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Abstract. The modified Coulomb-Born approximation model is applied to calculate the fully differential
cross section (FDCS) for single ionization of helium by 100 MeV/amu C6+ impact. We study the influence of
the internuclear interaction on the FDCS in the scattering plane and the perpendicular plane. Comparisons
are made with absolute experimental data and the 3DW results and we find that our calculations with
(without) the internuclear interaction yield excellent agreement with experiments for the small (large)
momentum transfer. Accordingly, we discuss the contributions of distortion effects to the FDCS both in
the scattering plane and the perpendicular plane. It turns out that the distortion effects become significantly
important with increasing momentum transfer.

1 Introduction

As the continuous development of the experimental tech-
nique known as COLTRIMS (cold-target recoil-ion mo-
mentum spectroscopy) [1], the fully differential cross sec-
tion (FDCS) for heavy-ion impact ionization can now be
measured in different geometries [2,3], thus posing a great
challenge to the theory. Particularly for 100 MeV/amu
C6+ single ionization of helium, unexpected results were
found both in and out of the scattering plane (defined by
the initial and final projectile momenta). In the scatter-
ing plane for small and intermediate momentum trans-
fer, the experimental data was in good agreement with
theory, as would be expected for a high-energy collision.
However, some considerable discrepancies were found for
large momentum transfer. Furthermore, the experimental
structure out of the scattering plane was not well repro-
duced by most of the existing theoretical models, rang-
ing from the first Born approximation (FBA) [4], three-
body distorted-wave (3DW) [5,6] to coupled-pseudostate
(CP) [7] and fully quantum-mechanical convergent close-
coupling (CCC) models [8]. Although many physical ef-
fects including high-order effects [9,10] or, most recently,
interference effects [11,12], has been taken into account
in some models, to remove this discrepancy, all the pos-
sible explanations cannot give a satisfactory result. Con-
sequently, the new physical effects are necessary to shed
more light on the problem. In addition, a factor which may
affect the results of the theoretical calculations is the dis-
torting potential. However, to our best knowledge, none
of these calculations has examined this issue in detail.
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In this paper,we use a perturbation method called the
modified Coulomb-Born (MCBPT) approximation, which
has been previously introduced in detail in reference [13],
to analyze the problem mentioned above. It is worthy not-
ing that this model is based on a four-body theory and,
most importantly, the distorting potential is taken into
account in the initial channel, as a result, a proper connec-
tion between the entrance channel asymptotic state and
the corresponding perturbation potential is established in
our calculation (details are contained in the next section).
Our purpose is to assess the ability of the present model
to reproduce the experimental data and explore the role
of the internuclear interaction (PT) in the single ioniza-
tion process. It turns out that our calculation without the
internuclear interaction (MCB) is in very good agreement
with experiment for large momentum transfer, whereas
other theoretical models do not. Moreover, we analyze
the physical origin of the features in the FDCS and find
that the signatures of the distortion effects are revealed.
In particular, the importance of the distortion effects in
determining the magnitude of the FDCS is demonstrated.
Atomic units are used throughout unless otherwise stated.

2 Theoretical treatments

Let us consider a bare ion of nuclear charge Zp impacting a
helium atom in the ground state and ionizing an electron.
In the center-of-mass (CM) system, the FDCS may be
written as:

d3σ

dΩpdΩedEe
= Ne(2π)4μ2p

kf

ki
|T−

fi|2, (1)
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where Ne is the number of electrons in the atomic shell.
The solid angles dΩp and dΩe represent the direction of
scattering of the projectile and the ejected electron, re-
spectively. The initial and final momenta of the projectile
are ki and kf , the ejected-electron’s energy and momen-
tum are given by Ee and p respectively. μ is the reduced
mass of the projectile-target atom system.

The prior form of the exact transition matrix (T-
matrix) in the distorted wave formalism is given by:

T−
fi = 〈Ψ−

f |V ′
i |χ+

i 〉, (2)

here,
V ′

i = Vi − Vid, (3)

Vid ought to be connected with χ+
i , but otherwise is tem-

porarily considered as being an arbitrary distorting poten-
tial operator, Ψ−

f is the approximate final-state four-body
wavefunction. Hence, equation (2) can be rewritten as:

T−
fi = Tvi + Tvd, (4)

here Tvi and Tvd stem respectively from the perturbation
potential Vi and the distorting potential Vid.

In the initial channel, one may write:

Hi = − 1
2μ

∇2
r −

1
2b

∇2
x1

− 1
2b

∇2
x2

− ZT

x1
− ZT

x2
+

1
x12

,

(5)

Vi = −Zp

s1
− Zp

s2
+

ZP ZT

R
, (6)

where Hi represents the Hamiltonian in the entrance chan-
nel, and Vi is the corresponding perturbation potential.
r is the position vector of the projectile relative to the
atomic center of mass. x1 and x2 represent the position
vectors of the active and passive electrons with respect to
the target core. s1 and s2 represent the position vectors of
the active and passive electrons with respect to the pro-
jectile. R and x12 are the vectors of the internuclear and
interelectronic axis. The charges of the target nucleus are
given by ZT . b is the reduced mass of each electron rela-
tive to the atomic core (b ≈ 1). The initial state distorted
wave χ+

i is defined by:

(Hi + Vid − E)χ+
i = 0, (7)

here, E is the total energy of the whole system. Much
better approximations can be made for χ+

i such as eikonal-
initial-state approximation (EIS) introduced by Belkic [13]

χ+
i = φi exp[−iα0 ln(vs1+v·s1)+iα′

0 ln(vR−v ·R)], (8)

where α0 = Zp

v , α′
0 = ZpZ′

T

v and Z ′
T = ZT − 1. The initial

wave vector labeled by ki is defined via ki = μv, where
v is the velocity of the incident projectile with respect to
the target. This state thus includes the projectile-electron
and projectile-target ion interactions approximately in the
initial channel. The unperturbed state φi in the entrance
channel is given by:

φi = (2π)−3/2 exp(iki · r)φ(x1 , x2). (9)

For the bound-state wavefunction φ(x1, x2), in refer-
ence [14], Ghanbari-Adivi et al. applied three different
wave functions to describe the helium atoms in their
ground states and investigate the influence of the static
electron correlations on the ionization process. It turns out
that, to some extent, the static electronic correlation has a
significant influence on the ionization process and the cor-
related four-parameter Byron and Joachain wave function
in provided better results in the binary-peak region. Thus,
we have chosen the analytical fit to the Hartree-Fock wave
function given by Byron and Joachain [15],

φ(x1, x2) = U(x1)U(x2), (10)

where U(x) = (4π)−1/2(2.60505e−1.41x + 2.08144e−2.61x).
With the help of the total Hamiltonian of this system,

i.e. H = Hi +Vi, we can rewrite equation (7) in the equiv-
alent form:

(H − E)
∣
∣χ+

i

〉

= V ′
i

∣
∣χ+

i

〉

, (11)

inserting (8) into equation (11) and resorting to the usual
mass limit μ � 1, one readily identifies the additional
distorting potential Vid as:

Vid =
α′

0v

R
− α0v

s1
− α0Zp

s1

1
vs1 + v · s1

− iα0

s1

1
vs1 + v · s1

∇x1(ln φ) · [vs1 + s1v]. (12)

The final state wavefunction Ψ−
f is given by a product

of the ground-state wave function of helium ion and the
approximate three-Coulomb wave

Ψ−
f (x1,x2,R) = φf (x2)Ψ−(x1,R), (13)

where Ψ− can be expressed as [16,17]:

Ψ−(x1,R) ≈ (2π)−3 exp[i(kf · R + p · x1)]
× χf (αPT ,kf ,R)χe(αTe,p,x1)
× χ(αPe,K, s1). (14)

here K and p is the momentum of the ejected-electron
with respect to the projectile and target core, respectively.
χf and χe are the distorted waves for the scattered pro-
jectile and ejected electron respectively. The Coulomb dis-
torted factor is given by:

χ(α, k, r) = e(−πα/2)Γ (1 − iα) 1F1(iα; 1;−i(kr + k · r)),
(15)

the symbols Γ and 1F1 represent the gamma function and
the confluent hypergeometric function, respectively. The
Sommerfeld parameters have the form

αPT =
μZP Z∞

kf
, αPe = −ZP

K
, αTe = −Z∞

p
. (16)
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The resulting prior form of the transition amplitude is
then obtained from equation (2) as:

T−
fi = N

∫ ∫ ∫

drdx1dx2φnl(x2)eiq·r−ip·x1

× χ∗
f (αPT ,kf ,R)χ∗

e(αTe,p,x1)χ∗(αPe,K, s1)

×
{

Vi − α′
0v

R
+

α0v

s1
+

α0Zp

s1

1
vs1 + v · s1

+
iα0

s1

1
vs1 + v · s1

∇x1(lnφ) · [vs1 + s1v]
}

× (vR − v · R)iα
′
0

(vs1 + v · s1)iα0
φ−(x1, x2), (17)

with q = ki − kf (momentum transfer), and

N = (2π)−3(2π)−
3
2 e(−παPe/2)e(−παTe/2)e(−παPT /2)

× Γ (1 + iαPe)Γ (1 + iαTe)Γ (1 + iαPT ). (18)

In the asymptotic scattering region, the vectorial relation

r =
MT + 1
MT + 2

x1 − 1
MT + 2

x2 − s1

simplifiesas r |r→∞≈ R = x1 − s1, which is further re-
duced to r |r→∞≈ −s1, since x1 is of the order of Bohr
radius and s1 is large. The x1-, x2-, and r-integrals (17)
can be calculated analytically with the standard meth-
ods by employing the real integral representation for the
Coulomb phases in reference [18] and the confluent hyper-
geometric function in reference [19]. The nine-dimensional
integral (17) can be reduced analytically, and without any
further approximation, to a four-dimensional integral on
the real parameters which has to be carried out numer-
ically. The convergence of each integral has been tested
properly and the final results are supposed to be accurate
up to data provided in the figures quoted in Section 3.

In this model, the most important component is that
a proper connection between the entrance channel asymp-
totic state and the corresponding perturbation potential
is established by an additional distorting potential (see
Eq. (12)). Also, all three two-body interactions are treated
on equal footing in equation (14). An uncertain point of
this model represents the use of the asymptotic charge
Z∞ = 1. We label the present calculation using the above
wavefunctions, potentials and T-matrix (2) as MCBPT
theory to distinguish the previous MCB calculations (de-
tails are contained in the Appendix of Ref. [13]). The im-
portant distinctions are:

(1) The previous MCB calculations performed by Belkic
(1997) used a straight-line semi-classical trajectory for
the projectile while we use a full quantum-mechanical
treatment. A good result for the total cross section
was found, with the semiclassical way in the previous
MCB calculations [13]. In this work, the FDCS are cal-
culated for the first time with a quantum-mechanical
MCBPT approach.

(2) Our MCBPT theory contains the internuclear interac-
tion (the PT interaction) in both the initial and final

Fig. 1. The FDCS for single ionization of helium
by 100 MeV/amu C6+ in the scattering plane. The electron
emission energy Ee = 6.5 eV and the momentum transfer
q = 0.88 a.u. The angle θe is the emission angle of the electron.
Solid line: MCBPT. Dashed line: MCB. Dotted line: 3DW [5].
Solid circles: experimental data [4].

Fig. 2. Same as Figure 1 expect that the momentum transfer
is 1.43 a.u. and the ejected electron energy is 17.5 eV.

channels (see Eqs. (8) and (14)), whereas the previous
MCB calculations don not.

To explore the impact of the PT interaction on the FDCS,
we have evaluated the FDCS with the PT interaction
turned off (α′

0 = 0, αPT = 0, see Eqs. (8) and (14)) to
show how important is to adequately model this interac-
tion in a single ionization process.

3 Results and discussion

To check the accuracy of the MCBPT method, the FDCS
are calculated, using equation (1), for 100 MeV/amu C6+

impact ionization of helium both in the scattering plane
and the perpendicular plane. Comparisons are made with
the corresponding experimental measurements [4] and the
3DW of Madison et al. [5]. The role of the PT interaction
is analyzed. The results are displayed in Figures 1–5. And
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Fig. 3. Same as Figure 1 except that the momentum transfer
is 2.65 a.u. and the ejected electron energy is 37.5 eV.

Fig. 4. Same as Figure 1 but the cross section is given in the
plane perpendicular to the incident beam direction, contain-
ing the momentum transfer q. The angular dependence for the
perpendicular plane is βe defined as βe = π

2
− ϕe, ϕe is the

azimuthal angle for the ionized electron.

Fig. 5. Same as Figure 4 except that the momentum transfer
is 2.65 a.u. and the ejected electron energy is 37.5 eV.

Fig. 6. The same geometry as in Figure 1. The solid lines rep-
resent the MCBPT result (left column) and MCB result (right
column). The incoherent contributions to the FDCS of the per-
turbation potential scattering amplitude Tvi (dash lines) and
distortion potential scattering amplitude Tvd (dotted lines),
and the coherent sum of Tvi and Tvd (solid lines).

Fig. 7. Same as Figure 6 except that the momentum transfer
is 1.43 a.u. and the ejected electron energy is 17.5 eV.

the contributions of distortion effects to the FDCS are
investigated in Figures 6–10.

In Figures 1–5 we observe familiar structures: at the
lower momentum transfer (Figs. 1 and 4) the emission pat-
tern clearly exhibits the so-called binary and recoil peaks;
at higher momentum transfer (Figs. 3 and 5) the recoil
peak rapidly disappears. Although all theories show the
main features of the experimental data, the discrepancy
in the absolute magnitude occurs between the theoretical
methods.

In the scattering plane, for small and intermediate mo-
mentum transfer (Figs. 1 and 2) the MCBPT calculations
are in good agreement with the experiment, as the same
as the 3DW results. However, for large momentum trans-
fer (see Fig. 3), significant discrepancies were found in the
MCBPT and 3DW approximations, with the MCBPT be-
ing somewhat better. Amazingly, when the PT interaction

http://www.epj.org
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Fig. 8. Same as Figure 6 except that the momentum transfer
is 2.65 a.u. and the ejected electron energy is 37.5 eV.

Fig. 9. Same as Figure 6 but the cross section is given in the
perpendicular plane.

Fig. 10. Same as Figure 9 except that the momentum transfer
is 2.65 a.u. and the ejected electron energy is 37.5 eV.

is turned off (MCB), the discrepancy vanishes and a nearly
perfect agreement with the experiment is obtained both in
magnitude and shape. Furthermore, the same behaviour
is also observed in the perpendicular plane (Figs. 4 and 5).
It indicates that, on the one hand, the present theory
(MCBPT) based on a four-body model gives a signifi-
cant improvement over a three-body model (3DW), espe-
cially for large momentum transfer, large improvement is
achieved with the MCB model compared to the 3DW cal-
culations. On the other hand, at small momentum trans-
fer the PT interaction seems to be more important in the
calculation that gives better results, while at large mo-
mentum transfer the neglect of the PT interaction indeed
leads to an excellent agreement with the experiment. Fur-
thermore, at small momentum transfer, this observation
seems to be contrary to previous studies [8,20] and even
in conflict with a simple model which describes the PT
interaction in terms of classical Rutherford scattering at
large momentum transfer.

To explore the physical origin of the peak structure for
the FDCS in the scattering plane and the perpendicular
plane, we examine the contributions of the scattering am-
plitudes from perturbation and distorting potentials to the
FDCS using MCB and MCBPT models. From Figure 6,
we observe that the incoherent contribution of the Tvi to
the cross section is equal in the two calculations. It is wor-
thy noting that the contribution to the cross section of the
scattering amplitude Tvd is very small so it has been mul-
tiplied by a factor of 30 in the MCBPT model (Fig. 6a),
but this contribution rapidly increases when the PT inter-
action is turned off (Fig. 6b). And the constructive inter-
ference of the two scattering amplitudes (see Eq. (4)) over-
estimate the binary peak of the experiment in the MCB
model, in other words, the distortion effect is strength-
ened as a consequence of lacking an account for the PT
interaction. It indicates that it is likely that the PT inter-
action have a tendency of weakening the distortion effects
(see Eq. (12)). This can be understood as follows: at small
momentum transfer favours large impact parameter colli-
sions, leading to a weaker distortion effect than what is
taken into account in the MCB model, and while only
the PT interaction is incorporated, the distortion effect
is reduced and it is well described by the MCBPT cal-
culation (Fig. 6a). Moreover, the same theoretical anal-
ysis also applies to the intermediate momentum transfer
(Fig. 7). It indicates that indeed the effect due to the PT
interaction has a tendency of counteracting the distortion
effect. Therefore, in our MCBPT calculation the PT inter-
action is necessary in order to weaken distortion effects at
small momentum transfer. However, with increasing mo-
mentum transfer (the impact parameter becomes smaller
and smaller), the distortion effect increases quickly and it
is exactly described by the cross section arising from the
destructive interference between Tvi and Tvd (see Fig. 8).
As a result, the PT interaction must be neglected, oth-
erwise the distortion effect would be largely weakened by
the effect due to the PT interaction, as found in MCBPT
calculation of Figure 3. It is demonstrated that with in-
creasing momentum transfer the distortion effects become
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more and more important. In addition, for recoil peak, the
peak structure are primarily determined by the amplitude
Tvi and then modified by the amplitude Tvd.

In order to further elucidate the conclusion presented
above, we now consider electron emission in the plane per-
pendicular to the scattering plane. Like for the scattering
plane, the signatures of the distortion effect are also re-
vealed in the perpendicular plane. As mentioned above, for
small momentum transfer the distortion effect is not obvi-
ous, thus a good result is obtained in the MCBPT theory
(Fig. 9a). In contrast, in the MCB model the distortion
effect is not counteracted by the PT interaction so that
the binary peak of the experiment is overestimated by the
constructive interference between Tvi and Tvd (Fig. 9b). It
also indicates that the potential interference effect is unim-
portant in this case, which is in accord with the results of
references [21,22]. For the case of large momentum transfer
(see Fig. 10) the dominant incoherent contribution to the
cross section comes from the scattering amplitude Tvd and
the destructive interference between Tvi and Tvd yields an
excellent agreement with experiments, because the distor-
tion effect is not weakened by the higher-order interaction
PT. Therefore, a similar conclusion within the scattering
plane is that with increasing momentum transfer the dis-
tortion effects become significantly important and indeed
both effects caused by the PT interaction and the distort-
ing potential can cancel each other.

4 Conclusion

We have carried out calculations of the FDCS for single
ionization of helium by 100 MeV/amu C6+ projectiles us-
ing MCBPT approximation in both the scattering plane
and the perpendicular plane. The role of the PT inter-
action is analyzed by comparing the results of the MCB
and MCBPT. It is found that the MCBPT theory yields
better results for small momentum transfer and the MCB
calculations are in very good agreement with experiments
for large momentum transfer. It is demonstrated that with
increasing momentum transfer the PT interaction become
significantly less important.

We have also presented the physical origin of the fea-
tures in the FDCS using the present MCB and MCBPT
models in the scattering and perpendicular planes. It is
shown that for small momentum transfer, the good result
observed in the MCBPT calculation is due to a cancel-
lation of the distortion effects by the higher-order effects
PT. Thus the distortion effects are overestimated by the
MCB model. For large momentum transfer the experimen-
tal data is excellently reproduced by the destructive in-
terference of Tvi and Tvd both in the scattering plane and
perpendicular plane, because the distortion effects are not
weakened by the higher-order effects PT. It indicates that
the distortion effects are not pronounced at small momen-
tum transfer, but it is crucially important at the large mo-
mentum transfer. Consequently, our MCB model is more
probably suitable for large momentum transfer and high
electron emission energy due to accounting for distortion
effects. Most importantly, an appropriate combination of

the higher-order effects PT and distortion effects is worth
paying much attention to. Furthermore, it also provides a
valuable indication that the selection of the distorting po-
tential may be an important component for the future the-
oretical treatment of the atomic few-body problem. This
will be the direction of our future work.
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