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Abstract. System-bath problems in physics and chemistry are often described by Markovian master equa-
tions. However, the Markov approximation, i.e., neglect of bath memory effects is not always justified, and
different measures of non-Markovianity have been suggested in the literature to judge the validity of this
approximation. Here we calculate several computable measures of non-Markovianity for the non-trivial
problem of a harmonic oscillator coupled to a large number of bath oscillators. The Multi Configurational
Time Dependent Hartree method is used to provide a numerically converged solution of the system-bath
Schrödinger equation, from which the appropriate quantities can be calculated. In particular, we consider
measures based on trace-distances and quantum discord for a variety of initial states. These quantities have
proven useful in the case of two-level and other small model systems typically encountered in quantum
optics, but are less straightforward to interpret for the more complex model systems that are relevant for
chemical physics.

1 Introduction

Small systems interacting with a complex environment, a
so-called heat bath, are ubiquitous in physics and chem-
istry. Examples range from quantum optics and informa-
tion theory [1,2] to the dissipative dynamics of adsorbates
at surfaces [3] or excitations in molecular aggregates [4].
The presence of the bath modifies the dynamics of the
system in several ways. Two particular effects are deco-
herence, where the system looses its quantum nature and
behaves like a classical statistical ensemble [5], and relax-
ation, where energy is transferred to the bath degrees of
freedom.

A numerically converged (“exact”) solution of the
time-dependent Schrödinger equation for a system-bath
Hamiltonian is only possible for model problems. There-
fore, open quantum systems are usually treated by a
reduced master equation approach. Here, the system is
described by a reduced density operator whose time evo-
lution is governed by a master equation. The interaction
with the bath enters through response functions and often
takes the form of a time-non-local contribution, i.e., de-
pends on the system density operator at past times. Time-
non local master equations are often as hard to solve as
the original problem, so a popular, simplifying approach
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is the Markov approximation, which can be rigorously jus-
tified for weak system-bath coupling. Within this approx-
imation memory is ignored, leading to master equations
of Redfield or Lindblad forms [4,6], which can be easily
solved. While Redfield equations are more straightforward
to derive for a specific problem, they can lead to negative
populations, which the Lindblad form avoids by construc-
tion. The resulting (Lindblad) dynamics largely reduce to
rate equations, with coherences and populations of the
subsystem decaying on a time scale set by the inverse of
the system-bath coupling strength.

However, there is considerable interest in going beyond
the Markov approximation. Non-Markovian (NM) quan-
tum channels generally perform more efficiently than their
Markovian counterparts [7]. Furthermore, NM baths can
lead to uncommon transient thermodynamics regimes [8],
and can improve the prospect of controlling quantum
systems by optical means [9,10]. In general, it is there-
fore of considerable practical value to be able to judge
on (non-)Markovian behaviour of a given system-bath
problem.

Recently, several measures have been proposed to as-
sess the degree of NM dynamics for system-bath situa-
tions [11–20]. They are based on certain mathematical
properties of the time evolution, notably complete positiv-
ity, and therefore refer usually to Markovianity in the con-
text of Lindblad type master equations. In fact, Lindblad
master equations are widely used and we will also con-
centrate on measures related to Lindblad dynamics in
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what follows. In particular, we shall use trace distances
to quantify deviations from Lindblad-type Markovianity.
Also, von Neumann entropies as the zero temperature
limit of the quantum discord will be considered. Most of
these measures originate from quantum information the-
ory, where they have been dominantly applied to single
qubits, i.e., two-level systems. Indeed, several measures re-
quire expensive calculations that effectively prevent their
use for significantly more complex systems.

In this work, we implement several measures for ex-
act system-bath dynamics built on the multi configura-
tional time-dependent Hartree (MCTDH) approach [21],
and test them for a non-Markovian, well-converging but
nevertheless non-trivial, model system. Specifically, we
consider a harmonic oscillator bilineraly coupled to a dis-
cretized harmonic bath of 64 environmental oscillators.
The MCTDH method, in particular its multi-layer (ML)
variant [22] to be used below, is a powerful numerical
tool to solve as an exact reference the full system-bath
problem [23–27]. The method is general and applicable
to complex system-bath Hamiltonians, e.g., with anhar-
monicities and non-linear couplings [28]. From the exact
reference a reduced density matrix can be constructed,
and the NM measures can be extracted. Already the cou-
pled harmonic model system, however, serves as a chal-
lenging test ground to study how well the previously
suggested NM measures perform, in particular when a
large variety of initial system states is considered. In fact,
it is not a priori clear that computing and interpret-
ing these measures for the situations studied here, is as
straightforward as for the (simpler) model systems or ini-
tial states studied previously [11–18]. The computability,
performance and interpretation of NM measures for com-
plex system-bath Hamiltonians and a large class of initial
states, is precisely the focus of this paper.

The paper is organized as follows. The following Sec-
tion 2 reviews some of the basic mathematical concepts
underlying Lindblad master equations, and introduces and
discusses several NM measures. In Section 3, we introduce
the model system used, and discuss details of the numer-
ical calculations. The results of the calculations are pre-
sented in Section 4 and Section 5 summarizes our findings
and provides an outlook.

2 Theory

2.1 Lindblad master equations and Markovianity

In this section, we briefly recall some basics of Lindblad
master equations and Markovianity to aid in the subse-
quent discussion (see also Ref. [29]). Consider a system s
in contact with some bath b. At some initial time t0, the
state of the system is given in the form of the reduced
density operator ρ̂s(t0), and we are interested in the state
at a later time t. The reduced density operator can be
obtained from the total density operator ρ̂ by tracing out
the bath modes, ρ̂s = Trbρ̂. The reduced density operator
is formally propagated by a dynamical map

Φt,t0 : ρ̂s(t0) �→ ρ̂s(t). (1)

To be physical, these maps must be positive and trace-
preserving (PT), i.e., they must ensure positive eigenval-
ues (populations) of ρ̂s(t) and conservation of the total
probability, Trsρ̂s(t) = 1, respectively. For particular as-
signments of the system-bath state, they are even com-
pletely positive (CP) [19,30].

A compact way of introducing Lindblad master equa-
tions starts by assuming that the maps Φt,t0 = Φt−t0 are
linear CPT maps that depend only on the time distance
t− t0 [6,31]. Furthermore, for all t1, t2 ≥ 0, they fulfill the
semigroup property

Φt1+t2 = Φt2 ◦ Φt1 (2)

where ◦ indicates the subsequent application of Φt1

and Φt2 .
The physical meaning is that the time evolution for t1+

t2 can be broken up into arbitrary steps, where after every
intermediate time t1, the accessible system-bath states are
completely characterized by the state of the system only.
That is, the bath carries no hidden information about the
future of the system, hence it is “memoryless”.

Equation (2) can be fulfilled if and only if the sys-
tem density ρ̂s evolves according to the Lindblad master
equation [29,31]

˙̂ρs(t) = −i
[
Ĥs, ρ̂s

]

+
∑

k

γk

(
V̂k ρ̂s(t)V̂

†
k − 1

2

[
V̂ †

k V̂k, ρ̂s(t)
]
+

)
, (3)

where atomic units are used here and in the following un-
less stated otherwise. Ĥs is the system Hamiltonian (in-
cluding the Lamb-shift from the coupling to the bath),
[·, ·]+ is the anticommutator, V̂k are Lindblad operators,
and the γk ≥ 0 are relaxation or dephasing rates. For ex-
ample, relaxation from a system state |n〉 to a state |n−1〉,
can be described by a ladder operator V̂ = |n−1〉〈n|, and
a rate γn→n−1 [27].

We remark that there also exists a form of equation (3)
with time-dependent Ĥs, γk, V̂k. This form comes from a
weaker condition of equation (2) that asserts for each t0 ≤
t1 ≤ t the existence of a CPT map Λt,t1 with the property
Φt,t0 = Λt,t1 ◦ Φt1,t0 .

In practice, the derivation of explicit Lindblad equa-
tions proceeds via perturbation theory in the system-
bath interaction, invoking the Markov approximation, and
dropping of oscillating terms (secular approximation). The
underlying approximations are τc 	 τR and τs 	 τR,
where τR is a typical relaxation time, τs a typical time
scale of the system dynamics, and τc the so-called coher-
ence or memory time of the bath [4,6]. That is, except for
particular cases (e.g., Ref. [32]) the Lindblad form is the
exact limit for sufficiently weak coupling and slow system
dynamics.

However, real systems with finite system-bath cou-
plings typically show NM dynamics, although this may be
a negligible effect. To assess if a Lindblad master equation
is valid, one should introduce a NM measure to quantify
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how far the actual dynamics stray from Markovian dy-
namics. With such a measure, we can also study under
which modifications the NM dynamics of a system can be
enhanced. If the measure allows a time resolution, we may
even be able to pinpoint where exactly the NM dynamics
occur.

Note, however, that while we can intuitively define
NM dynamics qualitatively as a violation of equations (2)
or (3), there is no unique scheme for a quantitative assign-
ment. To quantify NM dynamics, one monitors a quantity
that is known to be zero for a Markovian process, and as-
signs its value for a particular NM process as NM measure.
Examples are information flows from the environment to
the system [14,33], or quantities related to the distance to
the closest Markovian dynamical map [15] or the accessi-
ble state space volume [18]. As a result, there exist several
incommensurable NM measures, depending on the moni-
tored property, which may give a different ordering for the
NM of a set of dynamical maps. To employ these measures
purposefully, it is therefore mandatory that these mea-
sures are tested analytically or numerically for exemplary
systems.

Finally, we want to point out that an extension to mea-
sure non-Markovianity as a violation of Redfield-type mas-
ter equations is difficult. Such master equations generate
non-positive maps, which further complicates the rigorous
derivation of NM measures, although existing measures
for Lindblad-type NM have been used for Redfield master
equations previously [34].

2.2 Trace-distance measures of non-Markovianity

The trace distance between two general states ρ̂1, ρ̂2 is
given by:

D (ρ̂1, ρ̂2) =
1
2
Tr |ρ̂1 − ρ̂2| , (4)

where |Â| =
√
ÂÂ† is the operator with the same eigen-

vectors as Â, but the absolute value of the corresponding
eigenvalues.

CPT maps Φ have the particular property that they do
not increase the trace norm between any two states [33],

D (Φρ̂1, Φρ̂2) ≤ D (ρ̂1, ρ̂2) . (5)

Since any time evolution in a Markovian system is de-
scribed by a CPT map, the trace distance between two
arbitrary initial system states ρ̂s1 and ρ̂s2 must be a mono-
tonically decreasing function of time [11]. Any increase in
the trace distance is thus a signature of NM dynamics, as
suggested by Breuer, Laine and Piilo (BLP) [11,33].

To quantify the degree of non-Markovianity, we choose
two initial system states ρ̂s1, ρ̂s2, calculate the time deriva-
tive of the trace distance, and integrate this derivative over
all times where it is positive,

MBLP(ρ̂s1, ρ̂s2) =
∫ ∞

t0

1
2

[
dD(ρ̂s1(t), ρ̂s2(t))

dt

+
∣∣∣∣
dD(ρ̂s1(t), ρ̂s2(t))

dt

∣∣∣∣
]
dt. (6)

For a Markovian system, dD/dt ≤ 0 for all times and
MBLP(ρ̂s1, ρ̂s2) is zero for arbitrary initial system states.
In case of NM behaviour, the integrand in equation (6) will
have positive segments, leading to MBLP(ρ̂s1, ρ̂s2) > 0. In
its original form, the integral is then optimized over all
pairs of states to yield a single number for a given system,

N = max
ρ̂s1,ρ̂s2

MBLP (ρ̂s1, ρ̂s2) . (7)

We note in passing that similar measures can be set up
for every function that is monotonic under the action of a
CPT map [12–14,20].

The BLP measure has a rather intuitive interpreta-
tion in terms of information flow [33]. A reduction of the
trace distance between two states corresponds to a re-
duced chance of distinguishing them by measurements,
hence a flow of information to the environment and vice
versa. The value N is then a quantification of the pos-
sible net backflow of information from the environment.
As such, it is not only required to be zero for Markovian
dynamics, but its absolute value conveys some meaningful
information. It should be noted that the condition N = 0
is necessary but not sufficient for the validity of a Lindblad
master equation with time-dependent operators [35,36].

A severe problem, however, is the optimization pro-
cedure in equation (7). On one hand it is expensive,
and while some properties of the optimizing pair are
known [37], a naive optimization is still far beyond reach
for anything but fewest-level systems. In fact, the ques-
tion naturally arises what to do in case of a harmonic
oscillator, for example, with its infinite number of states.
On the other hand, the optimization procedure assigns a
single number to the whole state space; if the space can
be split into subspaces with very different relaxation be-
haviour, the BLP measure, equation (7), might not be
a very illustrative quantity. Then, time-resolved informa-
tion such as the quantity dD(ρ̂s1(t), ρ̂s2(t))/dt may be
more instructive. Examples of both MBLP(ρ̂s1, ρ̂s2) and
dD(ρ̂s1(t), ρ̂s2(t))/dt will be given below.

As an alternative approach, we can start by assum-
ing that the Lindblad master equation contains only
time-independent operators, i.e., has the semigroup prop-
erty (2). In this case, we find for an arbitrary initial state
ρ̂s0 and Δt > 0

D (Φtρ̂s0, Φt+Δtρ̂s0) = D (Φtρ̂s0, Φt ◦ ΦΔtρ̂s0)
≤ D (ρ̂s0, ΦΔtρ̂s0) . (8)

Equation (8) suggests that instead of using two different
initial states, we can then use the same state at two dif-
ferent times t and t + Δt. This leads to a modified BLP
measure,

M ′
BLP(ρ̂s0, Δt) =

∫ ∞

t0

1
2

[
dD(ρ̂s(t), ρ̂s(t+Δt))

dt

+
∣∣∣∣
dD(ρ̂s(t), ρ̂s(t+Δt))

dt

∣∣∣∣
]
dt, (9)
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where ρs(t) = Φtρs0. In addition, we might do an “inex-
pensive” optimization over Δt to get

N ′(ρ̂s0) = max
Δt

M ′
BLP(ρ̂s0, Δt). (10)

Formally, this is just a convenient way of replacing the
expensive optimization procedure (7) by a simpler one,
and assigning a number to each initial state instead of
the whole state space. However, it is important to note
that the modified measure (10) has a very different inter-
pretation. Non-zero values here indicate that no Lindblad
master equation of the form of equation (3) can simulate
the exact dynamics for the given initial system state, leav-
ing open the question whether the dynamics are “truly”
NM or require time-dependent operators and rates.

2.3 Entanglement-based and related measures
of non-Markovianity

Another class of NM measures is based on observing en-
tanglements [16,17]. To quantify the latter, one often adds
an additional “blind and dead” [30] so-called ancilla or
witness system, and prepares the initial system state such
that it is entangled with the ancilla,

ρ̂sa(t0) = |ψ〉〈ψ| ψ =
1√
N

N∑
n=1

ψs
nψ

a
n, (11)

where the ψs
n, ψ

a
n are orthonormal states in the system and

ancilla space, respectively.
The time evolution is then given by a map Φs

t,t0 ⊗ 1a,
since the ancilla does not participate in the dynamics. If
the dynamics are Markovian, Φs

t,t0 is a CPT map, and the
time evolution of the system and ancilla are described by
a so-called LOCC operation (local operation with classi-
cal communication). It is known that such LOCCs can
only decrease the entanglement [38], similar to the trace
distance between two states, hence any increase of a suit-
ably chosen entanglement function E(t) over time indi-
cates NM dynamics [17,39,40]. One can then, similar to
equation (6), integrate the derivative of the entanglement
dE/dt to obtain a single number [17], sometimes called
the Rivas-Huelga-Plenio measure MRHP [39].

However, combining this idea with the multi-
configuration method used in this work turned out to
be rather difficult. Multi-configuration methods are most
efficient if there is little correlation between the system
and the bath. By preparing the entangled initial state of
equation (11), we effectively propagate N initial system
states at once, each becoming correlated with the bath in
a unique way and requiring an own set of configurations to
capture these correlations. This problem can be overcome
in principle with a sufficient number of configurations, but
test calculations showed that the numerical effort becomes
rather large. For more complex systems than a harmonic
oscillator, the cost is likely to be prohibitive, therefore we
did not investigate this concept any further.

Another measure that seems highly relevant from
a theoretical perspective is based on quantum discord.

The quantum discord [41] is a non-negative number
that measures the amount of information about a “sys-
tem” (here: the bath) that cannot be extracted by
reading out an interacting “apparatus” (here: the sub-
system). Lindblad-Markovianity requires zero quantum
discord [19], which can be intuitively understood by re-
calling that the Lindblad formalism assumes that the
bath carries no hidden information (i.e., memory). Alipour
et al. [16] suggested to use the amount of quantum discord
to detect non-Markovianity. They employed a maximally
entangled state with an ancilla, and monitored the differ-
ence in von Neumann entropies Δsa = Ss − Sa as a lower
bound of the discord.

However, the specific measure Δsa suffers from the
above-mentioned convergence problem for MCTDH with
entangled system-ancilla states. It is also shown in Ap-
pendix A that for the factorizing system-bath initial con-
ditions used here, Δsa ≤ 0, and the measure has no pre-
dictive power. Furthermore, we show in Appendix B that
at zero temperature the quantum discord is simply the
entropy of the system (kB = 1 here and in the following),

Ss = −Trρ̂s ln ρ̂s. (12)

This finding suggests conceptual difficulties with naively
applying quantum discord as a NM measure at zero (or
possibly low) temperature: even if a Lindblad master
equation is used, the reduced system states will always
become mixed during the relaxation, giving a non-zero
entropy/discord. The question naturally arises, how to
derive a useful quantity for non-Markovianity from the
entanglement. To study how well suited a quantum dis-
cord measure may be, we will also calculate the system
entropies and compare them to a rate equation approach.

There are several other measures of NM behaviour that
we do not exploit here. Measures that require as input the
set of accessible states [18] or the time evolution maps
Φt [15] are difficult to extend to more than fewest-level
state spaces due to the prohibitive cost of computing the
input. Further, the so-called quantum Fisher information
flow [14] might be an interesting measure. However, its
value depends on an inference parameter whose choice is
not obvious, therefore we did not include this measure
in the present work. Finally, one can introduce measures
similar to the BLP or modified BLP measure, but based
on the fidelity rather than trace distances [13,20]. We also
computed some of these fidelity-based measures for our
model problem. While they were quantitatively different
from the BLP measure, qualitative conclusions about sta-
bility, interpretation etc. were unchanged. Therefore, we
also do not further consider these measures from now on.

3 Calculations

3.1 Model system

As a model, we used a harmonic oscillator bilinearly cou-
pled to a bath of N oscillators, with an Ohmic cou-
pling adapted from reference [39] at zero temperature.
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The system-bath state is given by a wavefunction of
the system coordinate z and the N bath coordinates
q = (q1, q2, . . . , qN ). The wavefunction obeys the time-
dependent Schrödinger equation (TDSE),

ıψ̇(z,q) = (Ĥs + Ĥsb + Ĥb)ψ(z,q). (13)

Here, the system Hamiltonian Ĥs is a harmonic oscillator,

Ĥs = − 1
2ms

∂2

∂z2
+

1
2
ms ω

2
s z

2 (14)

with mass ms = 1 and frequency ωs = 0.4. The bath was
discretized as:

Ĥb =
N∑

b=1

− 1
2mb

∂2

∂qb2
+

1
2
mb ω

2
b q

2
b (15)

withN equally spaced bath oscillators with massesmb = 1
and ωb = bΔω = b ωc

N+1 . Here ωc is a cutoff frequency that
was set to 1.

The choice of the number of bath modes is based on
two considerations. First, replacing a continuous bath by a
finite set of oscillators leads to unphysical recurrences [42]
with a critical recurrence time τrec = 2π(N + 1)/ωc. This
time should be considerably larger than the propagation
time, which was chosen as tprop = 70. Second, to avoid
saturation effects, every discretized mode should be typ-
ically only excited once. We used N = 64 modes with a
recurrence time τrec ≈ 400. The results did not differ qual-
itatively if we reduced this to 16 bath modes, suggesting
that the calculations are converged with respect to the
number of bath modes.

The system is bilinearly coupled to the bath modes,

Ĥsb =
N∑

b=1

gbzqb. (16)

In the limit of an infinite number of oscillators, the cou-
pling coefficients gb are given in the form of a spectral
density [23]

J(ω) =
π

2

N∑
b

g2
b

mbωb
δ(ω − ωb). (17)

Here we used J(ω) = κω
√

1 − ω2/ω2
c from reference [39],

which is Ohmic (J ∝ ω) up to ω ≈ 0.5, and then has a soft
cutoff. To stay in the limit of strong coupling, where we
can assume the Markov approximation to fail, we chose
κ = 0.1. A “weak-coupling” situation with κ = 0.03 was
also considered. With a finite number of oscillators, we
assign the coupling to the continuum of oscillators in the
frequency range [ωb−1, ωb] to the bth oscillator. For the
equally-spaced oscillators used here, this gives in analogy
to [23]

g2
b ≈ 2mbωbJ(ωb)

π
Δω. (18)

Note that this motivates the use of N + 1 instead of N in
the definition of Δω, otherwise the Nth mode would have
frequency ωN = 1 and a coupling of gN = 0.

A characteristic relaxation rate can be obtained from
Fermi’s golden rule, which yields after some calculation

γ = 2π
∣∣∣〈f |Ĥsb|i〉

∣∣∣
2

ρ(ωs) = nκ
√

1 − ω2
s/ω

2
c ≈ nκ. (19)

Here, the initial state |i〉 is given by the nth excited state
of the system and a ground state bath, the final state |f〉
is the (n − 1)st excited state and a single excitation of a
resonant bath mode, and the density of states is ρ(ωs) =
1/Δω. Note that in the bilinear coupling model at T = 0,
all rates except for n→ n− 1 transitions are zero.

The typical relaxation time (more precisely: state-to-
state transition time) is thus τR ∼ 1/γ ≈ 10/n for κ = 0.1.
Already for n = 1, this is similar to the typical coherence
time τc ∼ 1/ωc = 1 as well as the typical system time
τs ∼ 1/ωs = 2.5, so we would expect noticeable NM con-
tributions to the dynamics. Furthermore, the transition
time decreases with increasing quantum number n. There-
fore, when higher excited system states |n〉 are involved,
the system-bath coupling becomes effectively larger, and
we expect the NM contributions to be even more impor-
tant. It is certainly interesting to study how well this ex-
pectation is reflected in the investigated NM measures.

We want to point out that there are other recent stud-
ies on the Markovianity of damped harmonic oscillator
models [39,40,43]. In particular, we employed a model
Hamiltonian analogous to reference [39]. However, in these
references, the solution of the TDSE (13) was performed
only for Gaussian states (typically squeezed or thermal
states) for which quasi-analytic solutions of the harmonic-
bilinear system-bath problem are available. In our work
we solve equation (13) fully numerically with the help of
the MCTDH method, which offers a larger flexibility in
the choice of Hamiltonian and initial states. In particu-
lar, we will exploit the flexibility in choosing initial states
here.

3.2 Computational details and initial states

For the propagation of the system-bath wavefunction,
we used the multilayer version [22] of the multi con-
figurational time-dependent Hartree method [21] (ML-
MCTDH) as implemented in the Heidelberg MCTDH
package [44,45]. The ML-MCTDH method is based on
expanding the total wavefunction into a variationally
optimized basis φn,s/b(t) for the system and the bath
states, so-called configurations or single-particle functions
(SPFs), i.e.

ψ(z,q, t) =
Ns∑

is=1

Nb∑
ib=1

ais,ib
(t) φs

is
(z, t)φb

ib
(q, t), (20)

where Ns = Nb are the numbers of SPFs for system and
bath, respectively. The functions φs/b

is/b
can then be further

expanded in another optimized basis until this scheme ter-
minates in a primitive basis for the system and the indi-
vidual bath modes. This expansion into optimized orbitals
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q4

5
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q5
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q6
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q15

6

q16
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7

q18
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q19
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q20
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q21

8

q22
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q23

8

q24

7

26
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q25

7

q26

7 13

q27

7

q28

7

16

13

q29

6

q30

6 12

q31

6

q32

6

26

22

18

15

12

q33

6

q34

6 11

q35

6

q36

6

14

11

q37

6

q38

6 10

q39

6

q40

6

16

13

10

q41

6

q42

6 10

q43

5

q44

5

12

10

q45

5

q46

5 10

q47

5

q48

5

17

14

11

10

q49

5

q50

5 10

q51

5

q52

5

11

10

q53

5

q54

5 9

q55

5

q56

5

12

10

9

q57

5

q58

5 9

q59

5

q60

5

9

9

q61

5

q62

4 8

q63

4

q64

4

Fig. 1. Example of the multilayer tree for the largest calculation with the e5 initial state in basis 2 (see text). Each circle
denotes an expansion into optimized basis functions (SPFs), rectangles denote the respective degree of freedom. The numbers
at edges between two circles denote the number of SPFs for the respective (group of) degrees of freedom. Numbers at edges
between a circle and a rectangle denote the number of primitive, time-independent basis functions used for that mode. For
instance, the system mode (z) is represented by 16 SPFs with 40 primitive (Gauss-Hermite) functions, whereas the 64 bath
modes are treated by up to six layers. See reference [22] for further details on the graphs.

can be compactly represented with a tree structure [22],
of which an example is shown in Figure 1.

The primitive basis for each degree of freedom con-
sisted of a Gauss-Hermite basis. The choice of the num-
ber of primitive basis functions and SPFs will be outlined
below. For the propagation, a Bulirsch-Stoer propagator
with variational mean field setting was used; deviations
from changing the integrator were less than those from
changing the number of SPFs. For further details on the
numerics, see the Supplementary Material�.

The time derivatives and integration in equations (6)
and (9) were done within a linear approximation [46].
That is, with the definition Di = D(ρ̂s1(ti), ρ̂s2(ti)), equa-
tion (6) becomes

MBLP (ρ̂s1, ρ̂s2) =
∑

i
Di+1−Di>0

Di+1 −Di, (21)

where the timesteps that were used are ti = iΔt with
Δt = 0.05.

The BLP measure in its original form, equation (7) re-
quires an optimization over the set of initial states ρ̂s1, ρ̂s2

of the system, where the optimizing pair is largely un-
known. For harmonic oscillators efficient quasi-analytic
propagation schemes exist for Gaussian states [17,39,40].

However, since we are considerably more flexible with the
ML-MCTDH scheme, we decided to use three sets of ini-
tial conditions as a coarse optimization procedure over the
state space. In particular, we chose as the initial system
states the following:
– excited states of the unperturbed harmonic oscillator,

denoted as “ek” for brevity, for the kth excited state;
– displaced states denoted as “dk” generated from dis-

placing the ground state of the unperturbed oscillator
by an amount zk = 0.6k;

– squeezed states denoted as “sk” generated from
Gaussians centered around the potential minimum and
having a width Δzk = 1.2 + 0.3k.

For each set of initial conditions, five parameters k =
1, . . . , 5 were used. The parameters for the shifted and
squeezed states were chosen such that the initial system
state was always dominated by the lowest six states of
the unperturbed oscillator. To obtain system-bath initial
states to be used in equation (7), for example, the system
wavefunction was always coupled to the ground state bath
using factorizing initial conditions,

ψ(z,q; t0) = ψs(z)
N∏

b=1

ψb0(qb), (22)
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Fig. 2. Dynamics and convergence properties of the system state for the various initial conditions. (a) Average quantum
number 〈n〉 of the unperturbed system oscillator over time for excited state initial conditions. (b) Average position expectation

value 〈z〉 over time for displaced initial conditions. (c) Average position uncertainty Δz =
√〈z2〉 − 〈z〉2 over time for squeezed

initial conditions. (d) Convergence of the calculations measured by the trace distance of the system density, D(ρ̂s1(t), ρ̂s2(t)),
of two calculations with the same initial conditions, but different number of SPFs. For each set of initial conditions, only one
curve is shown (e5, d5, s5), the others are qualitatively similar. Solid lines: trace distance between basis 1 and 2. Dashed lines:
trace distance between basis 1 and 3.

where ψb0(qb) is the ground state of bath oscillator b.
Further, propagating the initial system-bath wavefunc-
tion (22) under the influence of Ĥ = Ĥs + Ĥb + Ĥsb with
ML-MCTDH gives a total wavefunction ψ(z,q; t), from
which the reduced system density can be constructed as
ρ̂s(t) = Trb|ψ(t)〉〈ψ(t)|. From the reduced system den-
sities, we determine trace distances according to equa-
tion (4) and entropies via equation (12).

We performed three sets of calculations for each pa-
rameter k of differing accuracy/size of basis set for the
ML-MCTDH scheme.

Basis 1: In a first case, called the “converged calculation”
or “basis 1” in what follows, we required for each
calculation the smallest natural population η of
any node in the multilayer tree to be below 10−6.
This was the standard setting.

Basis 2: As a convergence test, we then added 3 SPFs to
every single optimized basis. The corresponding
ML-MCTDH tree for this basis 2, for the e5 ini-
tial system state, is shown in Figure 1.

Basis 3: In a third set, we deliberately relaxed the con-
vergence, and required the smallest natural pop-
ulation to be only below 10−4. This basis can
then be used to estimate the stability of the NM
measures under numerical errors.

The parameter η determines the number of SPFs. The
number of primitive basis functions was identical for all
bases. For the system mode z a fixed and well converged
number of 40 primitive (Gauss-Hermite) basis functions

was used. For the bath modes, the number of primitive
basis functions was chosen such that the smallest natural
population was always well below 10−6. All three bases
were tested for the strong-coupling case with κ = 0.1.

For weaker system-bath coupling with κ = 0.03, we
employed the same grid and tree parameters as for ba-
sis 1 of above, but with a longer total propagation time
of tprop = 200 instead of tprop = 70. Since the relaxation
time is now increased compared to the memory time of
the bath and the system time scale, NM effects should
be considerably weaker in this case. These weak-coupling
calculations can thus serve as an additional check of how
well the magnitude of the measures captures the amount
of NM dynamics.

4 Results

4.1 System dynamics

The system dynamics arising from the solution of the
TDSE (13) for the 15 different initial conditions (e1-e5,
d1-d5, and s1-s5) are shown for various properties in Fig-
ures 2a–2c. In all cases, basis 1 has been used as well as
κ = 0.1. In Figure 2a, we show the (sub-)system average
eigenstate populations

〈n〉 =
∑

n

Pn n (23)
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where Pn = Trs(ρ̂s|n〉〈n|) is the population of the nth
eigenstate |n〉 of the unperturbed system Hamiltonian Ĥs

(n = 0, 1, 2, . . . ).
For the excited state initial conditions in Figure 2a,

no significant relaxation takes place up to approximately
t = 3, then the system relaxes on a typical time scale of 10,
indicated by the continuously decreasing 〈n〉 values. In
fact, the different curves in Figure 2a are almost identical
except for scaling, that is, the relaxation scales with the
initial excitation as expected from the golden rule rate,
equation (19).

We note that the decay of 〈n〉 (and consequently, also
of the system excitation energy ωs〈n〉), is not a simple
exponential, which has been observed before [27]. This
effect is a well-known artefact of factorizing initial condi-
tions [47]. By using factorizing initial conditions, the to-
tal system (including the bath) is not in a well-defined
thermal state, and over a timescale of the bath corre-
lation time, the subsystem first builds up the discarded
correlations with the bath. Effectively, thus the bath
state changes considerably for t < 3, which is clearly
not captured by a Lindblad master equation with time-
independent operators and rates.

For the displaced and squeezed initial states (Figs. 2b
and 2c), we find a damped motion with relaxation time
scales of about 20 and 10, respectively. In particular, Fig-
ure 2b shows the system-coordinate expectation value
〈z〉 = Trs(ρ̂sz) for the displaced initial system states
d1-d5, and Figure 2c the average position uncertainty,
Δz =

√〈z2〉 − 〈z〉2 for squeezed initial states s1-s5, where
〈z2〉 = Trs(ρ̂sz

2). In all cases (a)–(c), the system relaxes
almost completely to the ground harmonic oscillator state
of the system, characterized by n = 0, 〈z〉 = 0, and
Δz = 1/

√
2msωs = 1.118.

In Figure 2d we show the convergence of the calcula-
tions with increasing basis set size by calculating the trace
distance between states represented by different bases.
This serves in the end to estimate possible numerical er-
rors of the BLP measures. Specifically, we used the three
basis sets 1, 2, and 3 of above, and calculated the trace
distances, equation (4) between the system density ma-
trix with basis 1 (ρ̂s1) on the one side, and ρ̂s2 obtained
from either basis 2 (solid lines) or basis 3 (dashed lines),
respectively. For clarity, we show results only for e5, d5,
and s5 as representative examples; the other calculations
gave similar results.

Qualitatively, we note that differences between two
bases, measured by their trace distance, build up until
around t = 10 and then stay constant around some set
value. If we compare the “converged calculations” (ba-
sis 1) and those with an additional three SPFs (basis 2),
the final trace distance is in the range of 10−4–3× 10−4 1.
Comparing the calculations with basis 1 and basis 3, we
find trace distances of ∼10−3. This indicates that in our
approach trace distances can be determined with basis 1

1 We want to point out that this suggests an unusually ex-
cellent convergence. When doing similar calculations with a
Morse oscillator, we typically reached only convergence with
respect to the trace distance of 10−3–10−2.

with an accuracy in the order of 10−4 and slightly above,
whereas with at least one order of magnitude smaller ac-
curacy in case of basis 3.

Before discussing the NM measures in the following,
we want to briefly summarize properties of the test system
that can be used to study these measures:
– The MCTDH calculations converge extremely well, so

that the results with basis 1 are essentially numerically
exact. From this starting point, we can then deliber-
ately deteriorate the numerical convergence (basis 3)
to study how well the NM measures behave under nu-
merical errors.

– There are two distinct ways of modifying the coupling
between the subsystem and the bath, which should
also affect the degree of NM dynamics. We can change
the coupling constant κ to globally modify the system-
bath coupling, or we can use higher excited states. This
in principle allows a detailed study of the magnitude
of the NM measures for different coupling strengths.

– Due to the factorizing initial conditions, there should
be significant non-Markovian dynamics for t < 3.
At least for the e1-e5 states, these should be clearly
visible.

4.2 BLP measures of non-Markovianity

We calculated the BLP measure, equation (6), for every
pair of initial states. For the 15 initial states, this yields
a total of 105 unique pairs. The results are shown in Fig-
ure 3, in the form of six blocks e-e, e-d, e-s, d-d, d-s, and
s-s, indicating the possible combinations of ρ1s and ρ2s

initial states. Each of the three diagonal block consists of
5 × 4/2 = 10MBLP values, each of the three off-diagonal
block of 5 × 5 = 25MBLP values, represented by a colour
coding. Although one could maximize (6) over this re-
stricted set of states to obtain an optimized value N ac-
cording to (7), it is more instructive to consider the values
for the individual pairs. Figure 3a shows the results with
basis 1 for the strong coupling case, κ = 0.1, Figure 3b
shows the same for the less accurate basis 3, and Figure 3c
for basis 1 again, but with weaker coupling κ = 0.03.

In all cases shown, the MBLP values are between nu-
merically zero and about 0.008. We note in passing that
the values are considerably smaller than those reported
in reference [39]. Individual values can vary significantly
between basis 1 and 2, especially pairs that involve one
excited state. However, in most cases, this affects pairs
with small values, so the measure seems to be reasonably
stable against variation of the basis set size, i.e., under
numerical errors.

If we consider only pairs of displaced states (the d-d
block in the center of the figures), the single BLP val-
ues are consistently larger for stronger coupling. All of
them decrease homogenously by about a factor of three
if the coupling is reduced. Further, MBLP increases as
the displacement between the two states increases, i.e.,
if higher excited states are involved. This would suggest
that the BLP measure is a monotonic function of the cou-
pling strength between the system and the bath.
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Fig. 3. BLP measure MBLP from equation (6) for all pairs of initial states for (a) “converged” calculations (basis 1), and
coupling κ = 0.1; (b) calculations with relaxed convergence (basis 3), and coupling κ = 0.1; (c) calculations with basis 1 and
weaker coupling κ = 0.03. Note that the displayed color bar applies only for values MBLP > 3 × 10−5, otherwise the blocks
have been colored white to highlight pairs with negligible values. Only the lower triangle is shown, since the trace distance is
invariant under permutation of arguments.

ρ
ρ

Fig. 4. BLP measure, details of the trace distance for selected pairs of initial states. (a) Trace distance D(ρ̂s1(t), ρ̂s2(t)) as a
function of time. (b) Time derivatives dD/dt of the initial states in (a).

However, this interpretation fails if we also consider
other initial states. Pairs of squeezed states (s-s) or
squeezed and displaced states (s-d) give rather small val-
ues, which do not show any definite trend. The values in-
volving one excited state initial condition (e-s and e-d) are
rather erratic, and pairs of excited state initial conditions
(e-e) have usually zero or close to zero measure (indicated
by white colour). Also when the system-bath coupling is
reduced, the BLP measure for e-s pairs increases, which
directly contradicts the results from using only displaced
states.

Let us study trace distances between different pairs ρs1

and ρ̂s2 as well as related quantities in greater (time-
resolved) detail. In Figure 4a, we plot the trace distance
D(ρs1, ρ̂s2), and in Figure 4b its time-derivative, for the
strong-coupling case and three representative state pairs,
d1-d2, s2-e4 and s5-e2.

The trace distances start from comparatively large val-
ues according to Figure 4a, up to about 1, and then de-
cay towards zero. More important for the BLP measure
are the time-derivatives in Figure 4b. They indicate that
for two initially displaced states (d1-d2, black curve), the
slope of the trace distance increases after every approxi-
mately half-period of the oscillation (with the period be-
ing 2π/ωs ≈ 16), with the increases becoming less and less
pronounced as the system relaxes. In particular the early
maxima of dD/dt dip above the zero-line, i.e., the trace
distance increase then and these areas contribute to MBLP

indicating non-Markovian behaviour. The resulting MBLP

value is 0.0011. One is tempted to correlate the “NM dips”
with large |〈z〉| values of the oscillating subsystem, when
the system-bath coupling is large.

Several of the calculations showed a different be-
haviour, similar to the s2-e4 pair (red curve). Here, the
trace distance decreases monotonically except for a small
spike at t ≈ 5. The MBLP measure is only 0.00027 in this
case.

Finally, we found the pattern, for example for the s5-e2
pair (blue curve), where a periodic increase of the trace
distance was observed only for t ≥ 20, i.e. after approxi-
mately twice the relaxation time, when the system is al-
most settled in the ground state. Nonetheless, for this pair
the MBLP value is reasonably large again, 0.0023.

To conclude, we find that for most state pairs, MBLP

gives values with no discernible pattern. Also, a study of
the time-dependence of the trace distance suggests that
similar magnitudes of MBLP can result from very differ-
ent dynamics. It thus seems unlikely that the optimization
procedure of (7) can be circumvented in a reasonable way.
That is, conclusions drawn from a restricted set or class
of initial states cannot be readily generalized. Consider-
ing that we used only few initial states, we will not draw
conclusions on the NM dynamics of the system here.

The time-dependence of the trace distance shows os-
cillatory features that can be readily interpreted as time-
dependent signatures of NM dynamics. However, there are
also significant exceptions, e.g., the s2-e4 pair in Figure 4a,
that are difficult to interpret.
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Fig. 5. Modified BLP measure, M ′
BLP(ρ̂s0, Δt), from equation (9) as a function of the time distance Δt for excited initial states

ek (a), (d), displaced states dk (b), (e), and squeezed states sk (c), (f), respectively. Note the different scales. (a)–(c) Calculations
with strong coupling (κ = 0.1). (d)–(f) Calculations for weak coupling (κ = 0.03).

4.3 Modified BLP measure

Figure 5 shows the values for the modified BLP mea-
sure, M ′

BLP(ρ̂s0, Δt), obtained from (9) as a function of
the time delay Δt for all initial states and for both cou-
pling strengths (κ = 0.1 and κ = 0.03). All calculations
were done with the converged basis 1, but we remark that
the calculations with relaxed convergence (basis 3) gave
essentially identical results. Thus, this measure is stable
under numerical errors.

We note that the single sets of initial states ρ̂s(t0)
give considerably different values. Typical values of M ′

BLP
are in the range 10−2–10−1, which is an order of mag-
nitude larger than the values obtained from the original
BLP measure, MBLP. This probably explains the better
numerical robustness of the former.

In all cases there are strong variations of M ′
BLP with

Δt. The excited states ek show the largest values for
Δt < 5. For the displaced states dk, we see two peaks
in the range Δt < 5 and Δt > 15, and a shallow max-

imum around Δt = 8. For the squeezed states sk, there
is a dominant peak around Δt = 8 and a smaller one
at Δt = 16. Note that maxima around 8 and 16 time
units correlate with the system’s half and full period, re-
spectively. This indicates again, at least for the displaced
states, large NM behaviour when the oscillating system
couples most strongly with the bath.

Also, we find a tendency of increasing M ′
BLP values

with increasing excitation level of the initial state. How-
ever, this correlation is neither linear nor perfect; it is gen-
erally more pronounced for weak coupling and for the ex-
cited and displaced states. Reducing the coupling strength
(Figs. 5d–5f) hardly affects the overall magnitude ofM ′

BLP
values, except for the weakly excited initial states e1,
d1, s1.

To study the actual dynamics in more detail, we
show for κ = 0.1 the time-dependent trace distance,
D(ρ̂s(t), ρ̂s(t+Δt)), and its time derivative, dD/dt in Fig-
ures 6a and 6b, respectively. From each set of initial states
ρ̂s(t0), we picked one calculation (e5, d5, s5) and a value
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Fig. 6. Modified BLP measure, details of the trace distance for three selected parameters. (a) Trace distance D(ρ̂s(t), ρ̂s(t+Δt))
for selected Δt values, as a function of time. (b) Time derivatives dD/dt corresponding to curves shown in (a).

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

S s

t

excited
displaced
squeezed

(a)

d1-d5

s1
s2
s3
s4
s5

e1

e2

e3
e4
e5

0

0.5

1

1.5

2

0 50 100 150 200

S s

t

excited
displaced
squeezed

(b)

d1-d5
s1
s2
s3
s4
s5
e1

e2

e3
e4
e5

Fig. 7. Von Neumann entropy Ss of the system as a function of time for (a) strong coupling κ = 0.1 and (b) weak coupling
κ = 0.03. The initial states of the system are excited states (solid black lines), displaced states (dashed red lines) and squeezed
states (dotted blue lines). Also shown as solid green curve is the entropy for the e1 state assuming a purely dissipative Markovian
bath, equation (24), with the rate from equation (19).

of Δt corresponding roughly to a maximum value in Fig-
ure 5. However, we point out that these curves are repre-
sentative; for other calculations, e.g., e1 instead of e5, the
values of the trace distance differed, but the qualitative
features were identical.

Similar to the BLP measure in Figure 4, we find an
oscillatory behavior of the trace distance, which is most
pronounced for displaced states and leads to a periodic
increase in the trace distance. We attribute this feature
to the fact that the coupling to the bath is strongest at
periodic intervals, when the displaced state reaches the
classical turning points. An interesting feature appears for
squeezed and especially excited initial states, where the
trace distance increases initially for t < 1 and t < 5,
respectively. A comparison with Figure 2a suggests that
the modified BLP measure is sensitive to the initial non-
Markovian buildup of correlations. This feature is absent
from the original BLP measure, Figure 4a, which suggests
that this process can be captured by a Lindblad master
equation with time-dependent operators and rates.

To conclude, the modified BLP measure looks promis-
ing. It gives rather large, stable numbers, and due to
the dependence on the time shift Δt, we may be able to
pinpoint specific time intervals where NM behaviour pre-
vails. The results suggest that the time evolution of the
trace distance also gives dynamic information on the NM
dynamics.

4.4 Von Neumann entropy

From the ML-MCTDH wave function, we can trivially
calculate the system’s quantum discord/von Neumann en-
tropy Ss according to equation (12). The results for the 15
initial states considered in this work are shown in Figure 7.
We remark that the entropies did not change noticeably
with relaxed convergence (using basis 3 instead of 1).

The overall behaviour of Ss as a function of time is
similar to that of a similar system-bath Hamiltonian in
reference [27]: the entropies start at Ss(t = 0) = 0, go
through a maximum and then fall off for longer times to-
wards Ss = 0 again. This behaviour is due to the fact
that we start from a pure state, create a mixed state dur-
ing the dissipative dynamics, i.e., entanglement with the
bath, and end up in a pure state (for zero temperature) for
t→ ∞ again. By far the largest entropies occur for excited
initial states ek, with values ranging from 0.7 to 1.6 (in
units of kB). If we naively interpret the amount of quan-
tum discord/entanglement as a quantitative NM measure,
we would conclude from these dynamics that NM dynam-
ics are most pronounced around t ≈ 10, and less relevant
for longer times. Also, the entropy imposes a very intu-
itive ordering, with larger values for higher excited states
and for stronger coupling.

However, the creation of mixed states during dissipa-
tive dynamics is not an exclusive feature of NM dynamics.
In fact, for a weakly coupled, dissipative, Markovian bath,
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reference [27] gives an analytic expression for the entropy
of the e1 initial state,

Ss = γt e−γt − (
1 − e−γt

)
ln

(
1 − e−γt

)
, (24)

where γ is the relaxation rate, equation (19). The
Markovian entropy (24) has a maximum of ln 2 = 0.69 for
the maximally mixed state. It is plotted as green curve in
Figure 7. We note that the overall shape agrees reason-
ably well with the exact results, with better agreement
for the weaker coupling. From this close agreement, we
can conclude that the raw quantum discord/entropy can-
not be used as a quantitative NM measure, at least for
zero temperature.

For excited initial states, there are two noticable de-
viations between the Markovian and the exact result. For
t between 5 and 20, the exact result gives considerably
larger entropies, and for large times, the entropy does not
decay to zero, but to a constant value. These effects are
present for strong and weak coupling, although consider-
ably smaller in the latter case. For squeezed initial states,
the entropy is considerably smaller than for excited initial
states. We also find oscillations of the entropy on top of
the mean of the curve that appear with a period close to
the half-period of the system oscillator. Again, this can
be interpreted as a signature of oscillating coupling to,
and entanglement with, the bath. For displaced states,
only small entropies are observed, and the single curves
lie practically on top of each other. Also here, character-
istic oscillations emerge.

In conclusion, we find that on first consideration, the
entropy/quantum discord as a NM measure has very con-
venient properties. It is stable under numerical errors, and
increases when the coupling constant κ or excitation pa-
rameter k is increased. However, Markovian dynamics re-
sult in entropies that are very similar to the exact NM
case, hence the entropy cannot be used directly as a NM
measure. Instead, the deviation between the entropies ob-
tained from Markovian and NM dynamics may possibly
be employed as a measure for NM behaviour.

5 Conclusions and outlook

We have calculated the exact short-time dynamics of a
damped harmonic oscillator strongly coupled to an Ohmic
bath using the ML-MCTDH method. We have further im-
plemented different NM measures for use with the ML-
MCTDH method to monitor the degree of non-Markovian
dynamics: a trace-distance (BLP) measure, a modified
BLP measure, and the quantum discord, which reduces
to the system entropy for factorizing initial conditions
with zero bath temperature. Some further measures as
suggested in the literature, such as ancilla-based entan-
glement measures, were found to be less suited for this
model system or propagation method.

The BLP measure MBLP is straightforward to imple-
ment. The values are small for the cases considered here,
on the order of numerical errors, but reasonably stable
when deliberately reducing the convergence. However, the

BLP measure requires an optimization over all pairs of ini-
tial states, which in practice can only be carried out over
a small subset of states. We found that for most pairs of
initial states, there was no discernible pattern concerning
the magnitude of the measure, and the result of a max-
imization could show major variations depending on the
chosen set of initial states. This suggests that care should
be taken when optimizing the BLP measure only over a
subset of initial state pairs, especially if general conclu-
sions are drawn from this subset. The trace distances as
functions of time seem to encode some information on the
NM dynamics, however, we also find functional depen-
dence that is difficult to interpret.

The modified BLP measure M ′
BLP offers the prospect

of a simpler optimization or of attributing NM dynamics
to specific times/time intervals and initial states. Its values
are stable under and generally larger than the numerical
errors. For several states and time intervals, the results
suggest an intuitive interpretation. The underlying trace
distance seems to encode details of the NM dynamics, so
the measure may be useful to follow NM behavior in time.

The system entropy Ss (quantum discord at zero bath
temperature) has several formally useful properties. How-
ever, it cannot be directly used to predict the relevance
of NM dynamics. In particular for excited initial states,
we found considerable entanglement that can also be ex-
plained with purely Markovian dynamics. Deviations of
the entropy from Markovian behavior may still be useful
for interpreting the NM system-bath dynamics, though.

Altogether, all of the measures seem to capture NM
dynamics reasonably well, however, they often suffer from
problems with interpretation or computation. Consider-
ably more work has to be done to improve our understand-
ing of the quantitative behavior of different NM measures.
At present, none of the measures seems to be useable as
a black box method that could reliably quantify the NM
character of general open quantum systems, i.e., for com-
plex system-bath problems and/or a large variety of initial
states.

In further studies, the system-bath coupling should be
varied systematically. In particular, more and a larger va-
riety of initial states could be studied, as well as more
complex spectral densities. This should shed some light
on the quantitative interpretation of the NM measures,
which might then be transferable to other open quantum
systems.

The authors thank the Deutsche Forschungsgemeinschaft for
financial support through project Sa 547/9. UL would like to
thank H.D. Meyer for his quick and reliable help with questions
related to MCTDH.

Appendix A: Lower bound for quantum
discord

The basic idea of the measure suggested in reference [16]
is to add an ancilla to the problem whose Hilbert space
has the same dimension as the system. The initial state

http://www.epj.org
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is then the combined state of the system, the bath and
the ancilla. It is set up such that the reduced system-
ancilla density matrix is in a maximally entangled state,
equation (11) with N being the dimension of the Hilbert
spaces. A lower bound for the quantum discord is then
obtained by the difference

Δsa(t) = Ss[ρ̂s(t)] − Sa[ρ̂a(t)], (A.1)

where ρ̂s, ρ̂a are the reduced densities of the system and
ancilla, respectively, and S is the von Neumann entropy. If
Δsa > 0, then there is some quantum discord, and the sys-
tem cannot be described by a Lindblad master equation.

However, it turns out that for the system used here,
Δsa has an exact upper bound of zero. For this, let us
start by computing the entropy for the initial ancilla state.
Tracing out the system degrees of freedom leaves the an-
cilla in a maximally mixed state

ρ̂a(t0) = Trsρ̂sa(t0) =
1
N

N∑
n=1

|ψa
n〉〈ψa

n|, (A.2)

with a corresponding value for the entropy of Sa[ρ̂a(t0)] =
lnN .

If, in addition to equation (11), we assume factoriz-
ing initial conditions between the system+ancilla and the
bath in the ground state ψb

0, then the total wave function is

ψtot(t0) =
N∑

i=n

ψs
nψ

a
nψ

b
0 =

N∑
i=1

ψa
nψ

sb
n . (A.3)

Obviously, the states ψsb
n are orthogonal in the system-

bath subspace.
Since the ancilla does not participate in the dynamics

by definition, the wave function at some later time can be
obtained by simply applying a unitary transformation to
the system-bath subspace, and reads

ψtot(t) =
N∑

n=1

ψa
n

(
Û(t, t0)ψsb

n

)
, (A.4)

where Û(t, t0) is an unitary propagator. Since unitary
transformations preserve scalar products, the new set of
states, Û(t, t0)ψsb

n , forms again an orthonormal basis. The
system and bath degrees of freedom can be trivially traced
out, and the reduced state ρ̂a(t) is again a maximally
mixed state with a maximum possible entropy of lnN .
Consequently, the bound of equation (A.1) can never be
larger than zero.

We want to remark that this argument also holds for
a bath at finite temperatures, as long as factorizing initial
conditions are used. Here we expand the density operator
of the bath into its eigenstates ψe

n, perform a unitary time
evolution (A.3), (A.4), calculate the entropy, and finally
statistically average over all result with the Boltzmann
weights. Since the entropy of the ancilla is always lnN ,
the averaging procedure has no effect, and we get the same
result as for zero temperature.

Appendix B: Quantum discord at zero
temperature

In the following, we want to show that the quantum dis-
cord equals the entropy of the system at zero temperature.
The quantum discord is defined as [41]:

δ = Ss + Ssb + min
{Π̂i}

S{Π̂i}(ρ̂). (B.1)

Here, Ss and Ssb denote the entropy of the system and
system-bath state, respectively. The last term is the condi-
tional entropy of the bath under an ideal measurement/set
of projection operators {Π̂i}.

To define the conditional entropy, let us consider an
orthonormal basis {φs

i } in the system space. Then a set
of projection operators {Π̂i} can be defined as Π̂i =
|φs

i 〉〈φs
i | ⊗ 1̂b with the unit operator 1̂b in the bath space.

For each of these operators, we define a conditional bath
state under the projection Π̂i as:

ρ̂b|Π̂i
=

TrsΠ̂iρ̂sb

pi
(B.2)

with probability
pi = TrΠ̂iρ̂sb, (B.3)

which can be interpreted as the reduced bath state if the
system state has been measured to be |φs

i 〉. The condi-
tional entropy is then given as:

S{Π̂i}(ρ̂) =
∑

i

piS
(
ρ̂b|Π̂i

)
(B.4)

where S denotes the von Neumann entropy analogous to
equation (12).

At zero temperature, the system-bath state is pure for
all times and can hence be described by a wavefunction
ψ. Therefore the combined system-bath state has zero en-
tropy, Ssb = 0. It is also always possible to write the wave
function in the form of

ψ(z,q) =
∑

i

aiφ
s
i (z)φ

b
i(q), (B.5)

where the φs/b
i are the (orthonormal) natural orbitals of

the reduced system/bath state, i.e., the eigenstates of
the reduced density operators, ρ̂s/b =

∑
i |ai|2|φs/b

i 〉〈φs/b
i |.

To calculate the conditional entropy (B.4), we derive
the projection operators from the natural orbitals, Π̂i =
|φs

i 〉〈φs
i | ⊗ 1̂b. The conditional bath states are then pure,

ρ̂b|Π̂i
= |φb

i 〉〈φb
i |, and the conditional entropy evaluates to

S
(
ρ̂b|{Π̂i}

)
=

∑
i

|ai|2S
(
ρ̂b|Π̂i

)
=

∑
i

|ai|2 · 0 = 0.

(B.6)
Plugging these results into equation (B.1) yields the equal-
ity of the quantum discord and the entropy, δ = Ss.
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