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Abstract. The previously developed technique for calculation of ionization probabilities in low-energy
heavy-ion collisions [A.I. Bondarev et al., Phys. Scr. T156, 014054 (2013)] is extended to evaluation of
positron creation probabilities. The differential probabilities are evaluated by two alternative methods.
The first one uses hydrogenic continuum wave functions, while the second one uses discretized continuum
wave functions corresponding to a finite basis expansion. These methods are applied to the calculation of
the differential positron creation probabilities in the U91+(1s)-U92+ collision. The results obtained by both
methods are found in good agreement.

1 Introduction

Collisions of highly charged ions allow to study relativistic
and quantum electrodynamic effects in atomic processes.
Of particular interest is the collision of two heavy ions pro-
vided that the total charge of the colliding nuclei exceeds
the critical value Zc = 173. The investigation of processes
accompanying such a collision gives a unique opportunity
for testing quantum electrodynamics in the supercritical
Coulomb field [1].

In our recent paper [2], we presented a technique for
calculation of ionization probabilities in low-energy heavy-
ion collisions. In this work, the method is extended to
evaluation of positron creation probabilities. The calcula-
tions were performed for the uranium-uranium collision,
which had been studied before a lot (see, e.g., Refs. [3–9];
review [10], and references therein). Two alternative ways
of extracting the differential positron creation probabili-
ties are discussed and compared.

Relativistic units (� = c = me = 1) are used through-
out the paper.

2 Theory

2.1 Time-dependent Dirac equation

We consider the collision of a hydrogenlike ion with a bare
nucleus. Within the semiclassical approximation, we treat
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the nuclei as sources of an external time-dependent po-
tential. Thus the three-particle problem of an electron and
nuclei is reduced to the problem of a relativistic electron in
a two-center time-dependent potential. Since the collision
is low-energy, we neglect the magnetic part of the inter-
action. The electron dynamics is described by the time-
dependent Dirac equation,

i
∂Ψ(r, t)
∂t

= Ĥ(t)Ψ(r, t), Ĥ(t) = α ·p+β+V (r, t), (1)

where α and β are the Dirac matrices. The time depen-
dence enters the potential V (r, t) through the internuclear
distance R(t),

V (r, t) = VT(r) + VP(|r − R(t)|). (2)

Here we assume that the target (a hydrogen-like ion) is
fixed at the origin, while the projectile (a bare nucleus)
moves along the classical Rutherford trajectory R(t). In
fact, this reference frame is a non-inertial one, but in the
monopole approximation used in the calculations, the ef-
fect of noninertiality does not contribute to the results.

In order to solve equation (1), we apply the following
two-step procedure. At first the stationary Dirac equation
is solved employing the dual kinetic balance approach with
the basis functions constructed from B-splines [11]:

H0φk(r) = εkφk(r). (3)

Here H0 is the matrix representation of the time-
independent Hamiltonian Ĥ0 = α · p + β + VT(r) in the
finite B-spline basis set. Along this line, sets of eigenener-
gies {εk} and eigenstates {φk(r)}, k = 1, . . . , N of H0 are
obtained, and their overall number N depends on the size
of the B-spline basis set.
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Then the time-dependent wave function Ψ(r, t) is ap-
proximated by its expansion ˜Ψ(r, t) over the finite basis
set {φk(r)},

Ψ(r, t) � ˜Ψ(r, t) =
∑

k

Ck(t)e−iεktφk(r). (4)

Substituting equation (4) in equation (1), one derives the
system of coupled channel equations on the expansion co-
efficients Cj(t)

i
dCj(t)
dt

=
∑

k

Ck(t)ei(εj−εk)tVjk(t), (5)

Vjk(t) = 〈φj |VP(t)|φk〉. (6)

It should be noted that since the basis set {φk(r)} is or-
thonormal, the overlapping matrix Sjk = 〈φj |φk〉 is re-
duced to the identity matrix Ijk = δjk. The initial con-
ditions for the system of equations (5) correspond to the
initial electron state. For instance, for the initial ground
state they can be written as

Ck(t→ −∞) = δ1s,k. (7)

It is also worth noting that the atomiclike basis set is
centered at the target and does not allow for the proper
description of charge transfer processes.

To evaluate the matrix elements of the projectile po-
tential Vjk(t), it is convenient to re-expand this potential
to the position of the target, where the basis functions are
centered. For the Coulomb potential of a point nucleus or
a homogeneously charged sphere, it can be done analyti-
cally [12–14]. The calculation in the so-called monopole
approximation takes into account only the spherically
symmetric part of the re-expanded potential with respect
to the origin.

The system of equations (5) can be rewritten in the
matrix form,

i
dC(t)
dt

= M(t)C(t), Mjk(t) = ei(εj−εk)tVjk(t), (8)

where C(t) is the vector incorporating the expansion co-
efficients Ck(t).

To solve equation (8), we use the Crank-Nicolson
method [15]. Within this method, one derives

C(t+Δt) � U(t+Δt, t)C(t), (9)

with the unitary propagator

U(t+Δt, t) =
[

I + i
Δt

2
M(t+Δt/2)

]−1

×
[

I − i
Δt

2
M(t+Δt/2)

]

, (10)

which, hence, preserves the norm of the wave function.

So to determine the coefficients C(t + Δt) at each
time step, we have to solve the following system of lin-
ear equations:

[

I + i
Δt

2
M(t+Δt/2)

]

C(t+Δt)

=
[

I − i
Δt

2
M(t+Δt/2)

]

C(t). (11)

2.2 Transition amplitudes and probabilities

The transition amplitude to the stationary state Ψε(r, t) =
ψε(r)e−iεt of the unperturbed Hamiltonian Ĥ0 with the
energy ε belonging to the negative-energy Dirac contin-
uum can be calculated as a projection of the wave packet
˜Ψ(r, t) onto this state at the limit t→ ∞,

Tε(t) =
〈

Ψε(t)
∣

∣

∣

˜Ψ(t)
〉

. (12)

Here we assume that wave functions ψε(r) are normalized
on the energy scale,

〈ψε|ψε′〉 = δ(ε− ε′). (13)

The radial part of the final state Dirac wave function ψε(r)
is obtained numerically using the RADIAL package [16].

The function Ψε(r, t) satisfies the time-dependent
equation (1) at the limit t→ ∞, when Ĥ(t) → Ĥ0, while
the function ˜Ψ(r, t) satisfies a similar equation, but with
the matrix representation H0 of the time-independent
Hamiltonian Ĥ0 in the finite basis set. This leads to a time-
dependence of their scalar product Tε(t) even at the limit
t→ ∞. To overcome this, we can approximate Ψε(r, t) at
t = 0 by the function ˜ψε(r) which is a linear combina-
tion of the eigenfunctions φk(r) of the time-independent
Hamiltonian matrix H0,

Ψε(r, t = 0) = ψε(r) � ˜ψε(r) =
∑

k

〈φk|ψε〉φk(r). (14)

Then the time-dependent wave function ˜Ψε(r, t) takes the
form

˜Ψε(r, t) =
∑

k

〈φk|ψε〉φk(r)e−iεkt. (15)

This function satisfies the unperturbed time-dependent
equation

i
∂ ˜Ψε(r, t)

∂t
= H0

˜Ψε(r, t), (16)

where H0 is the time-independent Hamiltonian matrix. It
should be noted that the wave function ˜Ψε(r, t) formally
does not correspond to a stationary state.

Thus instead of equation (12) for the transition ampli-
tude Tε(t) we come to the following expression:

˜Tε(t) =
〈

˜Ψε(t)
∣

∣

∣

˜Ψ(t)
〉

, (17)
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which has a well defined limit at the asymptotic time
t→ ∞.

It is also worth noting that since the wave function ˜Ψ(t)
is also the solution of the time-dependent equation (16) at
the limit t → ∞, one can use some relations which hold
for solutions of equation (1). For instance, one can prove
that the following expression is completely equivalent to
formula (17):

˜Tε(t) = −i
∫ t

−∞
dt′

〈

˜Ψε(t′)
∣

∣

∣V (t′)
∣

∣

∣

˜Ψ(t′)
〉

. (18)

The transition probability corresponding to emission of a
positron with the energy ε is defined by

dP

dε
=

∣

∣

∣

˜Tε(t→ ∞)
∣

∣

∣

2

. (19)

Substituting equations (4), (15) and (17) in equation (19),
and using the orthonormality of the basis functions φk(r),
we finally get

dP

dε
=

∣

∣

∣

∣

∣

∑

k

Ck(t)
〈

ψε

∣

∣

∣φk

〉

∣

∣

∣

∣

∣

2

, t→ ∞. (20)

So all dependence of the differential probability (20) on
the hydrogenic continuum wave function ψε(r) left in the
expansion coefficient 〈ψε|φk〉 of ψε(r) over the basis set
{φk(r)}. Equation (20) was used for the calculation re-
ferred as the first method.

The second method of evaluation of the differential
positron emission probability uses the discretized con-
tinuum wave functions corresponding to the finite basis
expansion φk(r), εk < 0 solely. In contrast to the first
method, it does not utilize the hydrogenic continuum wave
functions ψε(r) at all.

The projection of the wave packet ˜Ψ(r, t) at the
asymptotic time t → ∞ onto the negative-energy eigen-
states φk(r) of H0 gives the probability dP/dk, where k is
a discrete eigenfunction index. This probability does not
take into account the density of continuum states. Multi-
plying it by the density dk/dε, we get the differential prob-
ability dP/dε. Making use the Stieltjes method, which has
been widely used before for various calculations [17–20],
one obtains the following approximate expression for the
differential probability:

dP

dε

(

εk+1 + εk

2

)

=
1
2
Pk+1 + Pk

εk+1 − εk
, Pk = |Ck(t → ∞)|2,

(21)
which becomes exact in an infinite basis set.

Since the monopole approximation is used in the calcu-
lations, the results are independent on the positron emis-
sion angle.

2.3 Influence of the negative-energy Dirac continuum

In this subsection, the second quantization formalism used
for the proper account for the negative-energy Dirac con-
tinuum is introduced. Such a description is not the main

Table 1. The total positron creation probabilities Pe+ for
U92+-U92+ collision at center-of-mass kinetic energy 740 MeV
for different impact parameters b.

b, fm Pe+ , this work Pe+ , Ref. [4]

0 1.29 × 10−2 1.26 × 10−2

5 1.08 × 10−2 1.06 × 10−2

10 7.26 × 10−3 7.15 × 10−3

15 4.51 × 10−3 4.47 × 10−3

20 2.75 × 10−3 2.73 × 10−3

25 1.69 × 10−3 1.68 × 10−3

30 1.04 × 10−3 1.04 × 10−3

40 4.12 × 10−4 4.11 × 10−4

goal of the article, however, it helps to compare a part of
our results with ones previously published.

We thus are also able to calculate the total positron
creation probabilities in the collision of two bare uranium
nuclei U92+-U92+. Using methods of Section 2.1 to solve
the time-dependent Dirac equation, which now is formu-
lated in the center of mass frame, we obtain the expansion
coefficients Ck(t) at the asymptotic time t → ∞. Within
the second quantization technique exhaustively developed
by the Frankfurt group (see, e.g., Ref. [3]), the probability
of formation of a hole in a negative-energy state k (cre-
ation of a positron in this state) reads

Nk = 2
∑

i: εi>0

∣

∣

∣C
(i)
k (t→ ∞)

∣

∣

∣

2

, εk < 0, (22)

where the upper index i of the expansion coefficient C(i)
k

means the initial condition C
(i)
k (t → −∞) = δi,k. The

factor 2 in equation (22) refers to a summation over
projections of the total angular momentum j = 1/2.
We would like to note that according to equation (22)
all the positive-energy basis states should be propagated
in time in order to calculate the total positron creation
probability,

Pe+ =
∑

k: εk<0

Nk. (23)

Moreover, in accordance with the law of conservation
of electric charge, the total electron creation probability
equals to the total positron creation probability.

3 Results and discussion

First, let us present the results for the total positron cre-
ation probabilities Pe+ in the U92+-U92+ collision. In Ta-
ble 1, the comparison of our results calculated according
to equations (22) and (23) with the data of reference [4] is
given. The calculation was performed in the monopole ap-
proximation with respect to the center of mass at kinetic
energy 740 MeV for the s1/2 and p1/2 angular momen-
tum channels. Since spherically symmetric (monopole) po-
tential does not mix these channels, they give indepen-
dent contributions to the total positron creation yield.
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Fig. 1. The differential positron creation probability in the U91+(1s)-U92+ collision for zero impact parameter and at center-
of-mass kinetic energy 740 MeV. The calculation was performed in the monopole approximation with respect to the target. The
black line and red dots represent the results calculated according to formulae (20) and (21) correspondingly.

The same as in reference [4] nuclear charge distribution
was used for the clarity of the comparison.

The results of the present calculations being in good
agreement with the ones from reference [4] are systemati-
cally larger. This can be explained by the size of the basis
set used in the calculations. Our basis set contained 400
states for each angular momentum channel, while the re-
sults of reference [4] were obtained with about 50 basis
states. We also found that in agreement with the data of
reference [4] the main contribution to the total positron
creation probabilities Pe+ is given by a pair creation with
an electron captured into a bound state.

Now let us proceed with presenting the results for the
process of U91+(1s)-U92+ collision obtained within the
theory given in Sections 2.1 and 2.2. We thus neglected
that the negative-energy continuum states are occupied by
electrons, and calculated the differential transition prob-
ability of the electron initially bound in the 1s state of
the target to a negative-energy state. In the approxima-
tion we used, this probability can be referred as a positron
creation probability. It should be also noted that within
the second quantization formalism, this quantity can be
considered as a positron creation probability in the U92+-
U92+ collision with capture of the created electron in the
1s state of the target.

In Figure 1, the results calculated according to formu-
lae (20) and (21) are plotted. The calculation was per-
formed in the monopole approximation with respect to
the target for the zeroth impact parameter, which gives
the largest positron creation yield, at the same center-
of-mass kinetic energy 740 MeV, which corresponds to
6.218 MeV/u in the target reference frame. The calcu-
lation according to formula (20) can be performed for an
arbitrary energy ε (here a step of 0.01 r.u. was taken),
while energies εk used in the calculation according to for-
mula (21) are defined by the solution of equation (3).

The total contribution of the negative-energy Dirac
continuum, which is the area under the curve at Figure 1,
equals to 3.16× 10−3. As one can see from the figure, the
results of both methods (Eqs. (20) and (21)) are in good
agreement.

4 Conclusion

The total probabilities of electron-positron pair cre-
ation were evaluated for the U92+-U92+ collision in the
monopole approximation using two dominant channels
(s1/2 and p1/2). The results were found in good agreement
with the data of the Frankfurt group [4].

Two alternative methods of extracting the differential
probabilities were compared. The first one uses hydrogenic
continuum wave functions, while the second one uses dis-
cretized continuum wave functions corresponding to a fi-
nite basis expansion and Stieltjes technique. These meth-
ods were applied for evaluation of the positron creation
probabilities in the U91+(1s)-U92+ collision, and the cor-
responding results were found consistent with each other.
Our calculations in the monopole approximation can pro-
vide only the energy distribution of created particles. In
order to study the angular distribution, one should go be-
yond this approximation. The corresponding calculations
will be presented in a forthcoming paper.
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