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Abstract. We have studied the radial dependence of the energy deposition of the secondary electron gen-
erated by swift proton beams incident with energies T = 50 keV–5 MeV on poly(methylmethacrylate)
(PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA
through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly
differential cross section and the total cross section for ionization, as well as the average energy of the
generated secondary electrons, show sizeable differences at T � 0.1 MeV when evaluated with these two
ELF models. In order to know the radial distribution around the proton track of the energy deposited
by the cascade of secondary electrons, a simulation has been performed that follows the motion of the
electrons through the target taking into account both the inelastic interactions (via electronic ionizations
and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic in-
teractions. The radial distribution of the energy deposited by the secondary electrons around the proton
track shows notable differences between the simulations performed with the extended-Drude ELF or the
Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest
intensity and sharpness of the deposited energy distributions takes place for proton beams incident with
T ∼ 0.1–1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a
full energy distribution of secondary electrons generated by proton impact or using a single value (namely,
the average value of the distribution); our results show that differences between both simulations become
important for proton energies larger than ∼0.1 MeV. The results presented in this work have potential
applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom)
in order to properly consider the generation of electrons by proton beams and their subsequent transport
and energy deposition through the target in nanometric scales.

1 Introduction

Energetic ion beams are an excellent tool for many pur-
poses. Already well-known as a useful instrument in mi-
croelectronics and nanofabrication techniques, one of their
most promising use is the treatment of deep-seated tu-
mors, because ion beams offer enhanced selectivity and
relative biological effectiveness as compared to conven-
tional photon and electron radiotherapy [1,2]. The physi-
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cal properties of swift protons produce a depth-dose dis-
tribution characterized by a nearly flat and small dose at
the entrance in the tissue and during the major part of
the projectile path in the target, with a sharp maximum
close to the end of the range, known as the Bragg peak,
and with a strong fall-off at the distal edge. Another ad-
vantage of energetic ion beams is their well-defined range,
as well as their small lateral spread, which allow modern
scanning beam systems to impart the dose with millimeter
precision [3]. The inherent ability to precisely control the
proton dose deposition in the patient makes hadron ther-
apy very attractive, permitting maximum energy delivery
to tumor cells while minimizing the dose imparted to the
normal tissue regions adjacent to the tumor [4].
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During the propagation of fast ions through organic
targets, the main channels of energy loss are the electronic
excitation and ionization processes, which induce the gen-
eration of a large number of secondary electrons, followed
by their subsequent propagation in a nanometer scale [5].
Low energy electrons (LEEs, with typical energies be-
low 100 eV) are the most abundant and carry most of the
energy lost by the initial fast particles, being one of the
main responsible for radiation damage, due to dissociative
electron attachment [6,7]. Therefore, the propagation and
interaction of LEEs with organic targets is an important
part of the assessment of the total radiation damage in-
duced by the primary radiation. Indeed, the propagation
of LEEs around the ion tracks gives place to very sharp
radial dose distributions at the nanometer scale, which are
one of the main inputs for radiation damage models that
allow the calculation of the effect of radiation in the tar-
get [8], being it of biological (cell killing) or non-biological
(detector response, material damage) nature.

In this work, we study theoretically and by simula-
tion the generation of secondary electrons in the organic
material PMMA by the impact of energetic protons, as
well as their propagation, generation of new electron cas-
cades and the final energy deposition in the target by all
the electrons. The combined effects of all these processes
give place to nanometric radial energy deposition distri-
butions around the proton track. The energy range of the
impinging protons is taken from 50 keV to 5 MeV, which
corresponds to representative energies around the Bragg
peak [9,10]. The PMMA target is chosen in this study be-
cause it is a material of interest, both in hadron therapy as
well as in nanofabrication. This material is considered as
a water-equivalent material, having density and electronic
properties quite similar to those of liquid water [11], hence
being frequently used as a solid water or tissue phantom
in order to facilitate dosimetry measurements [12]. It is
employed as well in microelectronics, since it is a common
resist in nanolitographic techniques [13].

This paper is organized as follows. First, in Section 2,
we describe a semiempirical model to calculate the energy
distribution of the ejected secondary electrons due to the
impact of energetic protons in PMMA. This model [14]
is based on the dielectric formalism and assumes that the
weak bound electrons of the target can be characterized
by a mean binding energy, which allows the calculation
of the initial energy distribution of the ejected secondary
electrons by the proton impact. The influence of the tar-
get electronic excitation spectrum description by Drude
or Mermin energy loss functions will also be evaluated.
Section 3 is devoted to the propagation of the initially
generated electrons through the medium, which is done
by means of a Monte Carlo simulation, where elastic and
inelastic collisions are properly taken into account. The
former leads to changes in electron direction, whereas the
later accounts for energy transferred to the medium (ei-
ther by ionization or excitation), which creates additional
electrons that also are followed by our simulation code.
Finally, in Section 4, the results for the nanoscopic ra-
dial energy deposition distribution around the ion track

are presented. This quantity gives an immediate idea of
the range of distances from the track where the energy
is deposited and provides quantitative inputs for detailed
damage estimations. The conclusions and summary of the
paper are outlined in Section 5.

2 Initial energy distributions of secondary
electrons generated by proton impact

The dominant slowing down mechanism for swift protons
traveling through a condensed target is the electronic en-
ergy loss, including excitations and ionization of the target
electrons. For a condensed target we use the dielectric for-
malism to calculate its electronic response to the passage
of charged particles [15,16]. For a proton with kinetic en-
ergy T , moving through a condensed target characterized
by its dielectric function ε(k, ω), with �k and �ω being the
momentum and energy transferred in an inelastic collision,
the generation of secondary electrons by the incoming
proton can be obtained assuming that the weakly-bound
(outer-shell) electrons of the target are characterized by a
mean binding energy B̄ [14]. If �ω > B̄, a secondary elec-
tron will be ejected with a kinetic energy W0 = �ω−B̄. For
inner-shell electrons, characterized by their ionization en-
ergy Bioniz,j , the secondary electrons will be emitted with
a kinetic energy W0 = �ω−Bioniz,j . The energy spectrum
of the electrons is given by the ionization singly differential
cross section (SDCS) dσioniz(T, W0)/dW0, which is [14,17]

dσioniz(T, W0)
dW0

=
e2
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where e is the elementary charge, M is the proton mass
and N is the molecular density of the target. The in-
tegration limits k2,1 =

√
2M(

√
T ±

√
T − �ω)/� of the

k-integral result from momentum conservation laws. Ac-
cording to equation (1), the energy loss function (ELF)
of the target, Im[−1/ε(k, ω)], completely determines the
initial energy distribution of the generated electrons due
to inelastic events. The first (second) summand in the in-
tegrand refers to the outer (inner) shell electrons contri-
bution to the ELF. Therefore, in order to proceed with
the integrations appearing in equation (1) it is necessary
to know the ELF over all the k-ω plane, i.e., the Bethe
surface of the material.

In the description of the electronic excitation proper-
ties of PMMA, with a chemical formula (C5H8O2)n, we
consider as inner-shell electrons the K-shell of C and O,
with ionization energies Bioniz,j of 284.2 and 543.1 eV, re-
spectively. The contribution of these electrons to the ELF
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Fig. 1. Energy loss function (ELF) of PMMA as a function of
the transferred energy �ω, for several values of the momentum
transfer �k. Symbols correspond to the experimental optical
data from [19]. Solid (dashed) lines correspond to the Mermin
(extended-Drude) descriptions of the ELF. Notice that at the
optical limit (k = 0) both ELF models are identical.

will be described by their hydrogenic generalized oscilla-
tor strengths (GOS), which are suitable for atomic cores,
where bonding effects can be ignored [18]. The outer-shell
electron excitation spectrum is accounted for by optical
data models with B̄ = 20 eV [17], where experimental
data for the ELF at the optical limit (i.e., at k = 0) are
used, while its extrapolation to finite momentum trans-
fers (k �= 0) is provided by suitable extension algorithms.
It is possible to obtain experimental optical information
for PMMA [19] from electron energy-loss spectroscopy
measurements over the valence electron excitation range
(�ω � 100 eV) which exhibits a well defined peak at about
the nominal plasmon energy (∼20 eV), as it is usual in
many organic and biological materials. The experimental
optical ELF is analytically parameterized by a weighted
sum of Drude-type ELF functions [20]:

Im
[

−1
ε(k = 0, ω)

]
exp

=
∑

i

Ai

ω2
i

Im
[

−1
εD(k = 0, ω; ωi, γi)

]

=
∑

i

Ai
ω γi

(ω2
i − ω2)2 + (ω γi)2

(2)

where εD is the Drude dielectric function and the parame-
ters ωi, γi and Ai that characterize, respectively, the posi-
tion, width and intensity of each peak in the experimental
energy-loss spectrum of PMMA are given in reference [21].
The use of the experimental optical ELF accounts for the
phase and aggregation effects of the target. Besides resem-
bling the experimental optical ELF, the built ELF fulfills
the f -sum rule and the KK sum rule [22,23]. Figure 1
shows by symbols the experimental ELF of PMMA at
the optical limit [19], together with the parameterization
(solid line) from [21].

To calculate the energy spectrum of the generated sec-
ondary electrons by using equation (1), it is necessary
to know or to model the target ELF over the complete

energy- and momentum- transfer range, i.e. the Bethe sur-
face. We consider here two different procedures to extend
the ELF to k �= 0 values:

(i) the extended-Drude model [24] where the k-
dependence of the energy coefficient ωi follows a
quadratic dispersion relation that in the random
phase approximation (RPA) is:

ωi(k) = ωi(k = 0)+αRPA
�k2

2m
� ωi(k = 0)+

�k2

2m
, (3)

where m is the electron mass, and αRPA =
6ωF/(5ωpl) � 1 for PMMA, since the free-electron
Fermi and plasmon energies are �ωF = 19.3 eV and
�ωpl = 23 eV, respectively. On the other hand, no dis-
persion was assumed for the damping coefficient, i.e.
γi(k) = γ(k = 0).

(ii) the MELF (Mermin Energy Loss Function)
method [25,26] where the outer electron excita-
tions are automatically dispersed following the
properties of the Mermin ELF:

Im
[
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ε(k, ω)

]
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=
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ω2
i

Im
[

−1
εM(k, ω; ωi, γi)

]
,

(4)
where εM is the Mermin dielectric function [27]. In
this case it is not necessary to presume a dispersion
relation for the k-dependence, because the momentum
dispersion is given automatically through the analyt-
ical properties of the Mermin dielectric function. It is
worth to notice that the values of the parameters ωi,
γi and Ai are the same for both, the Drude and the
Mermin-ELF at the optical limit.

Both ELF models (extended-Drude and Mermin ELF) are
identical at the optical limit, the inner-shell electron ex-
citations are included by the GOS in both cases, and the
only difference is their extension for outer electrons to ar-
bitrary values of the momentum transfer. In Figure 1 we
show the ELF at two values of the momentum transfer
(k = 2 and 4 Å−1), calculated by the extended-Drude
model (dashed lines) and by the MELF model (solid lines).
Whereas in the former the evolution of the ELF preserves
its initial shape with a slight reduction, the latter gives a
pronounced broadening and a reduction of the intensity
of the ELF. This result is in good agreement with the fact
that single-particle excitations prevail over collective ex-
citation as the momentum transfer increases due to the
plasmon damping. The dispersion of the damping coef-
ficient, only considered (implicitly) in the MELF model,
provides the expected momentum broadening of the Bethe
ridge; the results from the MELF model agree better than
those from the extended-Drude model with the few ex-
perimental data at k �= 0 measured for graphite [28,29],
aluminum [30,31] or liquid water [20,32,33].

We present in Figure 2 the calculated secondary elec-
tron energy distributions generated in PMMA due to the
impact of protons, equation (1), at several energies T of
the incident proton beam. The range of proton energies is
chosen from 50 keV to 5 MeV, which are typical projectile
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Fig. 2. Energy distribution of secondary electrons (ionization-
SDCS: dσioniz/dW0) produced by energetic protons in PMMA,
as a function of the kinetic energy W0 of the emitted electrons.
dσioniz/dW0 is obtained at several initial proton energies T .
Calculations done with the MELF-GOS model are depicted
by solid lines, whereas results from the extended-Drude-GOS
model are shown by dotted lines.

energies around the Bragg peak [9,10]. Without entering
into the differences between the predictions of both ELF
models, first, we can observe that most of the secondary
electrons generated are in the low-energy range. Second,
the number of generated electrons increases when the pro-
ton energy decreases, meaning that at the Bragg peak
there is a strong increment in the ionization of the tar-
get, being larger than in the plateau of the Bragg curve,
where the proton energy is larger. Third, the influence
of the target ELF modeling in the ionization-SDCS is
larger for lower proton energies. A detailed comparison
of the energy spectrum of the generated secondary elec-
trons derived from the MELF-GOS model (solid lines)
and from the extended-Drude-GOS model (dashed lines)
shows that dσioniz/dW0 is always larger for the MELF-
GOS description than for the Drude description of the
ELF, and these differences increase when the energy of the
incoming proton decreases. So, at proton energies larger
than 5 MeV, dσioniz/dW0 is almost independent of the
ELF description. On the other hand, the energy distribu-
tion of the generated secondary electrons is peaked at very
low energies, so for the MELF-GOS model the probabil-
ity to generate secondary electrons with kinetic energy of
W0 = 50 eV represent around 10% of the electrons gen-
erated at W0 = 10 eV, whereas for the electrons with
W0 = 100 eV represents only 2–4%, this behavior being
the same for all the proton energies analyzed.

Fig. 3. Total ionization cross section (TICS) σioniz, for protons
in PMMA, as a function of the incident energy T calculated
by the MELF-GOS (solid line) and the extended-Drude-GOS
(dashed line) models. σioniz for protons in liquid water is cal-
culated by the MELF-GOS (gray dash-dotted line) and the
extended-Drude-GOS (gray dotted line) models. Experimen-
tal data for water vapor are represented by triangles [34], cir-
cles [35] and squares [36].

The total ionization cross section (TICS), σioniz(T ), is
given by:

σioniz(T ) =

Tmax∫

0

dσioniz(T, W0)
dW0

dW0, (5)

where Tmax = 4mT/M is the maximum energy trans-
ferred in the collision. The calculated σioniz for protons
in PMMA is shown in Figure 3 for both of the discussed
ELF descriptions: MELF-GOS (solid line) and extended-
Drude-GOS (dashed line). We find that at high proton
energies (�200 keV) the TICS is independent of the ELF
description. However, as the proton energy decreases sig-
nificant differences appear in the values of σioniz depending
on the ELF description. For a proton energy T = 50 keV,
σioniz = 0.56 Å2 when the MELF-GOS model is used and
σioniz = 0.46 Å2 for the extended-Drude-GOS method;
whereas for T = 30 keV, σioniz are, respectively, 0.48 Å2

and 0.16 Å2 when the MELF-GOS or the extended-Drude-
GOS description for the ELF is applied.

For comparative purposes, the σioniz for protons in liq-
uid water is also depicted in Figure 3, showing values that
are lower than those corresponding to PMMA in all the
energy range. Analogously to the PMMA results, for liquid
water there are important differences in the σioniz values
depending on the ELF description (gray dash-dotted line
for the MELF-GOS and gray dotted line for the extended-
Drude-GOS) as it is depicted in Figure 3 [14,17]. However,
in this case there are experimental data of σioniz for proton
impact in water vapor to compare with [34–36], which are
shown by symbols in Figure 3. For liquid water the calcu-
lated σioniz using the MELF-GOS description of the ELF
agrees very well with the experimental data from [34,35]
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Fig. 4. Average energy W ioniz of the secondary electrons gen-
erated in PMMA by the impact of energetic protons as a func-
tion of their energy T . Calculations by the MELF-GOS model
are shown by a solid line and by the extended-Drude-GOS
model by a dashed line. Results of W ioniz for protons in liquid
water are also reported: MELF-GOS (gray dash-dotted line)
and extended-Drude-GOS (gray dotted line).

in all the proton energy range, a fact that indicates that
the MELF-GOS description of the energy-loss spectrum
is more realistic than the extended-Drude one.

As it can be seen in Figure 3, the ionization in PMMA
due to proton impact is 15% larger than in liquid water
around the maximum of σioniz. Our conclusion is that the
MELF-GOS model to describe the electronic excitation of
the target is more precise than the extended-Drude model
and that larger ionization probabilities are expected in
PMMA in comparison with liquid water.

Other interesting quantity is the average energy of
the ejected secondary electrons due to the proton impact,
which is given by:

W ioniz(T ) =
1

σioniz(T )

Tmax∫

0

W0
dσioniz(T, W0)

dW0
dW0. (6)

Our results for protons in PMMA and in liquid water are
presented for the two descriptions of the ELF in Figure 4
as a function of the incoming proton energies.

We obtain larger results of W ioniz for liquid water
(≈10–15%) than for PMMA for all the proton energies
analyzed, which means that the secondary electrons gen-
erated by proton impact in liquid water will have larger
kinetic energies than those generated in PMMA targets.
When the MELF-GOS model is used, W ioniz for PMMA
goes from ∼8 eV up to 50 eV when the proton energy
changes from 10 keV to 5 MeV. With the extended-Drude
model larger values of W ioniz are obtained than with the
MELF-GOS model with a strong unexpected growth at
low projectile energies. Therefore, it is worth to notice that
at low proton energies the extended-Drude model does not
work properly.

3 Simulation of the electron transport
and further generation

The generation of secondary electrons by the impact of
swift ions is only the first step in the energy deposition
mechanism that leads to the (possible) damage of the tar-
get. These electrons can propagate, also producing more
electrons in their way (leading to a secondary electron
avalanche), depositing their initial energy in nanometric
volumes around the ion track, where the final effects of the
energy lost by the ionic projectiles will take place. Such a
scenario is generally simulated by means of Monte Carlo
codes [37], which appropriately account for the stochastic
behavior of radiation transport in condensed media, treat-
ing each interaction between the energetic particles with
the medium individually, event-by-event, until the particle
energy falls below a specified threshold [13]. Also, analyt-
ical techniques can be employed when some simplifying
approximations can be assumed [38].

In this section we briefly describe a Monte Carlo sim-
ulation code, which will be used to study the propaga-
tion of the electron avalanche produced by the electrons
generated by the proton impact. In this code, the trans-
port through the target of all primary and secondary elec-
trons is followed by an event-by-event procedure. Most of
the secondary electrons initially generated by proton colli-
sions, as shown in the previous section, have low energies,
the average being of the order of several tens of eV, so
they will travel in the medium distances of the order of
nanometers around the ion track [5]. In their path through
the target, energetic electrons undergo elastic and inelastic
interactions with the medium, so it is necessary to know
as input the cross sections for all the interaction processes.
If we assume that the stochastic scattering process follows
Poisson statistics, then the step length Δs between suc-
cessive interactions is given by Δs = −λ ln η1, with η1

being a random number uniformly distributed in the in-
terval [0,1], and λ being the total electron mean free path,
given by:

λ−1 = λ−1
elastic + λ−1

inelastic, (7)

where λelastic and λinelastic are, respectively, the elastic and
inelastic electron mean free paths.

Regarding the elastic collisions, since the masses of the
electrons and the atoms with which they scatter are so dif-
ferent, we can consider them as perfectly elastic. Thus, the
total and differential elastic scattering cross sections, the
later one giving the probability of scattering in the polar
angle θ, can be calculated through the Mott theory [39],
which is done solving the Dirac equation in a central field.
The azimuthal angle is uniformly distributed in the range
[0, 2π].

On the other hand, electrons can lose energy via differ-
ent inelastic processes, such as (i) electronic excitation and
ionization of the target; (ii) electron-phonon interaction;
and (iii) electron trapping by polaron creation (i.e., by
polarizing the molecules around it, creating a “cage” that
traps and stops the electron). Therefore, the inverse in-
elastic electron mean free path, λ−1

inelastic, which takes into
account all these inelastic scattering mechanisms, can be
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written as:

λ−1
inelastic = λ−1

electronic + λ−1
phonon + λ−1

polaron. (8)

For electron energies higher than ∼20–50 eV, the main
mechanism of inelastic scattering and energy loss is their
interaction with collective electronic excitations (plas-
mons) as well as individual electronic transitions. These
inelastic energy loss mechanisms are described by the di-
electric approach with the extended optical data model,
as it was described in Section 2. So, the electronic inverse
mean free path, λ−1

electronic, of an electron with velocity v
and kinetic energy W = mv2/2, is given by [21]:

λ−1
electronic(W ) =

2e2

πv2

ωmax∫

0

dω

×
ke2∫

ke1

fexchange(k)Im
[

−1
ε(k, ω)

]
dk

k
, (9)

where the integration limits in k are ke2,e1 =√
2m(

√
W ±

√
W − �ω)/�. Due to the indistinguishabil-

ity between the incident (or primary) electron and the
hitted target electron, the maximum energy transferred
in a collision will be �ωmax = mv2/4, since primary elec-
trons are usually regarded as the most energetic after the
collision. The exchange effect between the incident elec-
tron and the target electrons is also taken into account by
the Born-Ochkur approximation [21,40], which introduces
the function

fexchange(k) =

[
1 −

(
�k

mv

)2

+
(

�k

mv

)4
]

in the integrand of equation (9). The Pauli uncertainty
principle is considered in the calculations as well. As we
explained in Section 2, we split the target ELF in outer-
shell and inner-shells components. The inner-shell ELF is
described by the GOS model whereas the outer-shell ELF
can be described either by the extended-Drude model [24]
or the Mermin-ELF model [25,26], as already discussed.

We show in Figure 5 the electronic mean free path
λelectronic for electrons in PMMA as a function of their
kinetic energy W and for the two different descriptions of
the ELF analyzed here. For energies larger than 100 eV,
λelectronic is practically insensitive to the ELF descrip-
tion, although at lower energies there are larger discrep-
ancies between the results obtained with the Mermin-
ELF (solid line) or with the extended-Drude ELF (dashed
line), being more pronounced as the electron energy de-
creases. These differences in λelectronic are due to the dif-
ferent methods used to extend the PMMA optical ELF to
non-zero momentum transfers in the Mermin-ELF and in
the extended-Drude ELF. Indeed, it was already demon-
strated that in the case of liquid water, where there are ex-
perimental data for the ELF at non-zero momentum trans-
fers [32,33], the results of MELF-GOS model agree very
well with the experiments, whereas those of the extended-
Drude-GOS ELF do not agree so well [20]. The influence of

Fig. 5. Inelastic electronic mean free path λelectronic of elec-
trons in PMMA as a function of their kinetic energy W ob-
tained from the MELF-GOS model (solid line) and from the
extended-Drude-GOS model (dashed line). The influence of the
exchange factor in λelectronic is also presented for the MELF-
GOS model (gray dashed-dotted line). The experimental data
from Roberts et al. [42] are also presented for comparison, as
well as the prediction from the TPP formula [41] (dotted line).

the exchange factor is only visible at very low electron en-
ergies (�10 eV). It must be considered as an upper limit in
λelectronic, since the Born-Ochkur approximation is based
on the single-electron excitations assumption, while our
ELF description does not distinguish between single and
collective excitations. The calculations obtained from the
popular TPP formula [41] (dotted line) are also depicted
in the figure for comparison purposes. The experimental
data from [42], shown by symbols, agree well with our cal-
culations within their uncertainty, whereas the differences
are larger with the prediction from the TPP formula [41].

For electron-electron collisions, the primary electron
polar scattering angle θ and the secondary electron polar
ejection angle are calculated within the classical binary
collision model by W

W = sin2 θ, where W is the electron
energy loss and W is the incident electron energy. The
azimuthal angle is simply obtained drawing a uniformly
distributed random number in the range [0, 2π].

For electrons with energies W lower than ∼10–20 eV,
the dielectric formalism is no longer able to accurately de-
scribe energy loss phenomena. In this region, electrons lose
energy in many small amounts interacting with phonons,
in particular with the optical modes of lattice vibra-
tions. Therefore, the electron-phonon interaction can be
described through the interaction of free conduction elec-
trons with the longitudinal optical mode of lattice vibra-
tions [43]. As the dispersion relation of the longitudinal
phonons can be neglected in the optical branch [44], a
single phonon frequency ωph can be used, and the in-
verse inelastic mean free path for electron (with energy
W )-phonon interaction λ−1

phonon can be calculated by the
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following expression [45]:

λ−1
phonon (W ) =

1
a0

[
n (T ) + 1

2

] [
ε (0) − ε (∞)
ε (0) ε (∞)

]
�ωph

W

× ln

[
1 + (1 − �ωph/W )1/2

1 − (1 − �ωph/W )1/2

]
, (10)

where n(T ) = (e�ωph/kBT − 1)−1 is the occupation func-
tion for a temperature T of the target, a0 is the Bohr
radius, kB is the Boltzmann constant, and ε(0) and ε(∞)
are, respectively, the static and high frequency dielectric
constant.

For the electron-phonon collisions, the scattering angle
θ can be obtained, according to [45], by the expression:

cos θ =
(

W + W ′

2
√

WW ′

)
(1 − Gη2) + Gη2 , (11)

where G = W+W ′+2
√

WW ′
W+W ′−2

√
WW ′ , being W and W ′, respectively,

the electron energies before and after the electron-phonon
scattering, and η2 a random number uniformly distributed
in the interval [0, 1]. As usual, the azimuthal angle is ob-
tained uniformly distributed in the range [0, 2π].

A low-energy electron traversing an insulating mate-
rial, such as PMMA, can polarize the medium surround-
ing it, creating a quasi-particle known as a “polaron”,
which stabilizes the electron that generates it. According
to [44], the inverse inelastic mean free path for the elec-
tron (with energy W )-polaron interaction λ−1

polaron, with
the low-energy electron being trapped in the ionic lattice,
is given by:

λ−1
polaron(W ) = C e−ΓW , (12)

where C and Γ are constants depending on the material
under investigation. For PMMA we use the values C =
1.5 nm−1 and Γ = 0.14 eV−1 [46].

To summarize, the electrons follow stochastic tra-
jectories, with scattering events separated by straight
paths having a distribution of step lengths that fol-
lows a Poisson-type law, according to the inverse total
inelastic mean free path, equation (8), which is built
adding the contributions of the electronic interactions
λ−1

electronic, equation (9), the electron-phonon interaction
λ−1

phonon, equation (10), and the electron-polaron interac-
tion λ−1

polaron, equation (11). Once the step length is ob-
tained, the elastic or inelastic nature of the scattering
event, the polar and azimuthal angles, as well as the
energy losses, are all sampled using the relevant cumu-
lative probabilities according to the usual Monte Carlo
recipes [47]. As each secondary electron produces further
secondary electrons during its travel inside the target, it is
therefore mandatory to follow the whole electron cascade
in order to obtain quantitative results, until the moving
particles are trapped in the material or reach a threshold
energy, which we have taken to be 1.0 eV [48–50].

Fig. 6. Secondary electron yield of PMMA as a function
of the primary electron kinetic energy obtained from the
MELF-GOS model (solid line) and from the extended-Drude-
GOS model (dashed line). Symbols correspond to experimental
data [51–53].

4 Results and discussion

In this section we present the results for the propagation
of the electrons produced in PMMA by low energy protons
(50 keV–5 MeV). We concentrate in this low energy range,
despite that initial energies used in hadron therapy are of
the order of hundreds of MeV, since these are the typi-
cal energies of the protons when reaching the Bragg peak
position, where the major part of the damage is expected.

The energy distribution of the secondary electrons gen-
erated by proton impact, at a given energy, is calculated
by two optical data models to describe the target elec-
tronic excitation spectrum (MELF-GOS and extended-
Drude-GOS). This magnitude will be the input quantity
in the Monte Carlo simulation code to follow the motion
of the electrons through the target. Also, the description
of the electron slowing down in the simulation is done by
two different ELF (k �= 0) extension algorithms. Proceed-
ing in this manner we have discussed the effects of the
optical data model in the calculated radial energy deposi-
tion distributions.

In order to benchmark the Monte Carlo code to simu-
late the generation and the transport of energetic electrons
in PMMA and the appropriate value of the parameters
used, we calculate the secondary electron (SE) yield as a
function of the electron energy and compare our results
with experimental data. In Figure 6 we present the sim-
ulated SE yield obtained for the two descriptions of the
target electronic excitation spectrum, namely the Mermin
ELF (solid line) or the extended-Drude ELF (dashed line).
The comparison with available experimental data [51–53],
shown by symbols, is also presented. As it can be observed,
due to the dispersion in the experimental data, the results
obtained for the simulated SE yield for both ELF descrip-
tions are compatible with experiments.

In Figure 7 we present the simulation of the radial
energy deposition due to the energy delivered by all the
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Fig. 7. Simulation of the secondary electron radial energy de-
position due to 50 keV–5 MeV protons impinging on PMMA,
as a function of the radial distance r from the ion impact.
These results have been obtained from the MELF-GOS model
(solid lines) and from the extended-Drude model (dotted lines)
used to describe the PMMA electronic response.

electrons (secondary plus avalanche) generated by the inci-
dence on PMMA of protons with energies between 50 keV
and 5 MeV, which are typical proton energies at the Bragg
peak. This allows the analysis of differences coming from
the use of the Mermin and the extended-Drude ELF de-
scription of the target in the generation of secondary elec-
trons and their transport through the medium. Our sim-
ulation shows that important differences appear in the
radial energy deposition, which is larger and closer to the
projectile track when the Mermin ELF is applied instead
of the extended-Drude ELF. In the case of the MELF-
GOS model the distance corresponding to the maximum
energy deposition is around 1 nm (independent of the pro-
ton energy), whereas for the extended-Drude ELF this
distance is displaced up to 1.85 nm. This implies that
the MELF-GOS model predict a larger density of the
deposited energy than the extended-Drude ELF, which
could give a greater damage in the medium. The maxi-
mum value of the energy deposited by SE in the target
increases from T = 50 keV up to 100 keV, remains con-
stant from T = 100 keV up to 1 MeV, and decreases at
T = 5 MeV. This behavior means that protons with en-
ergies from 100 keV up to 1 MeV are more efficient in
the target energy deposition by the secondary electrons.
In fact, the radial energy deposition spectrum is rather
similar for proton with energies from T = 100 keV up
to 1 MeV. The maximum value of the SE energy depo-
sition at any proton energy is around 11 eV/nm for the
MELF-GOS model whereas for the extended-Drude model

Fig. 8. Monte Carlo simulation of the radial energy deposi-
tions of secondary electron produced by 0.05 MeV, 0.1 MeV
and 0.5 MeV protons impinging on PMMA, as a function of
the radial distance r from the ion impact, obtained from the
MELF-GOS model. The simulations have been done with the
actual initial energy distribution of the emitted electrons (solid
lines) and with a single initial energy corresponding to the av-
erage energy of the emitted electrons (dotted lines).

it is about 7 eV/nm. For the Mermin ELF, the radial en-
ergy deposition decreases below 5% with respect to the
maximum value at distances larger than 5 nm. However,
when the extended-Drude model is used, the distances
where the electron energies are deposited are practically
twice the distances obtained for the MELF model. In all
the cases the total energy deposition (that is the integral
of the radial energy distribution) is the same for both ELF
models.

Finally, to determine if the actual energy distribution
of electrons generated by the proton impact plays some
role in the simulation results, we present in Figure 8 the
radial energy deposition in PMMA obtained when using
the initial energy distribution of the secondary electrons
generated by the proton impact (see Fig. 2) or the aver-
age energy of that distribution (see Fig. 4); now only the
MELF-GOS method has been used to describe the elec-
tronic properties of PMMA. As it can be seen, for the
lowest proton energy analyzed (50 keV), the differences
between the simulations when using either the energy dis-
tributions or the average energy of the secondary elec-
trons are insignificant. Nonetheless, these differences start
to be more visible at 100 keV, and they are very sizeable
at 500 keV. This behavior can be understood from the
analysis of the SDCS; for higher proton energies, more
energetic electrons can be generated, i.e., the energy dis-
tributions are wider, so the differences in the SE energy
deposition between the average energy and the real ener-
gies of the electrons are larger.

5 Conclusions

In this work we have analyzed the production and prop-
agation of secondary electrons generated by low energy
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proton (50 keV–5 MeV) impact in the organic polymer
PMMA, which is commonly used as a water or tissue
phantom in ion beam cancer therapy dosimetry measure-
ments, as well as a resist in nanolithographic techniques.
To perform such analysis, we have produced secondary
electron energy distributions for different proton energies,
according to two different optical data models (MELF-
GOS and extended-Drude-GOS methods), as explained
in Section 2. Then, these energy distributions have been
used as input for the event-by-event Monte Carlo simula-
tion code described in Section 3, which, apart from includ-
ing the electronic inelastic interactions (evaluated in the
framework of the optical data models), also considers the
other relevant interaction processes, namely, elastic scat-
tering with target nuclei, electron-phonon interaction, and
electron-polaron interaction.

This simulation code has been, first of all, bench-
marked against SE yields, showing results in accordance
with the available experimental information. Then, it has
been used to calculate the radial energy deposition distri-
butions around the tracks of protons. It has been shown
that the choice of the optical data model (MELF-GOS
or extended-Drude GOS) strongly influences the shape of
the radial distributions, being much narrower when the
MELF-GOS method, which is a much more accurate ap-
proach, is used. Furthermore, the effect of the actual en-
ergy distributions of electrons, as compared with their av-
erage energy, has been also analyzed. We found that, for
proton energies below 50 keV, the energy distribution of
electrons does not affect the final radial energy deposition
distributions. Nonetheless, when the proton energies in-
crease then the differences start to be noticeable. We also
found that the SE energy deposition spectrum is maxi-
mum and constant for proton energies from T = 100 keV
up to 1 MeV, which indicates that protons with those en-
ergies are more efficient in the energy deposition by sec-
ondary electrons.

Therefore, we conclude that the use of a proper op-
tical data model, as the MELF-GOS method, is relevant
for the evaluation of radial energy deposition distributions
around proton tracks through the use of Monte Carlo sim-
ulations. The energy distributions provided by the ioniza-
tion SDCS, as well as the inelastic inverse mean free path
for electron propagation in PMMA, yield simulation re-
sults which notably differ from the ones obtained using
simpler optical data models and average electron ener-
gies, thus stressing the importance of the use of detailed
simulations, fed with proper electronic inelastic data, for
the study of the effects of ion beams in organic materials
at the nanometric scale.
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by the Istituto Nazionale di Fisica Nucleare (INFN) through
the Supercalcolo agreement with FBK. PdV acknowledges fi-
nancial support from the European Union’s FP7-People Pro-
gram (Marie Curie Actions) within the Initial Training Net-
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