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Abstract. We develop a general approach to study the statistical fluctuations of the Casimir potential felt
by an atom approaching a dielectric disordered medium. Starting from a microscopic model for the disorder,
we calculate the variance of potential fluctuations in the limit of a weak density of heterogeneities. We
show that fluctuations are essentially governed by scattering of the radiation on a single heterogeneity, and
that they become larger than the average value predicted by effective medium theory at short distances.
Finally, for denser disorder we show that multiple scattering processes become relevant.

1 Introduction

When approached close to each other, two materials expe-
rience an attractive Casimir force due to quantum vacuum
fluctuations [1]. In the context of atom-surface interaction,
a careful description of the Casimir-Polder effect [2] is
of paramount importance for quantum reflection of cold
atoms from surfaces [3], single-atom manipulation on mi-
crochips [4,5] or trapping of antimatter [6,7] to cite a few
examples. In all these cases, the Casimir force is usually
the dominant one in a short-distance domain typically
ranging from hundreds of nanometers to a few microm-
eters, where possible electrostatic forces are negligible [8].
In general, the essential features of the Casimir interac-
tion between an atom and a surface are correctly captured
by an effective medium description where all the material
heterogeneities are averaged out, so that radiation is re-
flected specularly [9]. In real systems however, specular
reflection is always an idealization. Some part of electro-
magnetic radiation is scattered in a more or less compli-
cated way by the material and is eventually reflected in
any direction, giving rise to a non-specular contribution
to the Casimir interaction potential [10]. For very efficient
specular reflectors such as mirrors, the non-specular part
of radiation is of course very small. But for strongly het-
erogeneous systems such as nanoporous materials, pow-
ders, or more generically disordered media, the contribu-
tion of non-specular reflection may be non-negligible and
lead to significant fluctuations of the potential around the
prediction of effective medium theory. This statement is
especially true for dilute disordered media that contain a
large fraction of vacuum, such that the effective dielec-
tric constant is close to one and the Casimir potential
becomes small. The crucial question that we address in
the present paper is then to know whether the Casimir
potential may become even smaller than its non-specular
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fluctuations. In the context of quantum reflection of cold
atoms on Casimir potentials [11], a positive answer could
explain the low values of reflection coefficients observed in
recent experiments using heterogeneous materials [12], as
stemming from atoms reflected in non-specular directions.

In order to achieve this goal, we develop in this paper
a general description of the Casimir potential between an
atom and a heterogeneous material, combining techniques
from both the theory of disordered systems [13,14] and the
scattering approach to Casimir forces [10,15]. We consider
a generic microscopic model where an atom interacts with
a disordered dielectric material consisting of a large col-
lection of heterogeneities (“scatterers”) embedded in a ho-
mogeneous background. We describe this system by means
of a statistical approach, assuming that the positions of
the scatterers are randomly distributed in the material
(Sect. 2). From this model, we first evaluate the ensem-
ble average Casimir potential, and recover the prediction
of effective medium theory, which describes a disordered
material by a homogeneous dielectric constant (Sect. 3).
Then, in Section 4 we calculate the statistical fluctuations
of the potential due to non-specular reflection on the het-
erogeneities of the material. The results obtained in that
section constitute the core of our work, and allow us to
provide a rigorous quantification of the role of hetero-
geneities on the Casimir potential between an atom and a
disordered medium. Finally, in Section 5 we demonstrate
that for a dilute disordered medium, non-specular fluctu-
ations of the Casimir potential are essentially governed by
scattering of radiation on a single heterogeneity, whereas
for denser disorder multiple scattering processes become
significant.

2 Framework and hypotheses

We consider a ground-state, two-level atom in vacuum, lo-
cated at distance zA > 0 from a semi-infinite disordered

http://www.epj.org
http://dx.doi.org/10.1140/epjd/e2015-50898-8


Page 2 of 9 Eur. Phys. J. D (2015) 69: 99

disordered medium

atom

0

Fig. 1. We study the Casimir interaction potential between
a ground-state atom (placed in vacuum) and a semi-infinite
disordered medium. The disordered medium consists of a col-
lection of scatterers (size a, relative dielectric constant εs, den-
sity n) whose positions are uniformly distributed in a homoge-
neous background of relative dielectric constant ε. We assume
a flat interface between the medium and the vacuum.

medium, as shown in Figure 1. The response of the atom
to an electric field of frequency ω is characterized by
a simple model for the dynamic polarizability α(ω) =
α(0)ω2

A/(ω2
A −ω2), where ωA is the atomic resonance fre-

quency (here and in the rest of the paper, polarizabili-
ties are expressed in SI units divided by ε0). While the
two-level atom approach may fail in general to describe
accurately the dispersion interaction of real atoms with a
surface at short distances [16], it has been shown to be
a good description for the Casimir-Polder interaction of a
nanosphere and a surface [17]. The disordered medium is
assumed to be a heterogeneous dielectric material, consist-
ing of a collection of scatterers (size a, relative dielectric
constant εs, density n) embedded in a homogeneous back-
ground of relative dielectric constant ε > 1 (see Fig. 1).

In order to evaluate the Casimir interaction potential
U(zA) between the atom and the disordered medium, a
convenient approach is the scattering formalism [10], here
written at zero temperature and in the dipolar approxi-
mation for the atom [15,18]:

U(zA) = − �

c2
Im

[∫ ∞

0

dω

2π

∫
d2qa

(2π)2
d2qb

(2π)2
∑
pa,pb

iω2α(ω)

×rab(ω)
ei(kz

a+kz
b )zA

2kz
a

εpa(qa) · εpb
(qb)

]
. (1)

In equation (1), rab(ω) ≡ 〈qb, pa|r(ω)|qa, pa〉 is the reflec-
tion coefficient describing the scattering of an incoming
mode with transverse wave vector qa and polarization vec-
tor εpa(qa) (pa = transverse electric TE, transverse mag-
netic TM) into an outgoing mode with transverse wave
vector qb and polarization pb, at frequency ω (the fre-
quency dependence of polarization vectors will be gen-
erally omitted). Its computation requires the knowledge
of the reflection tensor r(ω) of the disordered medium.
The two exponential factors eikz

azA and eikz
b zA respectively

account for the propagation of these modes from the
atom to the disordered medium, and from the disordered
medium to the atom, with longitudinal wave numbers
kz

a =
√

ω2/c2 − q2
a and kz

b =
√

ω2/c2 − q2
b . The Casimir

potential is eventually obtained by summing over all in-
coming and outgoing modes and over all frequencies.

In this paper, we make use of a statistical description
of the disordered medium. This means that the reflection
coefficient is considered as a random quantity r = r + δr,
characterized by an average value, r, and by fluctuations,
δr, giving rise to an average potential U(zA) and to po-
tential fluctuations δU(zA), respectively. In general, the
ensemble average (. . . ) over the statistics of the disorder
can be very difficult to perform. Indeed, the scatterers can
be spatially organized according to a more or less complex
pattern. They can also have a complicated internal struc-
ture with many resonances, and possibly a distribution
of sizes (polydispersity). In order to present a scenario
as simple as possible, in this paper we choose a statisti-
cal model where all heterogeneities are identical, Rayleigh
scatterers (i.e. of size a � λ), and where the position ri of
each scatterer follows a uniform distribution (the so-called
“Edwards model” [19]). With these assumptions, the en-
semble average simply amounts to summing over the po-
sitions of scatterers: (. . .) ≡ ∏

i

∫
(dri/Ω)(. . .), where Ω is

the volume of the system and the product is over the total
number N of scatterers. We consider here the thermody-
namic limit Ω → ∞, N → ∞, with a constant density
of scatterers, n = N/Ω. Finally, we restrict ourselves to
a dilute disordered medium, for which the distance n−1/3

between the scatterers is large compared to their typical
size a:

na3 � 1. (2)

Such a concentration is typically encountered in porous
materials, where na3 can be down to a few per-
cents [20,21]. The physical consequences of diluteness on
the fluctuations of the Casimir potential will be discussed
in Section 5.

3 Average Casimir potential: effective
medium theory

In this section, we evaluate the average Casimir poten-
tial U(zA), starting from the microscopic model of disor-
der introduced in Section 2. This calculation will allow
us to recover known results from Casimir physics, as well
as to introduce the necessary theoretical tools for the de-
scription of fluctuations presented in Section 4.

3.1 Preliminary: average Green tensor

Before calculating U(zA), let us introduce a convenient
tool to describe a disordered system, the Green tensor
Gω(r, r′), which is solution of the Helmholtz equation[

k2ε(r) − ∇ × ∇×]
Gω(r, r′) = δ(r − r′)I, (3)
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where k = ω/c and I denotes the unit tensor of rank 2. Let
us first leave aside the geometry of Figure 1 for a while,
and consider the case of an infinite disordered medium
described by the Edwards model, i.e. with

ε(r) = ε

[
1 +

∑
i

v(r − ri)

]
, (4)

where v(r − ri) represents the (central) potential of an
individual scatterer, located at point ri [19]. With the
assumptions discussed in Section 2, the ensemble aver-
age Green tensor can be calculated from scattering the-
ory [13,14]. We will not reproduce this calculation here
but simply give the final result which, for Rayleigh scat-
terers (a � λ = 2π/ω), turns out to be independent of
the particular shape of the function v(r − ri):

Gω(r, r′) = −
(

I +
1
k2

∇ ⊗ ∇
)

eik̃|r−r′|

4π|r − r′| , (5)

where ⊗ denotes the outer product. In equation (5), in-
formation on the disordered nature of the material is
contained in the effective wave number k̃ = k

√
ε̃ =

k
√

ε(1 + nαs), where n the density of scatterers and αs =
3u(εs − ε)/(εs + 2ε) the static polarizability of a scatterer
of volume u ∝ a3. The physical content of equation (5)
is that on average, the disordered medium can be de-
scribed as homogeneous, with a relative dielectric constant
ε̃ = ε(1 + nαs). This is the so-called effective medium the-
ory. Note that in practice, this description amounts to re-
placing the dielectric constant ε(r) in the Helmholtz equa-
tion (3) by its average value ε(r) = ε[1 +

∑
i v(r − ri)].

This is easily seen for Rayleigh scatterers, which can be
considered point-like (a � λ): v(r − ri) � αsδ(r − ri).
Then, using the definition of the disorder average given in
Section 2 we have:

ε(r) = ε

⎡
⎣1 +

∫ ∏
j

drj

Ω

N∑
i=1

αsδ(r − ri)

⎤
⎦ = ε̃. (6)

It should be noted that the effective dielectric constant ε̃
discussed here is frequency independent, which is a direct
consequence of our model of point scatterers. In general,
the polarizability of the scatterers can have a more com-
plicated frequency dependence with real and imaginary
parts, for instance of the type αs/(1 − ω2/ω2

s + iω3/γs)
for a single resonance [13]. As discussed below though,
accounting for such a general dispersion relation would
only affect the prefactor of the average Casimir potential
at short distances while this would have no effect on its
relative fluctuations. For this reason and for the sake of
simplicity, we restrict our discussion to the case ε̃ = const.,
keeping in mind that the quantitative description of a spe-
cific material would require a proper modification of αs.

3.2 Average Casimir potential

Let us now come back to the geometry of Figure 1, where
ε(r) = 1 for z < 0 and ε(r) is given by equation (4)

for z > 0. Assuming a source point r′ inside the semi-
infinite space z′ < 0, we can express the ensemble average
Green tensor at a point r in the disordered medium as [14]

Gω(r, r′) =

{
G(0)

ω (r, r′) + G
(r)

ω (r, r′) z < 0

G
(t)

ω (r, r′) z > 0,
(7)

where G(0)
ω is the free-space Green tensor, and G

(r)

ω and
G

(t)

ω are components resulting from the reflection and
transmission of the incoming wave at the interface.

As seen in equation (1), the calculation of U(zA) re-
quires the knowledge of the average reflection coefficient,
rab(ω), which describes the scattering from an incoming
mode (qa, pa) into an outgoing mode (qb, pb). This quan-
tity is related to the Green tensor through [22]

rab(ω) = 2ikz
a〈pb|G(r)

ω ({qa, 0}, {qb, 0})|pa〉, (8)

where we have introduced the two-dimensional Fourier
transform of G

(r)

ω (ra, rb) ≡ G
(r)

ω ({ρa, za}, {ρb, zb}) [22]:

G
(r)

ω ({qa, za}, {qb, zb}) =
∫

d2ρad2ρbe
iqa·ρa−iqb·ρb

× G
(r)

ω ({ρa, za}, {ρb, zb}). (9)

By requiring that the general form (7) should be solution
of the Helmholtz equation (3) in the effective medium and
imposing, say, the continuity of the transverse component
of the electric and magnetic fields at the interface [23], we
readily obtain

rab(ω) = (2π)2δ(qa − qb)δpapb
rpa(ω), (10)

where rpa(ω) are the usual Fresnel coefficients

rTE(ω) =
kz

a − k̃z
a

kz
a + k̃z

a

, rTM =
ε̃ kz

a − k̃z
a

ε̃ kz
a + k̃z

a

, (11)

with k̃z
a =

√
ε̃ ω2/c2 − q2

a. The two-dimensional Dirac del-
ta function that appears in equation (10) signals that
translation invariance along the transverse directions x
and y is recovered after averaging over the positions of
the scatterers. In other words, reflection is specular on
average. The presence of heterogeneities in the medium
only manifests itself as an increase of the macroscopic di-
electric constant, which becomes ε̃ = ε(1 + nαs) instead
of ε in the absence of disorder.

Inserting equations (10) and (11) into equation (1), we
obtain the average Casimir potential. Using the fact that
rab(ω) has no poles in the upper complex sheet due to
causality, we can transform the integral over frequencies in
a usual way, by performing the Wick rotation ω = iξ [10]:

U(zA) =
�

c2

∫ ∞

0

dξ

2π
ξ2α(iξ)

∫
d2q

(2π)2
e−2κzA

2κ

×
[
rTE(iξ) −

(
1 +

2c2q2

ξ2

)
rTM(iξ)

]
, (12)
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Fig. 2. zA-dependence of the reduction factor η = U(zA)/U∗,
in units of nαs. The dashed line corresponds to the short-
distance asymptotic limit zA � λA, given by equation (14).

where κ =
√

ξ2/c2 + q2. From equation (12), we recover
the Casimir potential between an atom and a perfect mir-
ror in the limit ε → ∞ [24–26]. We recall its behavior at
large distances zA � λA = 2πc/ωA, which will be used
for comparison in the following:

U∗ = −3α(0)�c

32π2z4
A

(ε → ∞, zA � λA). (13)

Of course, when ε → ∞ radiation is totally reflected from
the interface and the disorder underneath plays no role.
From here on, we rather focus on the opposite limit ε → 1
where reflection purely stems from the effective part nαs

of the dielectric constant. We show in Figure 2 the ra-
tio η ≡ U(zA)/U∗ for this case, in units of nαs (η mea-
sures the reduction of the potential with respect to the
case of perfect mirrors). For a dilute disordered medium
(see Eq. (2)), nαs ∼ na3 � 1, and thus U(zA) � U∗.
The zA-dependence of U(zA) is, on the other hand, the
same as the one obtained for a perfect mirror, i.e. charac-
terized by a qualitatively different asymptotic behavior at
short and large distances where retardation effects become
significant [1]:

η =

⎧⎪⎨
⎪⎩

23
60

nαs zA � λA

π2

3
zA

λA
nαs zA � λA.

(14)

At this stage we recall that equation (14) has been ob-
tained for scatterers with polarizability αs = const. For
a frequency-dependent polarizability, equation (14) would
be slightly modified at small distances (typically by a con-
stant prefactor of the order of unity) [1], but not at large
distances where retardation effects select only the static
component of αs.

U(zA) = ηU∗ is the specular part of the Casimir po-
tential between the atom and the disordered medium in
the limit ε = 1. Due to the factor nαs � 1, this quantity
is much smaller than U∗ for a dilute distribution of het-
erogeneities. This is the typical situation where the fluc-
tuations of the potential, originating from non-specular
reflection, are likely to play a very important role, as we
discuss now.

4 Fluctuations of the Casimir potential

Having obtained the average value of the Casimir poten-
tial, we now turn to the primary subject of the present
work, the study of fluctuations.

4.1 Diagrammatic approach

From now on we neglect reflection at the interface, fo-
cusing on the limit ε = 1 where the average Casimir po-
tential is given by equation (14). In order to character-
ize the fluctuations around U(zA), we express rab(ω) =
rab(ω) + δrab(ω) in terms of an average value and a fluc-
tuating part. Squaring equation (1) and applying the
disorder average, we obtain after some algebra

U2(zA) = U
2
(zA) + δU2(zA). (15)

Here U(zA) is the average Casimir potential (12), and the
variance δU2(zA), characterizing fluctuations, is given by1

δU2(zA) =
�

2

c4
Re

[∫ ∞

0

dω1

2π

∫
d2qa

(2π)2
d2qb

(2π)2
d2qc

(2π)2
d2qd

(2π)2

×
∑

pa,pb,pc,pd

ω2
1ω

2
2α(ω1)α∗(ω2)

ei(kz
a+kz

b−kz∗
c −kz∗

d )zA

4kz
akz∗

c

×(εa · εb) (ε∗c · ε∗d) δrab(ω1)δr∗cd(ω2)

]
, (16)

where we have used the short notation εi ≡ εpi(qi) for
i = a, b, c, d, and where “∗” denotes complex conjugation.
At this stage, the whole difficulty lies in the evaluation of
the correlation function of the fluctuations of the reflection
coefficient, δrab(ω1)δr∗cd(ω2). According to equation (8),

δrab(ω) = 2ikz
a〈pb|δGω({qa, za = 0}, {qb, zb = 0})|pa〉,

where δGω ≡ Gω − Gω. Therefore, this correlation func-
tion is controlled by pairs of wave paths (associated with
the Green tensors Gω1 and G∗

ω2
) sharing one or sev-

eral scattering processes. The simplest of these contribu-
tions is the one shown in Figure 3a: two scattering am-
plitudes entering the medium in the modes a = (qa, pa)
and c = (qc, pc) propagate independently in the effective
medium at frequency ω1 and ω2 respectively (solid and
dashed lines), until they encounter a common heterogene-
ity at points r1 and r′

1, from which they are scattered.
After this process, both amplitudes again propagate inde-
pendently in the effective medium, and finally leave the
material in the modes b = (qb, pb) and d = (qd, pd). In
what follows, we will refer to the diagram in Figure 3a as
the “single scattering” contribution to δrab(ω1)δr∗cd(ω2).
It should however be noted that this terminology simply

1 When squaring equation (1), one also generates contribu-

tions involving the correlator δrab(ω1)δrcd(ω2). These contri-
butions can be reduced to the form (16) by making use of
the causality of reflection coefficients.
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Fig. 3. Single scattering (a), incoherent double scattering (b)
and coherent double scattering (c) contributions to the corre-
lation function of the fluctuations of the reflection coefficient,
δrab(ω1)δr∗cd(ω2). Diagram (d) shows a typical contribution
involving recurrent scattering, and is negligible for a dilute
disordered medium. Arrows indicate the direction of wave
propagation. Solid and dashed lines denote the ensemble aver-
age Green tensors Gω1 and G

∗
ω2 , respectively (scattering pro-

cesses along these individual paths are not shown explicitly).
Vertices consisting of two crosses located at r1 and r′

1 and
connected by a dotted line refer to the correlation function
U(r1 − r′

1) = n(αsk1k2)
2δ(r1 − r′

1).

means that the two paths are correlated via a single scat-
terer (before and after this process, individual amplitudes
can be scattered an arbitrary number of times). The math-
ematical formulation of this diagram is:

δrab(ω1)δr∗cd(ω2) = 4kz
akz∗

c

∫
d2ρad2ρbd

2ρcd
2ρd

×
∫

z1>0

d3r1

∫
z′
1>0

d3r′
1e

i(qa·ρa−qb·ρb−qc·ρc+qd·ρd)

× U(r1−r′
1)
[
εa · Gω1({ρa, 0}, r1) · Gω1(r1, {ρb, 0}) · εb

]
⊗

[
ε∗c · G∗

ω2
({ρc, 0}, r′

1) · G
∗
ω2

(r′
1, {ρd, 0}) · ε∗d

]
. (17)

In equation (17), quantities referring to the same scat-
tering path (1 or 2) are chained via an inner product
“ · ”, while quantities referring to two different scattering
paths are chained via an outer product “ ⊗ ”. U(r1 − r′

1)
is the correlation function of the fluctuations of the dis-
order potential −k2

∑
i v(r − ri) at two different fre-

quencies ω1 and ω2. For independent Rayleigh scatterers,
U(r1 − r′

1) � n(αsk1k2)2δ(r1 − r′
1), with k1 = ω1/c and

k2 = ω2/c [13,14]. Furthermore, since we assume no in-
ternal reflection of the propagating waves at the interface
(ε = 1), the average Green tensors are simply given by
equation (5). Re-expressing them in terms of a Fourier

integral, we have for instance

Gω1({ρa, 0}, r1) =∫
d2q

(2π)2
eiq·(ρ1−ρa)+ik̃z

az1

2ikz
a

∑
p

εp(q) ⊗ εp(q), (18)

where k̃z
a =

√
ε̃ ω2

1/c2 − q2
a. In the limit (2), one can safely

replace ε̃ by ε = 1 in all wave numbers, and thus replace
k̃z

i by kz
i for all i = a, b, c, d. Then, inserting equation (18)

into equation (17) and performing all spatial integrations,
we obtain

δrab(ω1)δr∗cd(ω2) =
(2π)2δ(Δqa − Δqb)

4kz
b kz∗

d (kz∗
c − kz

a − kz
b + kz∗

d )

× nk2
1k

2
2α

2
s (εa · εb) (ε∗c · ε∗d) , (19)

where Δqa = qa − qc and Δqb = qb − qd. The Dirac
delta function is a manifestation of the so-called “mem-
ory effect”: a disordered medium keeps the memory of
the direction of an incoming radiation when the latter is
changed by a small angle [27,28].

The last step consists in inserting equation (19) into
equation (16) and computing the integrals over frequen-
cies and momenta. As for the average potential U(zA),
this calculation is strongly facilitated by the application
of a Wick rotation in the frequency domain. This proce-
dure however deserves a comment, as the Wick rotation
now involves two frequencies. The treatment of the fre-
quency ω1 is based on the same reasoning as that of Sec-
tion 3.2: due to the causality, the function rab(ω1) has no
poles in the upper complex sheet Im(ω1) > 0, which guides
us to performing the Wick rotation ω1 = iξ1. The argu-
ment is slightly different for the frequency ω2, since it is
now the conjugate of rcd that is involved in equation (16).
We can however still appeal to causality by noticing that
r∗cd(ω2) = rcd(−ω2): this function has no poles in the lower
complex sheet Im(ω2) < 0, which now imposes the Wick
rotation ω2 = −iξ2. This procedure finally leads to:

δU2(zA) =
�

2

c8

∫ ∞

0

dξ1

2π

dξ2

2π

∫
d2qa

(2π)2
d2qb

(2π)2
d2qd

(2π)2
ξ4
1ξ4

2

× α(iξ1)α(iξ2)
e−(κa+κb+κc+κd)zA

16κaκbκcκd

nα2
s

κa + κb + κc + κd

×
∑

pa,pb,pc,pd

(εa · εb)
2 (εc · εd)

2
, (20)

where

κa =
√

ξ2
1/c2 + q2

a, κb =
√

ξ2
1/c2 + q2

b ,

and

κd =
√

ξ2
2/c2 + q2

d, κc =
√

ξ2
2/c2 + (qa − qb + qd)2.

The explicit value of the various scalar products εi · εj

is given in Appendix A. Equation (20) cannot be further
simplified and has to be evaluated numerically.
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Fig. 4. Main panel: zA-dependence of the relative fluctuations
of the Casimir potential, γ, in units of 1/

√
nλ3

A. Dashed lines
are the short- and large-distance asymptotic limits given by
equation (22). Inset: residual zA-dependence of γ×√

nz3
A. The

curve tends to the constants b1 � 0.5 and a1 � 0.7 at short
and large distances, respectively.

4.2 Results

Let us introduce the ratio

γ ≡
√

δU2(zA)

|U(zA)| =

√
δU2(zA)

η|U∗| , (21)

which measures the single scattering contribution to the
relative fluctuations of the Casimir potential. From equa-
tion (20), we find the following asymptotic limits:

γ =

⎧⎪⎪⎨
⎪⎪⎩

a1√
nz3

A

zA � λA

b1√
nz3

A

zA � λA,
(22)

with a1 � 0.7 and b1 � 0.5. Several important conclusions
can be drawn from this result. First, as for the average po-
tential, U(zA), the behavior of fluctuations, [δU2(zA)]1/2,
is qualitatively different at short and at large distances
due to retardation effects. Because of the additional fac-
tor (nz3

A)−1/2 however, the zA-dependence of [δU2(zA)]1/2

is not the same as the one of U(zA). Indeed, from equa-
tions (22), (13) and (14) we find [δU2(zA � λA)]1/2 ∝
z
−11/2
A and [δU2(zA � λA)]1/2 ∝ z

−9/2
A . Second, equa-

tion (22) suggests that the relative fluctuations, γ, are
essentially controlled by the single factor (nz3

A)−1/2, both
at short and large distances. This statement is confirmed
by Figure 4, which displays the relative fluctuations com-
puted from equation (20) for any value of zA/λA. The
proportionality of γ to (nz3

A)−1/2 has a simple physical
interpretation: as the atom is approached to the surface,
the Casimir potential at distance zA from the medium is
controlled by the interaction of radiation with the matter
contained in a volume ∝ z3

A. Relative fluctuations are then
of the order of 1/

√
NzA , where NzA ≡ nz3

A is the number
of scatterers in that volume. Note that beside the essen-
tial dependence in (nz3

A)−1/2, γ also varies very slightly

with zA/λA. In equation (22), this manifests itself in the
two different numerical prefactors a1 and b1. This resid-
ual dependence is shown in the inset of Figure 4, which
displays γ ×√

nz3
A as a function of zA/λA.

Equation (22) provides a simple criterion for the rele-
vance of fluctuations in an experiment: fluctuations can
only be neglected when zA � n−1/3, the typical dis-
tance between the scatterers. On the contrary, when zA �
n−1/3, fluctuations become larger than the prediction of
effective medium theory and can thus no longer be ig-
nored. Furthermore, although we have considered here a
simple model of scatterers for which αs = const., we have
verified that equation (22) remains valid for a more gen-
eral dispersion relation, even at short distances. Indeed,
in that case both U

2
and δ2U are modified by the same

amount, thus leaving the relative fluctuations unchanged.

5 Double scattering contribution

In the previous section, we have calculated the single scat-
tering contribution to the fluctuations of the Casimir po-
tential, diagram (a) in Figure 3. In order to estimate the
role played by multiple scattering of light inside the dis-
ordered material, we now propose to calculate the con-
tribution due to double scattering. This contribution is
characterized by the two processes described by the dia-
grams (b) and (c) in Figure 3. In the first one, the two
scattering amplitudes share two common heterogeneities,
from which they are scattered in the same order (“inco-
herent contribution”). In the second diagram on the other
hand, scattering amplitudes propagate in opposite direc-
tions (“coherent contribution”). In mesoscopic optics, the
latter process is responsible for the well known coherent
backscattering effect [29]. In the present context, both di-
agrams (b) and (c) contribute exactly the same amount
to fluctuations. Their evaluation is however more involved
than that of diagram (a) because of the two additional
Green tensors connecting the scattering processes at r1

and r2. The main lines of the derivation are presented
in Appendix B for clarity. The final result for the double
scattering contribution to fluctuations, δU2

(2)(zA), reads

δU2
(2)(zA) =

�
2

c12

∫ ∞

0

dξ1

2π

dξ2

2π

d2qa

(2π)2
d2qb

(2π)2
d2qd

(2π)2
ξ6
1ξ6

2

× α(iξ1)α(iξ2)
e−(κa+κb+κc+κd)zA

8κaκbκcκd

n2α4
s

4π(κa+κb+κc+κd)

×
∫

dr̂
∑

pa,pb,pc,pd

(εa · εb)
2 (εc · εd)

2

× Re
{

[εa · εb − (εa · r̂)(εb · r̂)][εc · εd − (εc · r̂)(εd · r̂)]

×
[
−ir̂ · (qb−qd)|r̂ × ẑ|+|r̂ · ẑ|κa+κb+κc+κd

2

+ r̂ · ẑκa + κc − κb − κd

2
+

ξ1 + ξ2

c

]−1 }
, (23)
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Fig. 5. zA-dependence of the double scattering contribution to
the relative fluctuations of the Casimir potential, γ(2), in units
of nαs/(nλ3

A). Dashed lines are the short- and large-distance
asymptotic limits given by equation (25).

where the central integral refers to an average over the
direction of r̂. As in Section 4.2 we introduce the ratio

γ(2) ≡
√

δU2
(2)(zA)

|U(zA)| =

√
δU2

(2)(zA)

η|U∗| , (24)

which measures the contribution of double scattering to
relative fluctuations. From equation (23), we find the fol-
lowing asymptotic limits:

γ(2) =

⎧⎪⎨
⎪⎩

a2nαs

nz3
A

zA � λA

b2nαs

nz2
AλA

zA � λA,
(25)

with a2 � 0.15 and b2 � 0.43. In Figure 5 we show γ(2)

as a function of zA/λA, in units of the dimensionless pa-
rameter nαs/(nλ3

A). Unlike γ, γ(2) is not a function of the
single parameter nz3

A, as is clear from Figure 5 and equa-
tion (25). Furthermore, as compared to equation (22), the
double scattering contribution (25) comes with an addi-
tional factor nαs ∼ na3 � 1. In other words, for a dilute
repartition of heterogeneities, double scattering is negligi-
ble compared to single scattering. The situation would of
course be different for denser disorder such that nαs ∼ 1.
In this limit, double, and presumably all higher multiple
scattering processes, become of the same order of magni-
tude as single scattering and must be accounted for in the
estimation of fluctuations.

As a final comment, we mention that in our approach
we have neglected a number of scattering processes where
an individual wave path is scattered more than once by
the same scatterer (“recurrent scattering”) [30]. Figure 3d
shows such a process as an example. In practice, recurrent
scattering is negligible in dilute disordered media, but may
be significant for denser disorder. A detailed treatment
of recurrent scattering would require to modify both the
effective dielectric constant ε̃ and the correlator U(r1−r′

1),
a task far beyond the scope of this paper.

6 Conclusion

We have calculated the statistical fluctuations of the
Casimir interaction potential between a two-level atom
and a disordered material, in the limit of no interface re-
flection. For a dilute distribution of identical, independent
Rayleigh scatterers, our results indicate that these fluctua-
tions are dominated by non-specular reflection on a single
scatterer. The relative fluctuations of the Casimir poten-
tial at a distance zA from the medium are then inversely
proportional to the square root of the number of scatterers
in a volume z3

A. This demonstrates that fluctuations can-
not be neglected when the atom-surface distance becomes
smaller than the average distance between the scatterers.
These results are consistent with previous work concerned
with the classical Casimir force induced by thermal fluctu-
ations at high temperatures [31], and with recent works on
the Casimir effect in metals [32]. They additionally specify
the conditions of validity of the study presented in refer-
ence [11]. From a practical point of view, our study could
explain the surprisingly low values of atomic quantum re-
flection observed in recent experiments, which could be
attributed to atoms reflected non specularly on the fluc-
tuations of the Casimir potential [12]. In a similar context,
such decrease of quantum reflection due to heterogeneities
might constitute a limitation of the ability of nanoporous
materials to efficiently trap or guide antimatter [11].

Although we have focused on the case of independent,
Rayleigh scatterers, our approach can be applied to more
general situations where the scatterers are not point like
or where they are spatially correlated (via a modification
of the average dielectric constant ε̃ and of the correlation
function U). With minor changes, our theory can also ac-
count for finite optical thickness of the medium or for in-
ternal reflections at the interface with the vacuum. Finally,
it could in principle also be used to describe materials hav-
ing high concentrations of heterogeneities by calculating
the full multiple scattering (“ladder”) series, albeit this is
likely to be a difficult task [33].

The authors thank Dominique Delande and Cord Müller for
insightful discussions.

Appendix A: Scalar products of polarization
vectors

In this appendix, we provide explicit expressions for the
scalar products of polarization vectors that appear in
equation (20). Polarization vectors are defined as:

εTE(qi) = ẑ × q̂i,

εTM(qi) = εTE(qi) × k̂i, (A.1)

where ki = qi + kz
i ẑ for i = a, c (incoming modes), and

ki = qi − kz
i ẑ for i = b, d (outgoing modes), with kz

i =√
ξ2
1/c2 + q2

i for i = a, b, kz
i =

√
ξ2
2/c2 + q2

i for i = c, d,
and qc = qa − qb + qd. Equation (20) involves integrals
over (i) the angle φ between qb and qd, (ii) the angle φ′

http://www.epj.org
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Table A.1. Values of εpa(qa) · εpb(qb) for the various
combinations of polarizations.

pb = TE pb = TM

pa = TE cos(φ′ − φ)
cκb sin(φ′ − φ)

ξ1

pa = TM
cκa sin(φ′ − φ)

ξ1
−c2 qaqb + κaκb cos(φ′ − φ)

ξ2
1

Table A.2. Values of εpc(qc) · εpd(qd) for the various com-
binations of polarizations. Here qc ≡ |qa − qb + qd| =√

q2
a + q2

b + q2
d − 2qaqb cos(φ′ − φ) + 2qaqd cos φ′ − 2qbqd cos φ.

pd = TE pd = TM

pc = TE
qd − qb cos φ + qa cos φ′

qc

cκd

ξ2

qa sin φ′ − qb sin φ

qc

pc = TM
cκc

ξ2

qa sin φ′ − qb sin φ

qc
−
[

qd − qb cos φ + qa cos φ′

qc

×κcκd + qcqd)

]
c2

ξ2
2

between qa and qd, and (iii) qa ≡ |qa|, qb ≡ |qb| and
qd ≡ |qd|. With these definitions, we show in Tables A.1
and A.2 the scalar products εa · εb ≡ εpa(qa) · εpb

(qb) and
εc · εd ≡ εpc(qc) · εpd

(qd), respectively.

Appendix B: Double scattering correlation
function

In this appendix, we give the main steps that lead to equa-
tion (23). We here focus on the calculation of the diagram
in Figure 3b (diagram(c) is calculated analogously, and
gives the same final result). The mathematical formula-
tion of the diagram in Figure 3b is:

δrab(ω1)δr∗cd(ω2)
(2)

= 4kz
akz∗

c

∫
d2ρad2ρbd

2ρcd
2ρd

× (
nk2

1k
2
2α

2
s

)2
∫

z1>0

d3r1

×
∫

z2>0

d3r2e
i(qa·ρa−qb·ρb−qc·ρc+qd·ρd)

×[
εa ·Gω1({ρa, 0}, r1) ·Gω1(r1, r2)

·Gω1(r2, {ρb, 0}) · εb

]
×
[
ε∗c ·G∗

ω2
({ρc, 0}, r1) ·G∗

ω2
(r1, r2)

× ·G∗
ω2

(r2, {ρd, 0}) · ε∗d
]
, (B.1)

where we have already performed two spatial integra-
tions, making use of the Dirac delta form of the corre-
lator U . We now change the variables from (r1, r2) ≡
({ρ1, z1}, {ρ2, z2}) to ({R = (ρ1 + ρ2)/2, z1}, {ρ = ρ1 −
ρ2, z2}), use equation (18) for the four Green tensors con-
nected to the interface, and perform integrations over ρa,

ρb, ρc, ρd and R. This yields

δrab(ω1)δr∗cd(ω2)
(2)

= (nk2
1k

2
2α

2
s)

2 (2π)2δ(Δqa − Δqb)
4kz

bkz∗
d

×
∫

d2ρ

∫ ∞

0

dz1

∫ ∞

0

dz2 ei(kz
a−kz∗

c )z1+i(kz
b−kz∗

d )z2+iρ·Δqa

× [
εa · Gω1(ρ, z1, z2) · εb

]⊗ [
εc · Gω2(ρ, z1, z2) · εd

]∗
.

(B.2)

Making use of equation (5) and neglecting near-field con-
tributions, we approximate the first term within square
brackets as:

−eik1r

4πr
[εa · εb − (εa · r̂1)(εb · r̂2)] , (B.3)

where r ≡ {ρ, z1 − z2}, and similarly for the second term.
As in the calculation of the single scattering contribution,
we replace all wave numbers k̃z

i by kz
i , and k̃i by ki, which

is a good approximation in the dilute limit (2). We then
introduce the new change of variables (z1, z2) → (z =
z1 + z2, z12 = z1− z2) and perform the integral over z. We
obtain

δrab(ω1)δr∗cd(ω2)
(2)

= (nk2
1k

2
2α

2
s)

2 (2π)2δ(2)(Δqa − Δqb)
4kz

bkz∗
d

×
∫

d3r ei(kz
a−kz∗

c +kz
b−kz∗

d )|z12|/2+i(kz
a−kz∗

c −kz
b+kz∗

d )z12/2

× [εa · εb − (εa · r̂)(εb · r̂)] [ε∗c · ε∗d − (ε∗c · r̂)(ε∗d · r̂)]

× eir·Δqa
ei(k1−k∗

2 )r

(4πr)2
i

kz
a − kz∗

c + kz
b − kz∗

d

, (B.4)

with the definition
∫

d3r ≡ ∫
d2ρ

∫∞
−∞ dz12. Equation (23)

of the main text is finally obtained by performing the
integration over r = |r|, inserting equation (B.4) into
equation (16), and applying the double Wick rotation as
explained in the main text.

References

1. H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)
2. H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948)
3. T.A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek,

D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 93, 223201
(2004)

4. J.M. McGuirk, D.M. Harber, J.M. Obrecht, E.A. Cornell,
Phys. Rev. A 69, 062905 (2004)

5. Y. Lin, I. Teper, C. Chin, V. Vuletic, Phys. Rev. Lett. 92,
050404 (2004)

6. A.Y. Voronin, P. Froelich, V.V. Nesvizhevsky, Phys.
Rev. A 83, 032903 (2011)

7. A.Y. Voronin, V.V. Nesvizhevsky, S. Reynaud, J. Phys. B
45, 165007 (2012)

8. A. Naji, D.S. Dean, J. Sarabadani, R.R. Horgan, R.
Podgornik, Phys. Rev. Lett. 104, 060601 (2010)

9. G. Dufour, A. Gérardin, R. Guérout, A. Lambrecht, V.V.
Nesvizhevsky, S. Reynaud, A. Yu. Voronin, Phys. Rev. A
87, 012901 (2013)

http://www.epj.org


Eur. Phys. J. D (2015) 69: 99 Page 9 of 9

10. A. Lambrecht, P.A. Maia Neto, S. Reynaud, New J. Phys.
8, 243 (2006)

11. G. Dufour, R. Guérout, A. Lambrecht, V.V. Nesvizhevsky,
S. Reynaud, A. Yu. Voronin, Phys. Rev. A 87, 022506
(2013)

12. T.A. Pasquini, M. Saba, G.-B. Jo, Y. Shin, W. Ketterle,
D.E. Pritchard, T.A. Savas, N. Mulders, Phys. Rev. Lett.
97, 093201 (2006)

13. A. Lagendijk, B.A. van Tiggelen, Phys. Rep. 270, 143
(1996)

14. M.C.W. van Rossum, Th.M. Nieuwenhuizen, Rev. Mod.
Phys. 71, 313 (1999)

15. T. Emig, N. Graham, R.L. Jaffe, M. Kardar, Phys. Rev.
Lett. 99, 170403 (2007)

16. G. Barton, J. Phys. B 7, 2134 (1974)
17. A. Canaguier-Durand, A. Gérardin, R. Guérout, P.A. Maia

Neto, V.V. Nesvizhevsky, A.Yu. Voronin, A. Lambrecht,
S. Reynaud, Phys. Rev. A 83, 032508 (2011)

18. R. Messina, D.A.R. Dalvit, P.A. Maia Neto, A. Lambrecht,
S. Reynaud, Phys. Rev. A 80, 022119 (2009)

19. S.F. Edwards, Philos. Mag. 3, 1020 (1958)
20. K. Sinko, Materials 3, 704 (2010)

21. P. Granitzer, K. Rumpf, Materials 3, 943 (2010)
22. R. Berkovits, S. Feng, Phys. Rep. 238, 135 (1994)
23. W.C. Chew, Waves and Fields in Inhomogeneous Media

(IEEE Press, New York, 1995)
24. M. Marinescu, A. Dalgarno, J.F. Babb, Phys. Rev. A 55,

1530 (1997)
25. H. Friedrich, G. Jacoby, C.G. Meister, Phys. Rev. A 65,

032902 (2002)
26. A.Y. Voronin, P. Froelich, B. Zygelman, Phys. Rev. A 72,

062903 (2005)
27. S. Feng, C. Kane, P.A. Lee, A.D. Stone, Phys. Rev. Lett.

61, 834 (1988)
28. I. Freund, M. Rosenbluh, S. Feng, Phys. Rev. Lett. 61,

2328 (1988)
29. C.M. Aegerter, G. Maret, Prog. Opt. 52, 1 (2009) and

references therein
30. D.S. Wiersma, M.P. van Albada, B.A. van Tiggelen, A.

Lagendijk, Phys. Rev. Lett. 74, 4193 (1995)
31. D.S. Dean, R.R. Horgan, A. Naji, R. Podgornik, Phys.

Rev. E 81, 051117 (2010)
32. A.A. Allocca, J.H. Wilson, V. Galitski, arXiv:1501.06096
33. C.A. Müller, C. Miniatura, J. Phys. A 35, 10163 (2002)

http://www.epj.org

	Introduction
	Framework and hypotheses
	Average Casimir potential: effective medium theory
	Fluctuations of the Casimir potential
	Double scattering contribution
	Conclusion
	Scalar products of polarization vectors
	Double scattering correlation function
	References

