figs. 9–13) are similar to
the dynamical entanglement (Figs. 2–8). More precisely,
the optical nonlinearities increase the non-classicality and
the entanglement, while the dissipations reduce or destroy
these two effects.

4 Conclusion

In this work, the entanglement dynamics in a cavity QED
filled with a nonlinear optical medium and containing a
quantum well is investigated. The negativity of the Wigner
function as a measure of the non-classicality is discussed.
The dynamical entanglement measured by von Neumann
entropy as well as the non-classicality is very sensitive to
the initial state, the amplitude and the order of the opti-
cal nonlinearities. The optical nonlinearities amplify these
non-classical effects, while depending on the initial state,
they can be reduced or enhanced. Our analysis shows that
by filling the cavity with a high optical nonlinear medium,
the non-Gaussianity of the optical mode and the light-
matter entanglement (exciton-photon entanglement) are
enhanced. The control of these quantum effects is possi-
ble. For some sets of the system parameters it may be
possible not only to optimize the entanglement and the
non-Gaussianity but also to control their dynamics. Re-
cent experimental progress on entanglement observation
in similar systems [67–69] pave the way to the realization
of this proposal. Furthermore, The non-Gaussianity con-
trol may open the door to the conception of optical states
with unconventional proprieties. Our results may also lead
to new applications in quantum engineering through an
optimal design and control of the entanglement.

This project was supported by the deanship of scientific re-
search at Prince Sattam bin Abdulaziz university under the
research project No. 2014/01/2757. The authors contributed
equally to the paper.
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