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3 Departamento de F́ısica, Facultad de Ciencias, Universidad Autónoma de San Luis Potośı, Álvaro Obregón 64,
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Abstract. We report the results of DFT calculations wich were performed to investigate equilibrium struc-
tures, electronic properties and stability of small free FexSny clusters with x+ y ≤ 5 within the framework
of density functional theory as implemented in SIESTA code. We find that optimized structures of these
binary clusters prefer geometries with high coordinations and show significant variations as compared to
that of the pure clusters; all the clusters show magnetic behavior independently of the Fe concentration, the
antiferromagnetic-like coupling betwen Fe-Sn is present generally. Also the electronic behavior is analized
through the ionization potential, the electron affinity, the hardness and the HOMO-LUMO gap.

1 Introduction

In recent years, the study of nanoalloys has become an im-
portant tool in nanoengineering for several technologically
promising fields, for example in catalysis; so far most of
the studies have focused mainly on the changes observed in
chemical activity or in the magnetic and optical properties
with the changes in particle size and in their chemical com-
position. Alloying in bulk systems is well understood, al-
loying at the nanoscale has been little explored; questions
as what controls the structural, electronic and chemical
properties of bimetallic nanoparticles (BNP) remain unan-
swered. The interaction between the two components of
BNP introduces a mutual influence on neighboring atoms
which leads to the unique properties of these systems not
found in other regime size. Experimentally and theoreti-
cally it has been clearly stablished that the properties of
BNP are not necessarily given by the average behavior of
their corresponding isolated constituents.

The research in the field of BNP is exciting due to
their potential applications in the automobile industry
and hydrocarbon reactions as catalysts [1,2]. The bimetal-
lic atomic clusters are into BNP, these systems are cur-
rently of great interest due they have an important role,
not only in the miniaturization of devices but also in
the fundamental understanding of materials at nanoscale.
BNP with novel properties such as enhanced stability by
suitable doping, tunable gaps and optical properties could
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lead to novel nanoscale optoelectronics as well as minia-
ture spintronics and storage devices. The conceivable ge-
ometrical arrangements for a BNP is determined by the
different radii of its elements; in addition, the number of
possible structures is increased by the relative positions of
the constituent atoms within the given stoichiomestry.

In recent years, an important effort has been devoted
to the study of bimetallic atomic clusters [3]. By adding a
second element to monoatomic clusters, the composition
and spatial distribution of the components provide addi-
tional parameters that modify their physical and chemi-
cal properties and open the possibility of synthesizing a
wider set of novel materials. In particular, due to their po-
tential applications, atomic clusters containing magnetic
elements are presently subject of intense research, the in-
terest in binary clusters based mainly on transition met-
als (TM) atoms where the second element can be a metal
(TM, Au, Ag), a semiconductor or a rare earth is increas-
ing. From the point of view of the magnetic properties,
an interesting result is that by coating TM atoms one
can achieve an enhancement in the magnetic moments of
TM atoms [4–6]. Another result about BNP is that they
can replace the iron oxide particles as magnetic carriers in
vitro separation and therapeutic in vivo technology [7].

BNP with Sn as a component have been studied
widely, for example, in the study of structural evolu-
tion of doped gold clusters [8]; in cage encapsulating
TM atoms [9]; in cages in endohedral stannaspherenes
forms [10] and in the study of mobility of Sn atoms in
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Cu2Sn surface alloy [11]. In particular, atomic clusters
FeSn can be produced by direct reaction of individual
atoms in a solid rare-gas matrix at low temperature [12],
where the authors characterized the various dimers and
trimers of FeSn clusters.

The remainder of the paper is organized as follows:
in the next section the computational method used here
is briefly recalled. Results for the local magnetic moments
and the global minimum structures of FexSny with x+y ≤
5 clusters are presented and discussed in Section 3; finally
Section 4 summarizes the main conclusions.

2 Computational details

The Spanish initiative for electronic simulation of thou-
sands atoms (SIESTA) [13] is a code developed within the
density functional theory, that uses a linear combination of
pseudo-atomic orbitals as a basis sets. The electronic core
is replaced by a non-local conserving Troullier-Martins
pseudopotential [14] that is factorized in the Kleinman-
Bilander form [15]. By means of this code one can perform
in addition to the electronic calculations, structural opti-
mizations in different ways, like conjugate gradients or the
Verlet algorithm, which has been successfully applied to
a variety of systems, like surfaces, absorbates, biological
molecules and free supported clusters.

In this contribution we have used the generalized
gradient approximation (GGA) as a parametrized by
Perdew-Burke-Ernzerhof [16] for the exchange-correlation
potential. The pseudo-potentials are considered using the
natural electronic configuration, for Sn atom 5s25p2. For
Fe atom we have used the atomic configuration 3d74s1,
previous studies of Fe in different environments suggest
this configuration as adequate for building a transferable
pseudo-potential [17]. The valence states were described
using a double-ζ polarized basis set for Fe whereas for
Sn a double-ζ was considered. In calculations, the clusters
were placed in a supercell cubic of a side size of 20 Å. This
cell is large enough to warranty that: (a) the interactions
between the cluster and its replicas in neighboring cells
are negligible, (b) it is sufficient to consider only the γ
point when integrating over the Brillouin zone.

The energy cutoff used to define the real space grid for
the numerical calculations involving the electron density
was 250 Ry. Furthermore, by using a conjugate gradient
method, all the structures were fully relaxed without ge-
ometry or spin constrains until the forces were smaller
than 0.003 eV/Å.

It is worth to notice that we have considered lin-
ear, planar and three-dimensional geometries and we have
tested different spin isomers in all cases to be sure that
the ground state was obtained for the electronic proper-
ties in our calculations; the previous due to the sensitivity
of the magnetic properties to the structure and chemical
order [18]. However, the situation for alloy clusters is quite
cumbersome as one has to deal a large number of starting
geometries because of the presence of homotops, i.e., ge-
ometrical structures with the same number of atoms and
composition, but differ in the arrangement of the doped

Table 1. Our simulation GGA-PBE compared with other
DFT theoretical approaches and experimental results for av-
erage magnetic moment μ̄(μB), binding energy per atom
Eb (eV/atom), and average interatomic distance d (Å/bond),
in pure Fe clusters.

x μ̄ Ēb d̄ Method
2 3.00 1.41 2.04 This work

3.00 2.25 1.96 SIESTA-LSDA [22]

3.00 1.59 2.02 DMOL-BLYP [23]

1.30 1.87–2.02 Exp. [24,25]

3 3.33 1.89 2.22 This work

3.33 1.94 DMOL-BLYP [23]

2.67 2.67 2.14 SIESTA-LSDA [22]

4 3.5 2.28 2.40 This work

3.5 2.22 DMOL-BLYP [23]

3.00 3.13 2.33 SIESTA-LSDA [22]

5 3.6 2.58 2.18 This work

3.6 2.55 DMOL-BLYP [23]

3.2 3.48 2.47 SIESTA-LSDA [22]

atom, so the variety of structures in alloy clusters is larger
than that in pure clusters.

3 Results for pure Fe and Sn clusters

The first step toward the theoretical modeling of atomic
clusters is to determine their ground state structures; to
obtain the minimum energy structures (MES) we con-
sider several starting geometries and allowed each one
of the geometries to relax for all possible collinear spin
configurations.

3.1 Pure clusters

In order to test the validity of the pseudo-potentials used
here, we calculated the binding energy and the inter-
atomic distance of the different pure clusters, in Tables 1
and 2, we present the results for pure Fe clusters and pure
Sn clusters with 2−5 atoms, respectively. Our results are
compared with some theoretical and experimental values
published in the literature. For Fe2 dimer, all the calcu-
lations give the same average magnetic moment and sim-
ilar interatomic distances (comparable with the experi-
mental ones). Our average binding energy compares well
with the experimental result as well as with the obtained
with other DFT methods, but is smaller than the obtained
with SIESTA-LSDA (local spin density approximation).
For the triangle, there is more dispersion in the results of
different DFT approaches. In general, the GGA calcula-
tions lead to higher magnetic moments and lower binding
energy than the LSDA ones. These tendencies are man-
tained for Fe4 and Fe5 clusters, from Table 1 we can notice
a good agreement between our results with the DMOL-
BLYP calculations.
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Table 2. Our simulation GGA-PBE compared with other
DFT theoretical approaches and experimental results for bind-
ing energy per atom (eV/atom), Ēb, and average interatomic
distance (Å/atom), d̄, in pure Sn clusters.

y Ēb d̄ Method
2 1.13 2.82 This work

1.18 GGA-RPBE [26]

1.25 2.75 G03-B3LYP [19]

1.20 2.78 GGA [27]

1.01 Exp. [28]

2.75 Exp. [29]

3 1.70 2.93 This work

1.66 GGA-RPBE [26]

1.77 2.84 G03-B3LYP [19]

1.77 2.68 GGA [27]

1.72 Exp. [28]

4 2.08 2.94 This work

2.09 GGA-RPBE [26]

2.48 2.86 G03-B3LYP [19]

2.22 2.83 GGA [27]

1.98 Exp. [30]

5 2.11 2.97 This work

2.26 GGA-RPBE [26]

2.34 3.18 G03-B3LYP [19]

2.40 2.83 GGA [27]

2.10 Exp. [30]

For Sn2 we found a dimer with an average magnetic
moment of 2 μB and a bond length of 2.82 Å, this value is
above about 0.06 Å, as compared with other DFT results,
and 0.07 Å, as comparing with the experimental result,
whereas our result for binding energy per atom is in good
accordance with the experimental result as well as with the
obtained with the GGA-RPBE result. We can notice the
largest value for the binding energy per atom corresponds
to B3LYP method [19], the authors used a basis set in-
cluding relativistic effects. Balasasubramanian et al. [20]
studied Sn2 cluster introducing spin-orbit interaction at
the configuration interaction scheme, their result for Eb

is 1.02 eV/atom. But as can see below, our method give
reasonable results for average binding energy for larger
Sn clusters. In Figure 1, the lowest energy structures for
pure Fe and Sn clusters are shown. We can notice that
equilibrium structures of Sn clusters diverge significantly
from those of the corresponding crystalline fragments due
to severe broken bonds but share similar structures with
Si and Ge nanoclusters, which are consistent with experi-
mental results [21].

From Table 2, our results for Ēb are in best con-
cordance with the experimental results that other DFT
approaches but our bond lengths are overstimated with
respect to the same DFT studies for all the Sn clusters
studied here.

Fe

Sn

Fig. 1. Illustration of the lowest energy structures for pure
clusters with three to five atoms.

In resume, we can conclude that our DFT approach
leads to a good overall agreement with the other methods
as well as with the experiments (when available) for the
pure Fe and Sn clusters, with regard to the binding ener-
gies, magnetic moments and interatomic distances. There-
fore, this gives us confidence in the accuracy of our method
for the study of FeSn nanoalloys of similar sizes.

3.2 Doped clusters

In this section we present the MES, stability and mag-
netic moments of the free FexSny clusters with x +
y ≤ 5. For the FeSn dimer, the ground state presents
an antiferromagnetic-like order with a local magnetic
moments μ(Sn) = −1.449 μB and μ(Fe) = 3.449 μB.
Our calculations give a binding energy per atom, Eb of
1.386 eV/atom; this value is higher than the value for
pure Sn2 cluster and is approximately the same value for
Fe2 dimer.

The first excited state is above of the ground state
in 0.42 eV in total energy, in this cluster the local mag-
netic moments point in the same direction, giving a
ferromagnetic-like order; our calculations show an en-
hanced local Fe moment of 3.557 μB and the local Sn
moment is diminished to 0.443 μB.

Our Mulliken population analysis shows a charge
transference from Sn atom to Fe atom, this result is
concording with the experiment [12], by using Mösbauer
effect.

In Figure 2, we present the MES (ΔET = 0.0) and the
first isomers (ΔET > 0.0), in order to found the ground
state we considered different geometries with different spin
states for all the concentrations considered here. From this
Figure we can obtain information about the total energy,
local magnetic moments, total magnetization, the value of
the binding energy per atom and the average bond length
for each cluster studied here.

For clusters with 3 atoms, FeSn2 and Fe2Sn, we con-
sidered only triangular arrangements due to this geometry
is common for the homonuclear clusters, see Figure 1. In
both clusters, the MES corresponds to an isosceles trian-
gle, these results are in concordance with the structures
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Fig. 2. Lowest energy structures of FexSny as obtained in DFT calculations. ΔET is the total energy per atom relative to the
ground state, G.S., (ΔET = 0) in meV/atom, Eb is the binding energy per atom in units eV/atom. μ is the total magnetization
and d represents the average bond lenght in units Å/bond the up and down arrows represent the direction of the atomic magnetic
moment. White balls represent the Fe atoms, while the gray balls represent the Sn atoms.
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derived from arguments on experimental results [12]. We
can notice that the magnetization and the magnetic order
into the cluster depend of chemical composition; in the
first case the magnetic order is ferromagnetic-like, whereas
in the second case is antiferromagnetic-like, in both cases
the value of Fe magnetization does not change and rep-
resents the main contribution to the total magnetization
of the clusters; from Figure 2, we can notice a large bond
length in FeSn2 cluster, this behavior is present in larger
clusters doped with a Fe atom, see Figure 2. In the re-
spective first isomers, the total magnetization is reduced
in 2 μB with respect to the respective MES, in both struc-
tures the antiferromagnetic coupling is preserved.

For clusters with x + y = 4, all the MES present
tetrahedrical structures, the same structure than for
pure Fe4 cluster, the planar structure is present only in
the first isomer of FeSn3 and is above of the ground
state 71 meV/atom, see Figure 2. In this size, the
antiferromagnetic-like order appears in all the ground
states structures. The lowest value for μ(Fe) is in FeSn3,
and increases when the number of Fe atoms in the clus-
ters increases too; besides for each Fe atom added the
total magnetization increases in 4 μB, i.e., the magnetic
moment of the Fe atom. In these clusters, the largest av-
erage bond length (d) is present in FeSn3, where the main
contribution comes from all the Sn-Sn bond lengths, the
largest one is 3.39 Å, and two distances of 3.02 Å. It can be
notice that d decreases when the number of Fe atoms in
the cluster increases.

Some physical quantities are mantained for cluster
with 5 atoms, for example the largest value of d for doped
clusters with a Fe impurity, and the decreasing value of
this distance when the number of Fe atoms increases in
the cluster.

From Figure 2, the MES for doped clusters with
5 atoms present trigonal bipyramid mottifs, except for
Fe2Sn3 whose global minimum structure is a non-regular
square pyramid, where the Fe atoms have a different local
environment giving as a result different values of μ(Fe), all
the Sn atoms are in the base of the pyramid, but the mag-
netic order between them is not ferromagnetic-like. In the
other clusters, all the μ(Sn) point in the same direction
giving a ferromagnetic coupling between them.

From Figure 2, we can notice that some first isomers
(FeSn3, FeSn4 and Fe4Sn) present a total magnetization
2μB higher than the respective MES, our results show a
ferromagnetic-like order in these structures. The difference
in total energy runs from 0.065 eV for Fe4Sn to 0.35 eV
for FeSn3. The first result show two magnetic states quasi-
degenerates, this fact has a consequence in the stability for
this cluster.

3.3 Stability of the clusters

A central concept in any stability analysis of clusters is the
binding energy per atom, which we define here for doped
clusters as:

Eb(FexSny) =
xE(Fe) + yE(Sn) − E(FexSny)

x + y
, (1)
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Fig. 3. Binding energy per atom for all the clusters stud-
ied here, the filled (unfilled) squares represent pure Sn (Fe)
clusters.

and for pure clusters as:

Eb(Mn) =
nE(M) − E(Mn)

n
, (2)

where E(M) (M = Fe, Sn) is the single atom energy for
pure clusters, and E(FexSny) is the total energy for doped
clusters. The binding energies per atom for pure Sn and
Fe clusters and nanoalloys of FeSn in the concentrations
considered here as a function of the cluster size are plot-
ted in Figure 3. We can notice general trends from this
Figure; for pure clusters, the lowest value of Eb is present
for all the pure Sn clusters, whereas for pure Fe structures
their binding energy per atom is intermediate between Sn
clusters and some FexSny clusters.

For doped clusters with a Fe impurity, Eb takes the
lowest value and from Figure 3 we can notice an incre-
ment of the binding energy per atom with the number of
Fe atoms, and for doped clusters with a Sn atom in the
clusters the largest value of Eb is present; we can notice,
that for MES with the same number of Sn and Fe atoms
(x = y), Eb takes almost the value than for the respective
pure Fen clusters (n = 2, 4).

On the other hand, an index comparing the stability
of binary clusters of nearby compositions may be useful.
This index is the second difference in the energy Δ2E
defined by:

Δ2E(FexSny) = E(Fex+1Sny−1) + E(Fex−1Sny+1)
− 2E(FexSny), (3)

where all the terms on the right side are refered as the
total energies of the clusters involved in the calculation.
Δ2E compares sizes differing by one atom, clusters with
high relative stability correspond to peaks in this index.
For FeSn dimer, the value of Δ2E is 0.305 eV, indicating
a relative stability in this structure. In Figure 4, we plot
the second difference in the energy in terms of the num-
ber of Fe atoms in the clusters; for structures with 3 and
4 atoms present the same trend, the relative stability in-
creases with the number of Fe atoms in the clusters and
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Fig. 4. Relative stability and excess energy for doped cluster,
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the most stable stuctures correspond to clusters rich in Fe
atoms, Fe2Sn and Fe3Sn, respectively.

Whereas for clusters with 5 atoms the most stable
structure is Fe3Sn2; this change in the behavior of Δ2E
is due to the large diference in the total energy between
the MES and the first isomer as compared with the small
difference in ΔET for Fe4Sn cluster, see Figure 2.

In order to determinate the favorable mixing between
Fe atoms with Sn atoms the excess energy defined by

Eex = E(FexSny) − xE(FeN )/N − yE(SnN )/N, (4)

is used i.e., substracting from the energy of the binary
cluster the appropiate fraction of the total energy of pure
reference clusters of the same size. In this way, Eex is zero
for pure clusters; in general a negative value of this excess
energy indicates that mixing is favorable. For FeSn struc-
ture, the value of Eex is −0.152 eV, indicating a favorable
mixing. In the same Figure 4, we plotted Eex in terms of
the number of Fe atoms present in the clusters studied
here; we can notice that mixing is favorable for the ma-
jority of clusters, except for FeSn3 and Fe2Sn2 clusters;
we can notice a same trend for Eex that Δ2E, the most
favorable mixing is present in structures rich in Fe atoms
or clusters with a Sn atom.
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Fig. 5. Ionization potential, I , electron affinity, A, and hard-
ness 2η, for all the structures studied here; the unfilled symbols
correspond to vertical cases whereas filled symbols correspond
to adiabatic cases.

3.4 Electronic properties of doped clusters

One concept related with the relative stability of the clus-
ters is their chemical hardness defined by:

η = (I − A)/2, (5)

where I and A are the ground state ionization potential
and the electron affinity, respectively. We calculated both
quantities vertically and adiabatically, see Figure 5. We
can notice that I increases with the number of Fe atoms in
the cluster, except for clusters with 5 atoms, where Fe4Sn
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cluster takes the lowest value; whereas the behavior of A
is similar for all the clusters, decreases with the number
of Fe atoms in the cluster. From these results, adding or
removing one electron depends basically of the number of
Fe atoms in the cluster.

In Figure 5, we present our results for η, we can notice
that for clusters with 3 and 4 atoms, the maximum value
of hardness is reached when the number of Fe atoms in
the cluster takes the largest possible value in these sizes,
but for structures with 5 atoms, the maximun value of
η is reached in Fe3Sn2. These results are congruent with
the results for ΔE2, i.e., the maximum value of hardness
reflects the maximum relative stability, see Figure 4.

In Figure 6, we show our results for the difference
between the highest occupied molecular orbital and the
lowest unoccupied molecular orbital, HOMO-LUMO gap
(HLg); this quantity is an invaluable tool in the cluster sta-
bility study; we can see that the behavior of HLg is very
similar to ΔE2, i.e., for structures with 3 and 4 atoms the
maximum value is reached when the number of Fe atoms
is maximum in these clusters.

From these results, we do not find a correlation be-
tween HOMO-LUMO gaps with the binding energy per
atom, see Figures 3 and 6.

4 Conclusions

In this work we performed DFT-GGA calculations of the
structures, stability and electronic behavior of small bi-
nary FexSny clusters with x + y ≤ 5 atoms using the
SIESTA code. Our results shown a favorable mixing and
a high relative stability for the majority of the clusters
studied here, mainly when the number of Fe atoms in the
cluster increases; this behavior is reflected in the value of
the hardness and in the HOMO-LUMO gap.

All the clusters show a magnetic behavior, where the
total magnetization increases with the number of Fe atoms
in the cluster, but is diminished as compared with the re-
spective pure Fe cluster, due to the antiferromagnetic-like

order among the Sn magnetization and the Fe magneti-
zation, for structures with a Fe impurity, the main con-
tribution for the total magnetization comes from the Fe
atom.

We are grateful to Centro de Computo of Facultad de Ciencias,
UASLP. All the authors contributed equally to the paper.
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7. A. Hütten et al., J. Magn. Magn. Mater. 293, 93 (2005)
8. R. Pal et al., J. Am. Chem. Soc. 131, 3396 (2009)
9. V. Kumar, A.K. Singh, Y. Kawazoe, Nano Lett. 4, 677

(2004)
10. Li Feng Chui et al., Angew Chem. 119, 756 (2007)
11. F. Delogu, J. Phys. Chem. C 113, 17059 (2009)
12. S. Shamai, M. Pasternak, H. Micklitz, Phys. Rev. B 26,

3031 (1982)
13. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garćıa, J.M.
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