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Abstract. We investigate the dynamics of an electronic spin coupled to a bath of nuclear spins. We consider
three types of initial states with different correlations between the system and the bath, i.e., quantum
correlation, classical correlation, and no-correlation. Although the reduced density matrices of the central
spin and the bath are the same for these three initial states, the dynamical behaviors of the system are
rather different. Interestingly, we show that the quantum correlations of the initial state between the
system and the bath can lead to an increase in the coherence of the system while the classical correlations
and no-correlation can not. In addition, we find that the initial bath state has significant influences on
the dynamics of the system, and the effects of the distribution of coupling constants on the central spin
crucially depend on the initial state of the spin bath.

1 Introduction

The central spin model is the generic theoretical descrip-
tion for an electronic spin coupled to a nuclear bath of
noninteracting spins [1–10]. It has been widely used for
experimental and theoretical studies in the areas of quan-
tum information processing [11–17] and quantum decoher-
ence [18–26]. As we know that due to unavoidable inter-
actions of the central spin with the surrounding nuclear
spins quantum coherence of the central spin will disap-
pear finally. Decoherence is the main obstacle to quantum
computing and quantum information processing. The en-
vironment destroys quantum interferences of the system,
and the unwanted influences of the environment reduce
the advantages of the quantum computing methods. In
this regard, a long spin decoherence time is desirable. Gen-
erally, the decoherence of the system depends on the in-
trinsic properties of the environment. For an initially fully
polarized spin bath, the inhomogeneous couplings lead to
decoherence only initially for a short time [2] and the dy-
namical behaviors of the central spin are insensitive to
the overall shape of the distribution of the hyperfine in-
teraction as long as the mean values and the degree of
the inhomogeneity are the same [25]. The dynamics and
the entanglement entropy of the central spin exhibit rather
different behaviors between the initially unpolarized unen-
tangled bath and the eigenstate of the total spin bath [8].
The decay behaviors of the central spin is pronounced with
a decreasing polarization of the bath spins [11,12]. The re-
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sults of reference [27] indicate that the use of the control
of the nuclear spins distribution may be more practical for
suppressing decoherence of the system. Also, it has been
shown that the entanglement in the environment may sup-
press the decoherence process [28,29]. In addition, it is
noted that the influences of the inhomogeneities are sup-
pressed with increasing polarization for the initially ran-
domly correlated bath states [30,31].

However, most of the previous studies concentrate on
the dynamics of central spin with the system and envi-
ronment being initially statistically independent. This as-
sumption generally is too restrictive for the real physical
system. Experimentally, it is often unavoidable to have
some correlations which may play significant roles in the
time evolution of the system. Therefore, one should not
neglect initial correlations between the system and envi-
ronment [32–34]. The influence of initial correlations on
open-system dynamics has been recently under intensive
study [35–48]. Significantly, the effect of initial correla-
tions on the dynamics of the system has been observed
experimentally by means of trace distance [43]. It has also
been demonstrated that initial correlations have nontrivial
features in the quantum tomography process [44], and the
initial correlations have remarkable influences on the en-
tanglement in a two-qubit system interacting with a fam-
ily of baths [48]. In this paper, we will study the effect
of initial system-bath correlations and the role of the ini-
tial bath state on the dynamics of the system. Firstly, we
discuss the time evolution of the central spin associated
with the initial system-bath correlations. Three types of
initial states are considered: the first contains quantum
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correlations, the second has classical correlations, and the
third has no correlation. Significantly, we find that the ini-
tial system-bath correlations have remarkable influences
on the dynamics of central spin. The quantum correla-
tions of initial states can lead to the increase in coherence
of the central spin. However, the coherence is reduced in
the cases of initial states with classical correlations or no
correlation. Then, in the case of initial product states be-
tween the system and bath, we find that the decoherence
of the system is suppressed greatly when the initial bath
states are the W state and Dicke state. Nevertheless, the
decay of system occurs easily when the initial bath states
are the completely mixed states. In addition, the influ-
ences of the distribution of the hyperfine interaction on
the dynamics of the system crucially depend on the initial
state of the spin bath.

The paper is organized as follows: in Section 2 we in-
troduce the Hamiltonian of the hyperfine interaction and
derive the dynamics for three types of initial correlations.
In Section 3 we study the dynamics of the system for
two different initial bath states. Finally, we summarize
our findings in Section 4.

2 Effects of different types of initial
system-bath correlations

We consider a central spin-1
2 particle coupled to a spin

bath composed of N noninteracting spin- 1
2 particles, and

the Hamiltonian can be written as:

Ĥ =
N∑

k

AkS · Ik, (1)

where the central spin is denoted by S, and Ik is the
nuclear spins of the kth nucleus with S = (σx, σy, σz),
Ik = (σk

x , σk
y , σk

z ). Ak is the coupling parameter for the
hyperfine interaction of central spin with the surrounding
nuclear spins of the kth nucleus. Generally, Ak is propor-
tional to the square modulus of the respective electronic
wave function at the site of the nuclear spins and is there-
fore clearly spatially dependent,

Ak = A0υ|Ψ(rk)|2, (2)

where A0 is an overall coupling parameter and υ is the vol-
ume of the unit cell containing one nuclear spin. Ψ(rk) is
the electron envelope wave function at the location rk. We
do not consider the direct dipolar interaction between the
nuclear spins because it is weaker by orders of magnitude
than the scale of the hyperfine coupling.

2.1 Case of homogeneous coupling constants

In this subsection, we consider homogeneous couplings of
the central spin, i.e., Ak = A

2 ∀ k. Since the nuclei are
identical and indistinguishable, we can consider the col-
lective operators Jx =

∑
k Ik

x , Jy =
∑

k Ik
y , Jz = 1

2

∑
k Ik

z .

The Hamiltonian can be rewritten in the form:

Ĥ =
A

2
(σxJx + σyJy + 2σzJz) =

A

2
S · J. (3)

As usual, we introduce the lowering and the raising opera-
tors σ± = 1

2 (σx± iσy), J± =
∑

k Ik± and Ik± = 1
2 (Ik

x ± iIk
y ).

Therefore, in this case the Hamiltonian can be expressed
as:

Ĥ = A(σ+J− + σ−J+ + σzJz). (4)

In the following, we define |j, m〉 as:

|j, m〉 =

√
(j + m)!

N !(j − m)!

(
∑

k

Ik
−

)j−m

|1, 1, . . . , 1〉, (5)

where j = N
2 [49], m = −j,−j + 1, . . . , j − 1, j, and

|1, 1, . . . , 1〉 is the full polarized state with all bath spins
up. |j, m〉 represents the fully symmetrical state in which
j +m particles are in the upper level |1〉, and j−m in the
lower level |0〉. The action of the operators Jz and J± on
|j, m〉 is given by:

Jz|j, m〉 = m|j, m〉, (6)

J±|j, m〉 =
√

j(j + 1) − m(m ± 1)|j, m ± 1〉. (7)

In order to investigate the effects of different initial
system-bath correlations on the dynamics of central spin,
we consider three types of initial states,

ρ1
SE = (α|μ〉|j, m〉 + β|ν〉|j, m + 1〉)

× (α∗〈μ|〈j, m| + β∗〈ν|〈j, m + 1|), (8)

ρ2
SE = |α|2|μ〉〈μ| ⊗ |j, m〉〈j, m|

+ |β|2|ν〉〈ν| ⊗ |j, m + 1〉〈j, m + 1|, (9)

ρ3
SE = ρS ⊗ ρE , (10)

where |α|2 + |β|2 = 1, (α, β �= 0). For simplicity, we choose
the parameters α = cos θ, β = sin θ (θ ∈ [0, π]). |μ〉 =
cos γ|0〉 + sin γ|1〉 (γ ∈ [0, π]), with the central spin down
|0〉 and up |1〉. |ν〉 = sin γ|0〉 − cos γ|1〉. ρS and ρE in
equation (10) are given by:

ρS =

( |α|2 sin2 γ+|β|2 cos2 γ (|α|2 − |β|2) sin γ cos γ

(|α|2 − |β|2) sin γ cos γ |α|2 cos2 γ+|β|2 sin2 γ

)
,

(11)

ρE =

⎛

⎝
|α|2 0

0 |β|2

⎞

⎠ . (12)

The initial states ρ1
SE , ρ2

SE , and ρ3
SE have quantum cor-

relations, classical correlations, and no correlation respec-
tively. It is noted that the three initial states have the
same reduced density matrices for both the system and
the bath, i.e., equations (11) and (12).

For these choices of initial states, the density matrix
ρSE(t) can be obtained and therefore the reduced density
matrix ρS(t) = TrE[ρSE(t)] of the central spin can be
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calculated, where the bath degree of freedoms are traced
out. For these three initial states, the results of 〈Sz(t)〉λ
and ρλ

12(t) (λ = 1, 2, 3, correspond to above three initial
states) are respectively:

〈Sz(t)〉1 = 〈Sz(t)〉2 +
4

(1 + 2j)2
√

(j − m)(1 + j + m)

× (1 + 2m) sin2 γ sin 2θ sin2 gt, (13)

〈Sz(t)〉2 =
1

(1 + 2j)2
{[− 2(2 − 4j(1 + j) + 4m(1 + m))

× cos 2γ cos 2θ + 4((2 + 4m) cos2 γ − cos 2θ)
]

× sin2 gt
}
− cos 2γ cos 2θ, (14)

〈Sz(t)〉3 = 〈Sz(t)〉2

− 4
(1 + 2j)2

(1 + 2m) cos 2γ sin2 2θ sin2 gt.

(15)

ρ1
12(t) = � [ρ2

12(t)
]− 1

(1 + 2j)2
√

(j − m)(1 + j + m)

× (1 + 2m) sin 2θ sin 2γ sin2 gt

+ i
{
	 [ρ2

12(t)
]− 1

2 + 4j

√
(j − m)(1 + j + m)

× sin 2θ sin 2γ sin 2gt
}
, (16)

ρ2
12(t) =

sin 2γ

2(1 + 2j)2
{

(1 + 2j)2 cos 2θ cos2 gt

− (1 + 2m)(−2 + (1 + 2m) cos 2θ) sin2 gt
}

− i

2 + 4j
sin 2γ sin 2gt[−1 + (1 + 2m) cos 2θ],

(17)

ρ3
12(t) = � [ρ2

12(t)
]

− 1
(1 + 2j)2

(1 + 2m) sin2 2θ sin 2γ sin2 gt

+ i
{
	 [ρ2

12(t)
]− 1

2 + 4j
sin2 2θ sin 2γ sin 2gt

}
,

(18)

where �[ρ2
12(t)] and 	[ρ2

12(t)] are the real and imaginary
part of ρ2

12(t) respectively, g = A(1 + 2j)/2. From these
expressions, we find that the time evolution of 〈Sz(t)〉
and |ρ12(t)| for these three initial states are periodical
and symmetric with respect to γ = π

2 , so that we only
consider γ ∈ [0, π

2 ] and θ ∈ [0, π]. From the above for-
mulas, all physical quantities are strictly periodic because
the simple structure of the Hamiltonian leads to an eigen-
value spectrum in which all transition frequencies (energy
differences) are commensurate.

Fig. 1. Time evolution of 〈Sz(t)〉 as a function of t for three
types of initial correlations. (a) θ = π

4
and γ = π

6
, (b) θ = π

3

and γ = π
4

, (c) θ = 9π
10

and γ = π
6

. (i) ρ1
SE (black solid line);

(ii) ρ2
SE (red dash line); (iii) ρ3

SE (blue dash dot line). The
number of nuclear spins in the bath N = 100 and m = −50.
The coupling constant A = 0.2.

It is noted that in the present paper we assume j = N
2 .

From equations (13)–(15) and (16)–(18), we find that for
m = 0 the dynamical behaviors of 〈Sz(t)〉 and |ρ12(t)| for
ρ1

SE, ρ2
SE and ρ3

SE are similar in the case of larger N , in
which,

〈Sz(t)〉1 ≈ − cos 2γ cos 2θ cos2 gt + O
(

1
N

)
,

〈Sz(t)〉2 ≈ 〈Sz(t)〉3 ≈ − cos 2γ cos 2θ cos2 gt,

and

∣∣ρ1
12(t)

∣∣ ≈
∣∣∣∣
1
2

sin 2γ cos 2θ cos2 gt + O
(

1
N

)∣∣∣∣ ,

∣∣ρ2
12(t)

∣∣ ≈ ∣∣ρ3
12(t)

∣∣ ≈
∣∣∣∣
1
2

sin 2γ cos 2θ cos2 gt

∣∣∣∣ .

Hence, we conclude that the initial system-bath correla-
tions will vanish with m approaching zero. On the other
hand, we can understand this phenomenon from that the
third term of equation (4) has considerable influences on
the dynamics of system for initial states with system-bath
correlations for m �= 0, nevertheless, it does not contribute
to the dynamics for m = 0 due to the eigenvalue being 0 in
equation (6). Therefore, the influences of the initial cor-
relations will disappear with a larger number of nuclear
spins N for m = 0. In this paper, in order to investigate
the difference between these three initial states we mainly
consider the case of m = −N

2 .
In Figure 1, we plot 〈Sz(t)〉 for initial states ρ1

SE , ρ2
SE

and ρ3
SE , (a) θ = π

4 and γ = π
6 , (b) θ = π

3 and γ = π
4 ,
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(c) θ = 9π
10 and γ = π

6 . We can see that 〈Sz(t)〉 displays
periodic oscillatory behaviors. The initial value of 〈Sz(t)〉
is the maximum in the process of evolution for the initial
states ρ2

SE and ρ3
SE . It is noted that the average value

of 〈Sz(t)〉2 is larger than 〈Sz(t)〉1 in Figure 1a. However,
the average value of 〈Sz(t)〉1 is larger than 〈Sz(t)〉2 in
Figure 1c. The above phenomena can be understood as
follows: from equation (13), we find that 〈Sz(t)〉1 is larger
than 〈Sz(t)〉2 when (1 + 2m) sin 2θ > 0 and vice versa,
i.e., for fixed m the difference between the initial quan-
tum correlations and the classical correlations associates
with the sign of αβ (α = cos θ, β = sin θ) for 〈Sz(t)〉.
When αβ < 0 there is a relative phase π between the ba-
sis vectors |μ〉|j, m〉 and |ν〉|j, m + 1〉, while there is no
relative phase for αβ > 0. On the other hand, compar-
ing Figures 1a and 1c, we can see that the variation of
parameter θ has obvious influence on the amplitudes of
〈Sz(t)〉, especially for the initial state ρ1

SE . The difference
between amplitudes of ρ1

SE and ρ3
SE is larger than that

between ρ2
SE and ρ3

SE . From Figure 1 it can be seen that
the difference is the largest when θ = π

4 for fixed γ.
In order to further explain the above phenomenon, we

take γ = π
4 . From equations (13)–(15) one has

〈Sz(t)〉1 =
2 sin2 gt

(1 + 2j)2
[−2 cos 2θ

+ (2 +
√

(j − m)(1 + j + m) sin 2θ)(1 + 2m)],
(19)

〈Sz(t)〉2 = 〈Sz(t)〉3 =
2 sin2 gt

(1 + 2j)2
[−2 cos 2θ + 2(1 + 2m)].

(20)

From equation (19), we find that for initial states with
quantum correlation there is a parameter (1+2m) sin 2θ×√

(j − m)(1 + j + m) which is relatively large compared
with the other terms in the numerator due to the fact
that j = N

2 , so that the variation of parameter θ has
remarkable influence on the amplitude of 〈Sz(t)〉1. From
equation (20), in the cases of initial states having classical
correlations and no correlation, the dynamical behaviors
of the 〈Sz(t)〉 are the same for γ = π

4 (see Fig. 1b). On
the other hand, we find that the difference of amplitudes
between ρ1

SE and ρ2
SE (ρ3

SE) is the largest when θ = π
4 ,

which can be seen by comparing equation (19) with equa-
tion (20). Physically, the degree of quantum correlation is
dependent on θ, and the quantum correlation will be close
to the maximum as θ approaches π

4 . Hence we conclude
that, compared with the initial classical correlations, the
influences of the initial quantum correlations on 〈Sz(t)〉
are sensitive to the parameter θ.

As we know that the off-diagonal matrix element ρ12(t)
represents the coherence of ρS(t). To illustrate compre-
hensively the effect of initial correlations on the reduced
density matrix, in Figure 2 we plot the off-diagonal ele-
ment |ρ12(t)| of the reduced density matrix as a function
of t for three initial states, N = 100, γ = π

6 and differ-
ent θ. From equations (16)–(18), we find that |ρ12(t)| can
be larger than its initial value in the process of time evo-
lution for ρ1

SE , while for the other two initial states ρ2
SE

Fig. 2. Time evolution of |ρ12(t)| for three types of initial
correlations. (a) θ = π

4
, (b) θ = π

3
, (c) θ = 2π

5
. (i) ρ1

SE (black

solid line); (ii) ρ2
SE (red dash line); (iii) ρ3

SE (blue dash dot
line), γ = π

6
. N = 100, m = −50. The coupling constant

A = 0.2.

and ρ3
SE this phenomenon does not happen which can be

seen from Figures 2b and 2c. Figure 2, |ρ12(t)| displays
periodic oscillations as 〈Sz(t)〉 (see Fig. 1), the amplitude
for ρ1

SE is larger than ρ2
SE and ρ3

SE , and the oscillations
for ρ2

SE and ρ3
SE are similar. In addition, we find that

the difference of amplitudes between initial states ρ1
SE

and ρ3
SE is maximal when θ = π

4 (see Figs. 2a–2c).
In the following, in order to further study the dynamics

of the off-diagonal element of the reduced density matrix
|ρ12(t)|, we consider θ = π

4 , then

ρ1
12(t) = (1−

√
(j − m)(1+j+m))

{
1

(1+2j)2
[
(1+2m)

× sin 2γ sin2 gt
]
+

i

2 + 4j
sin 2gt sin 2γ

}
, (21)

ρ2
12(t) =

1
(1 + 2j)2

[
(1 + 2m) sin 2γ sin2 gt

]

+
i

2 + 4j
sin 2gt sin 2γ, (22)

ρ3
12(t) = 0. (23)

Obviously, the time evolutions of |ρ12(t)| are different for
these three states. In the case of θ = π

4 , there is no off-
diagonal element for initial states without any correlations
in equation (23) which can be seen from Figure 2a. From
equation (22), when initial states have classical correla-
tions, the average value of |ρ2

12(t)| approaches 0 for a rel-
atively large number of nuclear spins N (j = N

2 ) and has
almost no oscillation. However, the amplitude of |ρ12(t)|
is the largest for initial state ρ1

SE compared with ρ2
SE

and ρ3
SE . We can explain from equation (21) that the

existence of the term 1 −√(j − m)(1 + j + m) can ap-
parently lead to the variation in the amplitude of |ρ1

12(t)|.
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Fig. 3. Time evolution of 〈Sz(t)〉 for different numbers of nu-
clear spins. N = 20, 100, 200. (a) m = −N

2
, (b) m = 0. The

initial state is ρ1
SE, θ = γ = π

3
. The coupling constant A = 0.2.

Hence the initial quantum correlations have considerable
influences on the off-diagonal elements of the reduced den-
sity matrix of central spin, and it can lead to an increase
in coherence of the central spin. Physically, this can be un-
derstood as follows: for initial quantum correlations, the
global coherence of the system and bath is redistributed
into the central spin during the process of time evolution
and it reaches the maximum for θ = π

4 where the degree
of quantum correlations are close to the maximum. The
system can gain coherence with the initial quantum cor-
relations unlike the cases for initial states having classical
correlations and without any correlations.

Actually, a previous study [8] has calculated exactly
the time-dependent reduced density matrix of the cen-
tral spin with homogeneous couplings. It was shown
that 〈Sz(t)〉 exhibits persistent monochromatic large-
amplitude oscillations for the system and environment
being initially statistically independent. For initial states
with system-environment correlations our results are con-
sistent with that of reference [8], and apart from that the
off-diagonal matrix element |ρ12(t)| also exhibits persis-
tent monochromatic large-amplitude oscillations.

Now we consider the influences of different numbers of
nuclear spins N in the bath on the dynamics of the cen-
tral spin. In Figures 3 and 4, we plot the time evolution
of 〈Sz(t)〉1 and the off-diagonal matrix element |ρ1

12(t)|
with different N for ρ1

SE , m = −N
2 and m = 0. Our an-

alytical results show that with increasing number of nu-
clear spins N , the average values of 〈Sz(t)〉1 and |ρ1

12(t)|
approach the initial values which can be seen from Fig-
ures 3a and 4a. However, for m = 0 in Figures 3b and 4b
we can see that the amplitude of oscillation is almost unaf-
fected by the number of nuclear spins N . In equations (13)
and (16), we have chosen j = N

2 and g = A(1 + 2j)/2, so
that when m = −N

2 ,

〈Sz(t)〉1 ≈ − cos 2γ cos 2θ + O
(

1√
N

)
,

∣∣ρ1
12(t)

∣∣ ≈
∣∣∣∣
1
2

sin 2γ cos 2θ + O
(

1
N

)∣∣∣∣ ,

Fig. 4. Time evolution of |ρ12(t)| for different numbers of nu-
clear spins. N = 20, 100, 200. (a) m = −N

2
, (b) m = 0. The

initial state is ρ1
SE, θ = γ = π

3
. The coupling constant A = 0.2.

and when m = 0, the expressions for 〈Sz(t)〉1 and |ρ1
12(t)|

have been given in previous discussion. From these ex-
pressions, we can see that with increasing N the average
values of 〈Sz(t)〉1 will approach the initial values (t = 0)
for m = −N

2 . Reference [8] has shown that the time evo-
lution of 〈Sz(t)〉 exhibits this behavior with system and
environment being initially statistically independent. This
means that for initial states with quantum correlations our
results are consistent with initial states where the system
and environment are statistically independent. In addi-
tion, with increasing N the average value of off-diagonal
matrix element |ρ12(t)| also approaches the initial values
(t = 0) for m = −N

2 . While when m = 0 the amplitudes
of oscillations are almost identical for different N , irre-
spective of 〈Sz(t)〉1 and |ρ1

12(t)|(see Figs. 3b and 4b). For
the initial states ρ2

SE and ρ3
SE , the influences of different

numbers of nuclear spins on the dynamics of the system
are similar to ρ1

SE .
In conclusion, although the reduced density matrices

of the central spin and the bath are the same for these
three types of initial states, the dynamical behaviors of
central spin are rather different. Compared with initial
states having no correlation, the initial correlations have
significant influences on the dynamics of central spin.

2.2 Case of inhomogeneous coupling constants

In the previous subsection, in order to obtain analytical
results of the central spin model we consider the assump-
tion of homogeneous hyperfine constants Ak = A

2 ∀ k
which is certainly a great simplification of the real physi-
cal situation. In this subsection, we will discuss the cases
for different degrees of inhomogeneity by numerical sim-
ulation. We assume a Gaussian distribution with the site
index k [3,25],

Ak =
x1Ne−( kB

N )2

∑N
k=1 e−( kB

N )2 , (24)

http://www.epj.org
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Fig. 5. Time evolution of 〈Sz(t)〉 for different values of pa-
rameter B. (a) B = 0.8, (b) B = 2. (i) ρ1

SE (black solid line);
(ii) ρ2

SE (red dash line); (iii) ρ3
SE (blue dash dot line). The

number of nuclear spins in the bath N = 100, m = −50, θ = π
4

and γ = π
6

which are the same as that in Figure 1a.

Fig. 6. Time evolution of |ρ12(t)| for different values of pa-
rameter B. (a) B = 0.8, (b) B = 2. (i) ρ1

SE (black solid line);
(ii) ρ2

SE (red dash line); (iii) ρ3
SE (blue dash dot line). The

number of nuclear spins in the bath N = 100, m = −50, θ = π
3

and γ = π
6

which are the same as that in Figure 2b.

which allows an easy control over the two relevant char-
acteristics of the distribution of Ak, namely, the mean
value x1 =

∑
k Ak

N and the degree of inhomogeneity B. We
choose x1 = 0.1, and B = 2 as a generic value for in-
homogeneous couplings, and B = 0.8 as a parameter for
nearly homogeneous couplings. It is noted that, the cen-
tral spin model with inhomogeneous couplings was stud-
ied in reference [3], focusing on the spectral properties
and static correlation functions in the ground state and
excited states. Here we are interested in the influences of
the initial system-environment correlations and different
bath states on the dynamics of the central spin.

In Figures 5 and 6, we plot the time evolution of the
〈Sz(t)〉 and the off-diagonal element |ρ12(t)| for m = −N

2 ,
B = 0.8 and B = 2. We can see that the time evolution of
〈Sz(t)〉 and |ρ12(t)| also displays the periodic oscillations.
The influences of the three different initial correlations on
the dynamics of system are similar among the cases of

inhomogenous couplings constant (B = 2), nearly homo-
geneous couplings constant (B = 0.8), and the homoge-
neous couplings constant Ak = A

2 ∀ k. This can be seen
by comparing Figures 1a and 5, Figures 2b and 6. In one
word, for these three different initial states, the dynamics
of central spin in inhomogenous and homogenous cases are
similar for m = −N

2 . It is noted that in reference [2] an an-
alytical method based on the Bethe ansatz was introduced
for the central spin model with inhomogeneous couplings.
A simple example was considered, i.e., an initially fully
polarized spin bath, which means that the whole system
contains only one excitation. It was shown that for this
initial state the inhomogeneous couplings lead to decoher-
ence only for an initially short time. In order to study the
initial system-environment correlations on the dynamics
of the central spin in this paper we consider two excita-
tions in the whole system. For more than one excitation,
it is very difficult to obtain analytical results by using the
method of reference [2].

3 Effect of different initial bath states
on the dynamics of central spin

In order to clarify solely the role of the initial bath state
in the dynamics of the system, in the following, we will
discuss two different initial states of the spin bath, one is
for completely mixed states and the other is for maximally
entangled states. The state of the whole system of the
former is given by the density matrix

ρ4
SE = (CN

Mb
)−1|μ〉〈μ| ⊗ IMb

, (25)

where we take the central spin to be in the state |μ〉 which
is the same as previously mentioned in equation (8), and
the central spin and the bath are uncorrelated initially.
IMb

represents the completely mixed states of the bath,
CN

Mb
= N !

Mb!(N−Mb)!
and Mb is the number of flipped spins

in the bath. We will discuss the cases of Mb = 1, 2 in
this section. Respectively, for the two initial maximally
entangled states of the bath, the density matrices of the
whole system are as follows:

ρ5
SE = |μ〉〈μ| ⊗ |W 〉〈W |, (26)

ρ6
SE = |μ〉〈μ| ⊗ |D〉〈D|. (27)

We denote the ground state of nuclear spins as |0̃〉 =
|00 . . .0〉 representing all spins in the down state and
the W state |W 〉 = (CN

1 )−
1
2 (|100 . . . 0〉 + |010 . . .0〉 +

. . . |000 . . .1〉) = (CN
1 )−

1
2
∑N

i=1 |Wi〉 for the number of
flipped spins Mb = 1 and the Dicke state |D〉 =
(CN

2 )−
1
2
∑N

i,j=1 |Dij〉 for Mb = 2. Apparently, global co-
herences exist in the bath states corresponding to ρ5

SE and
ρ6

SE, and not in the bath for ρ4
SE .

In Figure 7, we plot the time evolution of 〈Sz(t)〉 for
different values of parameter B = 0 (black solid line),
B = 0.8 (red dash line) and B = 2 (blue dash dot line),
N = 20, γ = π

3 . We choose the initial states ρ4
SE (Mb = 1)
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Fig. 7. Time evolution of 〈Sz(t)〉 for N = 20, γ = π
3

, x1 = 0.1,
Mb = 1 (in (a) and (b)) and Mb = 2 (in (c) and (d)). The differ-
ent initial states ρ4

SE in (a) and (c), ρ5
SE in (b) and ρ6

SE in (d).
Homogeneous coupling B = 0 (black solid line), nearly homo-
geneous coupling B = 0.8 (red dash line) and inhomogeneous
coupling B = 2 (blue dash dot line).

in (a) and ρ4
SE (Mb = 2) in (c), ρ5

SE in (b) and ρ6
SE in

(d). We find that for the initial states ρ4
SE , the evolu-

tion of 〈Sz(t)〉 will decay obviously by comparing the two
left panels and two right panels, especially, in the cases
of inhomogeneous couplings (B = 2, blue dash dot line)
and nearly homogeneous couplings (B = 0.8, red dash
line). The reason is that the entanglement in the bath
protects the central spin from decohering for initial states
ρ5

SE and ρ6
SE , so that the decay is not obvious in Fig-

ures 7b and 7d. In other words, the decoherence of central
spin is suppressed by the presence of entanglement be-
tween the bath spins in initial states ρ5

SE and ρ6
SE which

are maximally entangled. This phenomenon demonstrates
that the entanglement in the bath can constrain entangle-
ment between the central spin and bath, and hence limit
the effect of decoherence. Actually, in references [28,29] it
has established a relation between decoherence and entan-
glement inside the bath which is illustrated by using Ising
model and our results are consistent with theirs.

Compared with the nearly homogeneous couplings, we
find that the decay of 〈Sz(t)〉 becomes more pronounced
in the case of inhomogeneous couplings for the initial state
ρ4

SE (see Figs. 7a and 7c), and with the increasing of B,
the average values of 〈Sz(t)〉 become smaller. Figures 7b
and 7d show that the variation of B has almost no effect
on 〈Sz(t)〉 for the initial states ρ5

SE and ρ6
SE . Therefore,

we can conclude that the effect of the inhomogeneous cou-
plings on the central spin crucially depends on the state
of the spin bath, i.e., the inhomogeneous couplings lead to
the decoherence of the system and the decrease of the av-
erage values of 〈Sz(t)〉 for the initially completely mixed
bath states, while for the initial W state and Dicke state
the entanglement can constrain the effect of decoherence,
irrespective of whether it is inhomogenous or homoge-
neous coupling.

In the following, we will investigate the influences of
the initial bath states and the distribution of the coupling
constants on the time evolution of off-diagonal element
ρ12(t). Figure 8 shows the time evolution of |ρ12(t)| with

Fig. 8. Time evolution of |ρ12(t)| for N = 20, γ = π
3

, x1 = 0.1,
Mb = 1 (in (a) and (b)) and Mb = 2 (in (c) and (d)). The
different initial states ρ4

SE in (a) and (c), ρ5
SE in (b) and ρ6

SE

in (d). Homogeneous coupling B = 0 (black solid line), nearly
homogeneous coupling B = 0.8 (red dash line), inhomogeneous
coupling B = 2 (blue dash dot line).

the same parameters as given in Figure 7. Comparing the
two left panels with two right panels of Figure 8, we find
that the dynamical behaviors for the initial states ρ5

SE and
ρ6

SE sharply contrast with ρ4
SE . It is interesting that the

decay occurs for initial state ρ4
SE , and the average value of

|ρ12(t)| is smaller obviously than that of initial states ρ5
SE

and ρ6
SE for inhomogeneous couplings (B = 2) and nearly

homogeneous couplings (B = 0.8). This phenomenon can
be understood as the decay of the off-diagonal element of
the central spin, which is also suppressed greatly by the
initial entanglement between the bath spins for ρ5

SE and
ρ6

SE, and the decay time is obviously extended.
In addition, comparing the black solid line, red dash

line and blue dash dot line in Figures 8a or 8c one sees
that |ρ12(t)| decreases more rapidly in the case of inhomo-
geneous couplings for the initially completely mixed states
of the bath and the behaviors are different obviously for
different B. Furthermore, we find that the distribution of
the coupling constants almost does not influence |ρ12(t)|
for the initial W state and Dicke state (see Figs. 8b or 8d).
This is the same as the effect of the distribution of the
coupling constants on 〈Sz(t)〉 (see Figs. 7b or 7d).

Apart from that, our numerical results show that the
initial value of |ρ12(t)| is the maximum in the process
of the evolution for the initial states ρ4

SE , ρ5
SE and ρ6

SE
which can be seen from Figure 8. Physically it can be ex-
plained as follows: the total coherence 〈S+〉 +

∑N
k=1〈I+

k 〉
is conserved due to the fact that [S+ +

∑N
k=1 I+

k , Ĥ ] = 0
in our model. The coherence of the system will be ex-
changed with that of the bath in the process of time evo-
lution. However, for ρ4

SE , ρ5
SE and ρ6

SE ,
∑N

k=1〈I+
k 〉 = 0,

〈S+〉 �= 0 with γ = π
3 , so that the coherence will be

transferred into the bath from the central spin. In or-
der to better illustrate this phenomenon, we take the cen-
tral spin to be in |1〉, and the initial bath state to be in
|+̃〉 = (CN

1 )−
1
2 (|+00 . . . 0〉+|0+0 . . . 0〉+. . . |000 . . .+〉) =

(CN
1 )−

1
2
∑N

i=1 |+̃i〉 in Figure 9, where |+〉 = 1√
2
(|0〉+ |1〉).

We can see that the initial value of |ρ12(t)| is the min-
imum because the sum of initial local coherence of the

http://www.epj.org
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Fig. 9. Time evolution of |ρ12(t)| for initial state |1〉 ⊗ |+̃〉,
γ = π

2
, N = 20, x1 = 0.1. Homogeneous coupling B = 0.

bath states is nonzero with the initial bath state |+̃〉, and
the coherence of the central spin is zero with the initial
state |1〉 in Figure 9. It is indicated that the coherence of
the bath can be flowed into the system for suitable initial
states.

In conclusion, the influences of the initial bath state
and the hyperfine coupling constants are reflected obvi-
ously by 〈Sz(t)〉 and the coherence |ρ12(t)| of the cen-
tral spin. We emphasize that the decoherence process of
reduced density matrix ρS(t) is suppressed in the case of
initial bath states being in the W state and Dicke state,
and the decay occurs obviously for the initially completely
mixed bath states. On the other hand, it is noted that the
effects of inhomogeneous couplings on the central spin cru-
cially depend on the initial state of the spin bath. The in-
homogeneous couplings lead to the decoherence of the sys-
tem for the initially completely mixed bath states, while
it has almost no effect on the dynamical behaviors of the
system for the initial bath states being in the W state and
Dicke state.

4 Conclusion

In this paper, we have considered three types of initial
states with different correlations between the system and
the bath: quantum correlation, classical correlation and
no-correlation. We find that the influences of initial cor-
relations on the dynamics of central spin are remarkable.
Significantly, the quantum correlations of initial states be-
tween the system and the bath can lead to an increase in
coherence of the central spin. However, the coherence is
reduced in the cases of initial states having classical corre-
lations and no correlation. For these three types of initial
correlations, the dynamics of the system are similar with
different distributions of hyperfine coupling constants in
the case of m = −N

2 . Apart from that, we have studied
the influences of different initial bath states on the time
evolution of the system. The decoherence of the central
spin is supressed greatly for the initial bath state being in
the W state or Dicke state and the decoherence time is ob-
viously extended. However, the decay obviously occurs for
the initially completely mixed bath states. Interestingly,
we find that the effects of inhomogeneous couplings on the
central spin crucially depend on the state of the spin bath.
The inhomogeneous couplings lead to the decoherence of

the system for the initially completely mixed bath states,
while when the initial bath states are the W state and
Dicke state the entanglement can constrain the effect of
decoherence, irrespective of whether it is inhomogenous or
homogeneous coupling.
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