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Abstract. A detailed discussion of parallel and perpendicular transitions required for the photoabsorption
of a molecule is presented within a time-dependent view. Total photoabsorption cross sections for the first
two ultraviolet absorption bands of the N2O molecule corresponding to transitions from the X1A′ state
to the 21A′ and 11A′′ states are calculated to test the reliability of the method. By fully considering the
property of the electric field polarization vector of the incident light, the method treats the coupling of
angular momentum and the parity differently for two kinds of transitions depending on the direction of the
vector whether it is: (a) situated parallel in a molecular plane for an electronic transition between states with
the same symmetry; (b) situated perpendicular to a molecular plane for an electronic transition between
states with different symmetry. Through this, for those transitions, we are able to offer an insightful picture
of the dynamics involved and to characterize some new aspects in the photoabsorption process of N2O.
Our calculations predicted that the parallel transition to the 21A′ state is the major dissociation pathway
which is in qualitative agreement with the experimental observations. Most importantly, a significant
improvement in the absolute value of the total cross section over previous theoretical results [R. Schinke,
J. Chem. Phys. 134, 064313 (2011), M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305
(2005), S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004)] was obtained.

1 Introduction

An exact time-dependent quantum wave packet approach
has been used to study the dynamics of a molecule by solv-
ing numerically the time-dependent Schrödinger equation.
A nuclear ground state wave function is initially projected
onto an upper electronic excited state potential and the
resulting wave packet is propagated towards the exit chan-
nel. The approach has been developed in several ways in
the past 30 years in studying some of the important molec-
ular gases from the simplest diatomic up to tetratomic
molecules [1–8]. Although the exact solution of the time-
dependent approach for large molecules requires multiple
extra dimensions of matrix multiplications, it has a great
compensating advantage of immediately yielding the en-
ergy dependence of cross sections and other physical ob-
servables. A well-known formula of total photoabsorption
cross section [1] is given by:

σ(E) = N(ν)
∫ ∞

0

exp
(
iEf t

�

)
〈Φ(ti) Φ(t)〉 dt (1)

where N(ν) = 2π2ν/�cε0, ν is the frequency of incident
light, Ef is the final energy, Φ(ti) is the initial wave packet
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at t = 0 and Φ(t) is the wave packet at t > 0. Thus, once
〈Φ(ti) |Φ(t)〉 is known and Fourier transformed, the cross
section at all frequencies can be obtained.

A correct treatment of angular momentum in prepar-
ing the initial wave packet Φ(ti) is introduced which
relies on the properties of the vector components of
the transition dipole moment. The method is based on
our previous paper [9] but has been carefully revised in
many ways in order to ensure the final form of Φ(ti)
is correct. The method has been applied to calculate
the cross section of two absorption bands of nitrous
oxide (N2O), involving transitions to two lowest excited
state potentials. The transitions are only allowed when
N2O is bent where the electronic states are assigned
in this geometry as X1A′ for the ground state and
as 11A′′ and 21A′ for the first and second excited
states. The symmetry of the states can be described in
terms of Cs, an irreducible representation and its most
stable electronic configuration has orbital occupancies
of (1a′)2(2a′)2(3a′)2(4a′)2(5a′)2(6a′)2(1a′′)2(7a′)2(8a′)2
(2a′′)2(9a′)2. The singlet channel is the main dissociation
pathway that produces rotationally hot but vibrationally
cold N2 [10–12]. In addition to these, the fact that
the measured anisotropy parameter (β) values did not
correspond to either of the limiting values (β = −1 or 2)
was taken to indicate that the parallel transition is not
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Fig. 1. Jacobi and Cartesian coordinates used in the electronic
structure and dynamics calculations.
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Fig. 2. Three dimensional plot of the three lowest singlet elec-
tronic potential energy surfaces of N2O at a fixed ground state
equilibrium geometry of r = 2.13199 Bohr. The energies are
plotted relative to the minimum of the ground electronic state,
X1A′.

the only excitation pathway, and that the perpendic-
ular transition was also involved [10–18]. The overall
photoabsorption processes can be described by:

N2O
(
X1Σ+, v1, v

|l|
2 , v3, J,K, p

)
+ hν

→ N2O
(
11Σ− (

11A′′) + 11Δ
(
21A′) , v1, v|l|2 , v3, J

′,K, p
)

→ N2

(
X1Σ+

g , v3, j
)

+ O
(
1D

)
, (2)

where J is the total angular momentum quantum num-
ber, K is the quantum number for the projection of J on
the body-fixed z axis, p is the parity which describes the
property of the system under inversion of all the space-
fixed coordinates, j is the rotational quantum number of
the diatomic photofragment product and v1, v2, v3 are
vibrational quanta for the N2-O stretching and bending,
and N-NO stretching, respectively. Furthermore, the no-
tation of (v1, v

|l|
2 , v3) has been thoroughly used to denote

the degenerate states of (v1, v2, v3) where the allowed val-
ues of vibrational angular momentum l are related with v2
by l = −v2,−v2 +2, . . . ,+ v2. Whereas the allowed values
of J are related with l by J = |l| , |l| + 1, . . .

Using the AVQZ basis set [19], the state-averaged com-
plete active space self-consistent field (CASSCF) method
followed by the internally contracted multireference con-
figuration interaction (MRCI) method [20] has been per-
formed to compute the potential energies of the X1A′,
21A′ and 11A′′ states. Figure 1 displays the N2O molecule
defined in the Jacobi coordinates system (R, r, θ) and its
relation with the transition dipole moment vector in body-
fixed Cartesian coordinates (x, y, z). Figure 2 shows the

 3
 4

 5
 6

R [Bohr]
 0

 20
 40

 60
 80

 100

θ [o]

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

μx (a.u.)

 3
 4

 5
 6

R [Bohr]
 0

 20
 40

 60
 80

 100

θ [o]

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

μz (a.u.)

Fig. 3. Three dimensional plot of the two components of
transition dipole moment surfaces for the X1A′ → 21A′ tran-
sition at a fixed ground state equilibrium geometry of r =
2.13199 Bohr.
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Fig. 4. Three dimensional plot of the component of transition
dipole moment surface for the X1A′ → 11A′′ transition at a
fixed ground state equilibrium geometry of r = 2.13199 Bohr.

potential energy surfaces of X1A′, 21A′ and 11A′′ states.
It is clear that the 21A′(1Δ) and 11A′′(1Σ−) states repre-
sent the first and second absorption bands of N2O. Dipole
transitions from the ground 1Σ+ state to the excited 1Σ−
and 1Δ states are forbidden in linear geometry, but weakly
allowed for bent geometries. Figure 3 shows the μx and
μz components of the transition dipole moment connect-
ing between the ground X1A′ and excited 21A′ state po-
tentials. While, Figure 4 shows the μy component of the
transition dipole moment connecting between the ground
X1A′ and excited 11A′′ state potentials.

This paper outlines the theoretical and numerical
frameworks in great detail in the first section by tak-
ing into account the coupling of angular momentum and
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the parity of the molecule. The theoretical results are dis-
cussed in the second section and comparisons are made
with experimental findings whenever available. The final
section concludes this work briefly.

2 Theoretical and numerical aspects

2.1 Basis expansion and Hamiltonian operator

Before we begin formulating the initial wave packet, a nu-
clear wave function has to be constructed within the Born-
Oppenheimer approximation in the following form [21,22]

ΨJ
M (R, r, θ, ω) =

√
2J + 1
8π2

J∑
K=−J

ψJ
K (R, r, θ)

×DJ
K,M (ω) (3)

where M is the quantum number for the projection
of J on the space-fixed Z axis, DJ

K,M is the Wigner
D-function [21,22] and ω ≡ α, β, γ are the Euler angles.
Thus, the DJ

K,M and DJ
−K,M terms in equation (3) can

be grouped together to define a parity-adapted angular
momentum basis function,

ΛJ,p
K,M (ω) =

1
4π

√
2J + 1

(1 + δ0,K)

×
[
DJ

K,M (ω) + (−1)J+K+p
DJ

−K,M (ω)
]

(4)

where p = 1 represents a state of odd parity and p = 2
represents a state of even parity. For a given J , there exist
2J + 1 wave functions which correspond to different K.
The K and −K terms have been grouped together in one
parity-adapted basis function. Accordingly, the 2J + 1
fold degenerate of K states can now be divided into a set
of J + 1 fold degenerates with K = 0, 1, 2, 3, . . . , J for
p = 2 and a set of J fold degenerate states with K =
1, 2, 3, . . . , J for p = 1.

In order to solve the eigen equation of the triatomic
molecule using basis function (3), the following nuclear
non-adiabatic Hamiltonian operator was used [23,24]

Ĥ = −�
2/2

{(
m−1D2

R +m−1
r D2

r

)

+
(
m−1R−2 +m−1

r r−2
) (
D2

θ −K2 sin−2 θ
)

+m−1R−2
[
[J (J + 1)−K (K + 1)]1/2 (Dθ −K cot θ)

+ [J (J + 1) −K (K − 1)]1/2 (−Dθ −K cot θ)

+
(
J (J + 1) − 2K2

) ]}
+ V (R, r, θ) (5)

where Di = ∂/∂i, m = mN2mO/mN2O, mr = m2
N/mN2

and V is the potential energy of inter-electronic repul-
sion and electron-nucleus attraction. For simplification,
the N-N internuclear distance r was fixed at its equilib-
rium geometry, 2.13199 Bohr. The justification of using

the two-dimensional model is based on the fact that the N-
N bond distance contracts less than 3% from 2.13199 Bohr
in N2O to 2.07416 Bohr in N2 following dissociation.

The action of the radial kinetic energy operator on
the nuclear wave function is evaluated using fast Fourier
transforms where the operator is diagonal in momentum
space [3,4]. The action of the angular kinetic energy op-
erator on the wave function is performed by expanding
the wave function in (3) in terms of normalised asso-
ciated Legendre polynomials Θj,K(θ). Consequently, the
grid representation of the angular variable can be de-
scribed by a Nα Gauss-Legendre quadrature scheme [3,4]
where the maximum value of j in the associated basis rep-
resentation is jmax = (Nα −1). Using all the facts and the
parity-adapted basis functions ΛJ,p

K,M , the wave function
in equation (3) is rewritten to be:

ΨJ,p
M (R, r, θ, ω) =

J∑
K=λ

jmax∑
j=K

ψJ,p
K (R, r)Θj,K(θ)

×ΛJ,p
K,M (ω) (6)

where λ is defined as:

λ =
1 − (−1)J+p

2
, (7)

and λ = Kmin can take a value of 0 or 1, depending on
the value of (−1)J+p. For K �= 0, p can take a value of 1
or 2. For K = 0, p can take only a value of 2 because if
J = 0, the only possible value of λ is 0. A uniform grid
was used for the coordinates R and θ in evaluating ψJ,p

K
on the grid points based upon the ground state potential
energy surface, X1A′.

To compute the rotational-vibrational energy and
wave function for the state with odd bending quantum
number, we considered J = 1 with parity state either odd
(p = 1) or even (p = 2). For an odd parity state, the al-
lowed K values are 0 and 1, while for an even parity state
the allowed K value is 0. For even bending quantum num-
ber, we considered J = 0 with even parity in the calcu-
lations. J = 0 with odd parity is forbidden by symmetry
and in this case, the allowed K value is 0. Since J and
parity are good quantum numbers, the calculations were
performed separately for different values of J and parity.
On the other hand, K is not a good quantum number and
different values of K are coupled.

The computed and experimentally observed vibra-
tional energies for the lowest six states of N2O are tab-
ulated in Table 1. The assignments of the states were
made by visual inspection of the vibrational wave func-
tions. As an example, we display in Figure 5, the wave
function contour plots corresponding to the ground, pure
bending, pure stretching and coupled bending-stretching
vibrations, with one of the internal coordinates kept fixed
at its equilibrium value. In general, the agreement between
the computed and the experimental values is quite good,
with maximum discrepancy of 20.97 cm−1 arising from
the (0,31,0) vibrational state. Therefore, the ground state
wave functions should be of sufficient quality to proceed
to study the photoabsorption process of N2O.

http://www.epj.org
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Table 1. Comparison between computed and experimental
rotational-vibrational energies (cm−1) for the X1A′ ground
electronic state of N2O molecule.

v1, v
|l|
2 , v3 ΔEi(Theory)a ΔE(Experimental)b

0,00,0 0.00 0.00
0,11,0 583.67 588.77
0,20,0 1160.23 1168.13
1,00,0 1269.77 1284.90
0,31,0 1728.10 1749.07
1,11,0 1894.98 1880.27

a ΔEi(Theory) = Ei(v1, v
|l|
2 , v3) − Ei(0, 00, 0).

b The experimental values were taken from references [25–27].
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Fig. 5. Contour plots of the rotational-vibrational wave func-
tions for the X1A′ ground electronic state of the N2O molecule.

2.2 Initial wave packet

The initial wave packet in equation (1) in the space-fixed
frame can be written explicitly in the form of

|Φ(R, r, θ, ω, ti)〉 = μ · εm |ΨJ,p
M (R, r, θ, ω)〉 (8)

where μ is the transition dipole moment vector, connect-
ing different electronic states and εm is the electric field
polarization vector of the polarized light. Thus, εm can
been defined in terms of complex unit vectors [21,22]

ε−1 =
1√
2
(εx − iεy), ε+1 = − 1√

2
(εx + iεy),

ε0 = εz , (9)

where m = ±1 corresponds to circularly and m = 0 corre-
sponds to linearly polarized light, respectively. μ is related
to the Cartesian components of εm by equation

μ = μxεx + μyεy + μzεz. (10)

The property of the initial wave packet rely on the projec-
tion of the polarization vector of the light onto the plane

of the molecule. If the vector lies in the xz plane, the
so-called parallel transition, equation (9) becomes

ε−1 =
1√
2
εx, ε0 = εz , ε+1 = − 1√

2
εx, (11)

where εy = 0. Meanwhile, if the vector lies along the
y-axis, the so-called perpendicular transition, equation (9)
becomes

ε−1 =
1√
2
− iεy, ε0 = 0, ε+1 = − 1√

2
iεy, (12)

where εx = εz = 0.
Defining εm to be parallel to μ, equation (8) can

be written in terms of its components in the space-fixed
frame,

|Φ(R, r, θ, ω, ti)〉 = μm |ΨJ,p
M (R, r, θ, ω)〉 . (13)

Equation (13) can be transformed into its body-fixed
frame,

|Φ(R, r, θ, ω, ti)〉 =
1∑

n=−1

μnD
1
n,m(ω)

× |ΨJ,p
M (R, r, θ, ω)〉 (14)

by using the WignerD-functionD1
n,m(ω) as a rotation ma-

trix for transformation between the two frames where μn

are the components of μ in the body-fixed frame. Mak-
ing use of equation (6) and the following Clebsch-Gordan
series [21,22]

D1
n,m(ω)DJ

±K,M (ω) =
J+1∑

J′=J−1

〈1,m : J,M J ′,m+M〉

× 〈1, n : J,±K J ′, n±K〉
×DJ′

n±K,m+M (ω) (15)

where

〈1,m : J,M J ′,m+M〉

and

〈1, n : J,±K|J ′, n±K〉

are Clebsch-Gordan coefficients [21,22], the initial wave
packet in equation (14) can be written in the form of:

|ΦJ,p (R, r, θ, ω, ti)〉 =
J+1∑

J′=J−1

〈1,m : J,M J ′,m+M〉

×
J∑

K=λ

jmax∑
j=K

|ψJ,p
K (R, r)〉 |ϕJ′,J,p

K,M (θ, ω)〉

(16)
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where

|ϕJ′,J,p
K,M (θ, ω)〉 =

1
4π

√
2J + 1

(1 + δ0,K)
|Θj,K(θ)〉

×
{
μ−1

[
DJ′

−1+K,m+M (ω)

× 〈1,−1 : J,K J ′,−1 +K〉

+ (−1)J+K+pDJ′
−1−K,m+M(ω)

× 〈1,−1 : J,−K J ′,−1 −K〉
]

+ μ0

[
DJ′

K,m+M(ω) 〈1, 0 : J,K J ′,K〉

+(−1)J+K+pDJ′
−K,m+M(ω)

× 〈1, 0 : J,−K J ′,−K〉]

+μ1

[
DJ′

1+K,m+M (ω) 〈1, 1 : J,K J ′, 1+K〉

+ (−1)J+K+pDJ′
1−K,m+M(ω)

× 〈1, 1 : J,−K J ′, 1 −K〉
]}
. (17)

Summation
∑J+1

J′=J−1 in equation (16) indicates that the
transition obeys the general rotational selection rule for
an electric dipole transition ΔJ = 0,±1 where the tran-
sition from J = 0 to J ′ = 0 is forbidden by symmetry.
Accordingly, the initial wave packet |ΦJ,p (ti)〉 is the re-
sult from a linear combination of three different possible
values of final total angular momentum.

Clearly, it can be seen in equation (17), the three com-
ponents of μn(n = −1, 0, 1) determine the property of the
function |ϕJ′,J,p

K,M 〉. The components of μn can be obtained
by projecting the complex conjugate of equations (11)
and (12) onto equation (10) namely

μn = ε∗n · μ. (18)

Using the relation in equation (18), now the compo-
nents μn for the parallel transition are given by:

μ−1 =
1√
2
μx, μ0 = μz, μ+1 = − 1√

2
μx (19)

and for the perpendicular transition are given by:

μ−1 =
1√
2
iμy, μ0 = 0, μ+1 =

1√
2
iμy. (20)

Employing the relation in equation (19) and the following
relation [21,22],

〈j1,m1 : j2,−m2 j3,−m3〉
= (−1)1+j1+j3 〈j1,m1 : j2,m2 j3,m3〉 , (21)

with some manipulations, equation (17) can be reduced
to:

|ϕJ′,J,p
K,M

(
θ, ω

)〉 =
1
4π

√
2J + 1(

1 + δ0,K

) 1√
2
|Θj,K(θ)〉

×
{
− μx

[
〈1, 1 : J,K J ′, 1 +K〉

×
(
DJ′

1+K,m+M (ω) + (−1)J′+(1+K)+p+1

×DJ′
−(1+K),m+M(ω)

)
+ (−1)J+J′

× 〈1, 1 : J,−K J ′, 1 −K〉

×
(
DJ′

K−1,m+M (ω) + (−1)J′+(K−1)+p+1

×DJ′
−(K−1),m+M(ω)

)]

+ μz〈1, 0 : J,K|J ′,K〉√2
(
DJ′

K,m+M(ω)

+ (−1)J′+K+p+1DJ′
−K,m+M(ω)

)}
. (22)

Making use of the definition in equation (4), separating
the K = 0 term, equation (22) can be expanded in the
following form

|ϕJ′,J,p
K,M (θ, ω)〉 =

√
2J + 1
2J ′ + 1

|Θj,K(θ)〉√
2

(1 − δ0,K)

×
{
− μx

[
〈1, 1 : J,K J ′, 1 +K〉

×ΛJ′,p+1
1+K,m+M (ω) + (−1)J+J′

× 〈1, 1 : J,−K J ′, 1 −K〉

×
√

(1 + δ0,K−1)Λ
J′,p+1
K−1,m+M(ω)

]

+μz 〈1, 0 : J,K J ′,K〉√2ΛJ′,p+1
K,m+M (ω)

}

+

√
2J + 1
2J ′ + 1

|Θj,0(θ)〉 δ0,K

×
{
−μx

[
〈1, 1 : J, 0 J ′, 1〉ΛJ′,p+1

1,m+M (ω)

+(−1)J+J′ 〈1, 1 : J, 0 J ′, 1〉ΛJ′,p+1
−1,m+M (ω)

]

+μz 〈1, 0 : J, 0 J ′, 0〉√2ΛJ′,p+1
0,m+M (ω)

}
.

(23)

Using the fact that |Θj,0(θ)〉 = |Θj(θ)〉, DJ′
−1,m+M =

−DJ′
1,m+M [21,22] and (−1)J+p = 1 when K = λ = 0,
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equation (23) becomes

|ϕJ′,J,p
K,M (θ, ω)〉 =

√
2J + 1
2J ′ + 1

|Θj,K(θ)〉√
2

(1 − δ0,K)

×
{
− μx

[
〈1, 1 : J,K J ′, 1 +K〉

× ΛJ′,p+1
1+K,m+M (ω) + (−1)J+J′

×
√

(1 + δ0,−1+K) 〈1, 1 : J,−K J ′, 1−K〉

× ΛJ′,p+1
K−1,m+M (ω)

]
− 〈1, 0 : J,K J ′,K〉

× μz

√
2ΛJ′,p+1

K,m+M (ω)
}

+

√
2J + 1
2J ′ + 1

|Θj(θ)〉 δ0,K

×
{
−〈1, 1 : J, 0 J ′, 1〉μxΛ

J′,p+1
1,m+M (ω)

+ 〈1, 0 : J, 0 J ′, 0〉μzΛ
J′,p+1
0,m+M (ω)

}
.

(24)

Using the relation of the Wigner 3-jm symbol

〈j1,m1 : j2,m2 j3,m3〉 = (−1)j1−j2+m3
√

2j3 + 1

×
(
j1 j2 j3
m1 m2 −m3

)
, (25)

the final form of equation (24) is:

|ϕJ′,J,p
K,M (θ, ω)〉 =

√
2J + 1

|Θj,K(θ)〉√
2

(−1)J+K (1 − δ0,K)

×
{
−μx

[(
1 J J ′

1 K −1 −K

)
ΛJ′,p+1

1+K,m+M (ω)

+ (−1)J′+K
√

(1 + δ0,−1+K)

×
(

1 J J ′

1 −K −1 +K

)
ΛJ′,p+1

K−1,m+M (ω)

]

+

(
1 J J ′

0 K −K

)
μz

√
2ΛJ′,p+1

K,m+M (ω)

}

− (−1)J
√

2J + 1 |Θj(θ)〉 δ0,K

×
{(

1 J J ′

1 0 −1

)
μxΛ

J′,p+1
1,m+M (ω)

+

(
1 J J ′

0 0 0

)
μzΛ

J′,p+1
0,m+M (ω)

}
. (26)

(a)

 3
 3.2

 3.4
 3.6

R [Bohr]
 0

 5
 10

 15
 20

θ [o]

(b)

 3
 3.2

 3.4
 3.6

R [Bohr]
 0

 5
 10

 15
 20

θ [o]

Fig. 6. (a) Real part of |ϕ1,0,1
0 〉, (b) real part of |ϕ1,0,1

1 〉 compo-
nents of the initial wave packet |Φ0,1 (ti)〉, evolving on the 21A′

potential with the N2O molecule starting from the (0,00,0)
vibrational state.

Interestingly for the parallel transition, the parity-adapted
function in equation (26) has changed to ΛJ′,p+1 in the fi-
nal state from ΛJ,p in the initial state (4) due to parity
conservation of the total wave function where the parity
of the nuclear wave function must change upon absorption
of a photon. In the current case, the space-fixed z-axis is
specified by the direction of εm for linearly polarized light
wherem is set to be 0. It can be seen also in equation (26),
the initial wave packet |ΦJ,p (ti)〉 is constructed from a real
function |ϕJ′,J,p

K,M 〉. Figures 6a and 6b provide examples of
the real part of the initial wave packets, associated with
two possible values of K = 0 and K = 1, at a fixed J ′ = 1.

Employing the relations in equations (20) and (21),
the function in equation (17) can be written as:

|ϕJ′,J,p
K,M (θ, ω)〉 =

1
4π

√
2J + 1

(1 + δ0,K)
|Θj,K(θ)〉

×
{

i√
2
μy

[
DJ′

−1+K,m+M (ω)

× 〈1,−1 : J,K J ′,K − 1〉 + (−1)J+K+p

×DJ′
−1−K,m+M (ω)(−1)1+J+J′

× 〈1, 1 : J,K J ′, 1 +K〉
]

+
i√
2
μy

[
DJ′

1+K,m+M (ω)

× 〈1, 1 : J,K J ′, 1 +K〉

+ (−1)J+K+pDJ′
1−K,m+M(ω)

× 〈1, 1 : J,−K J ′, 1 −K〉
]}
. (27)

Making use of the definition in equation (4), separat-
ing the K = 0 term, equation (27) can be simplified in
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the following form:

|ϕJ′,J,p
K,M (θ, ω)〉 =

1
4π

√
2J + 1

(1 + δ0,K)
i√
2
|Θj,K(θ)〉

× μy

{
〈1, 1 : J,K J ′, 1 +K〉

×
(
DJ′

1+K,m+M (ω) + (−1)J′+(1+K)+p

×DJ′
−(1+K),m+M(ω)

)
+ (−1)J+J′+1

× 〈1, 1 : J,−K J ′, 1 −K〉

×
(
DJ′

K−1,m+M (ω) + (−1)J′+(K−1)+p

×DJ′
−(K−1),m+M(ω)

)}
. (28)

Using the same way of manipulation as in equation (24),
equation (28) can be written as:

|ϕJ′,J,p
K,M (θ, ω)〉 =

√
2J + 1
2J ′ + 1

i |Θj,K(θ)〉√
2

μy (1 − δ0,K)

×
{
〈1, 1 : J,K J ′, 1 +K〉ΛJ′,p

1+K,m+M (ω)

+
√

(1 + δ0,−1+K) (−1)J+J′+1

×〈1, 1 : J,−K J ′, 1 −K〉ΛJ′,p
K−1,m+M(ω)

}

+ i

√
2J + 1
2J ′ + 1

|Θj(θ)〉μyδ0,K

× 〈1, 1 : J, 0 J ′,−1〉ΛJ′,p
1,m+M(ω). (29)

Using the relation of (25), equation (29) becomes

|ϕJ′,J,p
K,M (θ, ω)〉 =

√
2J + 1

i |Θj,K(θ)〉√
2

×μy(−1)J+K (1 − δ0,K)

×
{(

1 J J ′

1 K −1 −K

)
ΛJ′,p

1+K,m+M (ω)

−
√

(1 + δ0,−1+K) (−1)J′+K

×
(

1 J J ′

1 −K −1 +K

)
ΛJ′,p

K−1,m+M(ω)

}

+i
√

2J + 1 |Θj(θ)〉μyδ0,K(−1)J

×
(

1 J J ′

1 0 1

)
ΛJ′,p

1,m+M(ω). (30)

By comparing functions in equation (26), conversely, the
parity-adapted function for the perpendicular transition in

 3
 3.2

 3.4
 3.6

R [Bohr]
 0

 5
 10

 15
 20

θ [o]

Fig. 7. Imaginary part of the |ϕ1,0,2
1 〉 component of the initial

wave packet |Φ0,2 (ti)〉, evolving on the 11A′′ potential with the
N2O molecule starting from the (0,00,0) vibrational state.

equation (30) remains unchanged to ΛJ′,p in the final state
from ΛJ,p in the initial state (4) due to parity conservation
of the total wave function. For determination of the space-
fixed z-axis, a similar set up of m = 0 was used. Contrary
to the parallel transition, the initial wave packet for the
perpendicular transition is constructed from an imaginary
function |ϕJ′,J,p

K,M 〉. Figure 7 provides an example of the
imaginary part of the initial wave packet, associated with
K = 1 and J ′ = 1.

For the initial vibrational state with odd bending
quantum number, only J = 1 was considered because
J = 0 is forbidden by symmetry. Nevertheless, for even
bending quantum number, only J = 0 was considered.

2.3 Wave packet at t > 0

By solving the time-dependent Schrödinger equation, the
wave packet at time t > 0 is obtained as:

|ΦJ,p(t)〉 = exp

(
iĤt

�

)
|ΦJ,p(ti)〉 (31)

where Ĥ is the full upper surface Hamiltonian given by
equation (5). In order to propagate the wave packet ΦJ,p

in time, we employed a propagator based on the complex
Chebyshev polynomial series.

Since the Chebyshev polynomial is bounded in the in-
terval (−1, 1), the Hamiltonian has to be renormalized in
such a way that

Ĥnorm =
2
ΔE

{
Ĥ − Î

(
ΔE

2
+ Vmin

)}
(32)

where ΔE = Emax − Emin. As proposed by Tal-Ezer and
Kosloff [28], the propagator is given by:

exp

(
−iĤt

�

)
= exp

{−i
�

(
ΔE

2
+ Vmin

)
t

}

×
N∑

n=0

(2 − δn,0)Jn

(
ΔEt

2�

)

× Cn(−iĤnorm) (33)
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Fig. 8. Convergence of Bessel function (Jn) with respect to
the number of terms (n) used in Chebyshev expansion.

where Jn are the Bessel functions of the first kind of order
n and Cn are complex Chebyshev polynomials satisfying
the recurrence relation [29]

An+1 = −2iĤnormAn+Γn−1 for n = 1, 2, . . . , N−1 (34)

with Γ is related to the initial wave packet by

An = Cn(−iĤnorm) |ΦJ,p (R, r, θ, ω, ti)〉 . (35)

The Bessel function Jn(ΔEt/2�) falls off to zero expo-
nentially as n becomes greater than ΔEt/2�. This hap-
pens rapidly for larger ΔEt/2� and one needs to include
only a few extra terms above n = ΔEt/2� for conver-
gence. The number of terms n used in the Chebychev
expansion was 27. Figure 8 shows the Bessel function is
satisfactorily converged to zero for a n value of 27. The
wave packet was propagated using the Chebychev prop-
agator, on an equally spaced grid that ranges from 1 to
14 Bohr with a step size of 0.03385 Bohr. For a molecule
with initial J = 1, calculation with specific total angular
momentum J ′, and parity was performed separately be-
cause different values of J ′ and parity do not couple during
propagation of the wave packet. In contrast, the helicity
quantum number K is not conserved and different values
of K are coupled during propagation via equation (16).

The propagated wave packet ΦJ,p(t) contains non-zero
values in both of the real and imaginary parts which is due
to the complex argument in the time propagator in equa-
tion (33). Figure 9 displays the contribution of different
wave packet components corresponding to different values
of K at time 10 a.u. propagated on the 21A′ surface. Ap-
parently, the magnitude of both of the real and imaginary
parts of the wave packets are located at the same phase.
On the contrary, Figure 10 depicts the magnitude of both
of the real and imaginary parts as being located at dif-
ferent phases when the wave packet evolves on the 11A′′
surface.
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Fig. 9. (a) Real part of ϕ1,0,1
0 , (b) real part of ϕ1,0,1

1 , (c) imag-
inary part of ϕ1,0,1

0 , (d) imaginary part of ϕ1,0,1
1 components of

the wave packet Φ0,1 (t = 10), evolving on the 21A′ potential
with the N2O molecule starting from the (0,00,0) vibrational
state.
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Fig. 10. (a) Real part of ϕ1,0,2
1 , (b) real part of ϕ1,0,2

1 compo-
nents of the wave packet Φ0,2 (t = 10), evolving on the 11A′′

potential with the N2O molecule starting from the (0,00,0)
vibrational state.

3 Results and discussion

Using the computed potential energy and transition dipole
moments surfaces, the total photoabsorption cross sec-
tions as a function of incident wavelength were calculated
for transitions from the X1A′ ground electronic state to
the two lowest 21A′ and 11A′′ excited electronic states.
The energy dependence of the total cross section is related
to the Fourier transform of the autocorrelation function
as given by equation (1). Figure 11 depicts two exam-
ples of the autocorrelation function as a function of time,
obtained by computing the overlap of the evolving wave
packet ΦJ,p(t) with ΦJ,p(ti). We found that the cross sec-
tion is very sensitive to the shape and the magnitude of the
transition dipole moment in the Franck-Condon region.

Figures 12 and 13 illustrate the contribution of all dif-
ferent possible values of the final total angular momentum
to the total absorption cross section for the X1A′ → 21A′
and X1A′ → 11A′′ transitions when the molecule starts
from J = 1. The total cross sections displayed for J = 1
are obtained by summing over all allowed values of the
final state of total angular momentum. Apparently, for
the X1A′ → 21A′ parallel transition, the intensity of the
total cross section gradually increases with increasing J ′.
While for the X1A′ → 11A′′ perpendicular transition, the
two values of J ′, 1 and 2, more or less contribute equally
to the total absorption cross section.

The photoabsorption of N2O from the ground state
X1A′ to the second lowest excited state 21A′ is a direct
process and therefore the fragments immediately start to
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Fig. 11. Autocorrelation functions for the two lowest transi-
tions: (a) X1A′ → 21A′; (b) X1A′ → 11A′′. The N2O molecule
is initially in its (0,00,0), (0,20,0), (1,20,0) and (2,00,0) vibra-
tional states with total angular momentum J = 0, even parity
(p = 2).

separate once N2O is created in the excited electronic
state. After about 600 a.u. the process is essentially com-
pleted (see Fig. 11a). The wave packet follows mainly the
path of steepest descent from the Franck-Condon region
out into the N2-O exit channel. Total absorption cross
sections resulting from different initial vibrational and ro-
tational states are plotted in Figure 14. The absorption
line shapes can be seen to be basically structureless. The
most attractive feature of the time-dependent wave packet
is that a single propagation of the wave packet, i.e. one sin-
gle solution of the time-dependent Schrödinger equation
automatically yields the total absorption cross section over
a large range of energy.

Absorption from initial levels of the pure bending vi-
bration (0,00,0), (0,11,0), (0,20,0) and (0,31,0) result in
single-peaked cross sections. These cross sections are de-
picted in Figure 14a. Figure 11a depicts the corresponding
autocorrelation functions for some of the initial bending
states. Since the dissociation is direct, the autocorrelation
function decays monotonically to zero without showing
any recurrence at larger times. The dissociation is rather
slow because the potential slope out to bending coordi-
nates is flat between θ = 0◦ and θ = 5◦. Moreover, the
fairly light O atom is ejected like a discuss due to the
torque generated by the anisotropy of the 21A′ poten-
tial energy surface for N2-O bending angles greater than
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Fig. 12. Contribution of different final total angular momen-
tum (J ′

0 = 0, J ′
1 = 1 and J ′

2 = 2) to the total absorption cross
section (J ′

0 +J ′
1 +J ′

2) for the X1A′ → 21A′ transition with the
N2O molecule starting from different initial vibrational states:
(a) (0,11,0); (b) (1,11,0). The initial total angular momentum
is J = 1, odd parity (p = 1).

5◦, leaving the N2 fragments spinning very fast about its
center-of-mass and most of the available energy goes into
rotation rather than translation. The absorption cross sec-
tion will thus simply be a slightly broad featureless curve
centered on the mean energy with a width (ΔE = �/Δt)
that reflects the time taken for the wave packet to leave
the Franck-Condon region.

Absorption cross sections arising from different initial
pure N-O stretching modes (1,00,0) and (2,00,0) result in
different numbers of nodal structures. Both cross sections
are shown in Figure 14b. The structures are in a very qual-
itative view, a reflection of the nodal pattern of the bound
vibrational wave function. For instance, the wave function
of the (2,00,0) state has two nodes along the propagation
route which clearly show up in the cross section as well.
The corresponding structures as shown in the autocorrela-
tion function (see Fig. 11b) are due to the nodal structure
of the initial wave function rather than a recurrence of
the evolving wave packet. When Φ(t) starts to evolve in
time and space the overlap with Φ(ti) becomes slightly
modulated. Nonetheless, this picture becomes certainly
more complicated as the degree of vibrational excitation
increases.

The autocorrelation function from a bending exci-
tation does not exhibit any structure originating from
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Fig. 13. Contribution of different final total angular mo-
mentum (J ′

1 = 1 and J ′
2 = 2) to the total absorption cross

section (J ′
1 + J ′

2) for the X1A′ → 11A′′ transition with the
N2O molecule starting from different initial vibrational states:
(a) (0,11,0); (b) (1,11,0). The initial total angular momentum
J = 1, odd parity (p = 1).

the nodal structure of the bound state wavefunction. It
was found that only the nodes along the N2-O stretching
coordinate, do not cause structures in the cross section.
Nodes along the N2-O bending coordinate, on the other
hand, lead to reflection structures. The cross sections in
Figure 14c, (1,11,0) and (1,20,0), support this interpreta-
tion namely the bending state quantum number increases
from one to two, but the number of nodes in the cross
section remains unchanged. In other word, the structure
in Figure 14c solely depends on the stretching mode wave
function, on the other hand, the bending mode greatly
influences the intensity of the cross section.

Generally, the effect of pure bending excitation sub-
stantially increases the intensity of the cross section. The
effect is similar for the transition from pure stretching and
coupled bending-stretching states. Nevertheless, there is
an exception for the case of two quanta of bending vi-
bration (0,20,0) in which the resultant cross section is
lower than that of the one quantum of bending vibration
(0,11,0). In this regard, our result differs to that reported
by Schinke in Figure 12 from reference [30]. He shows that
the intensity of the (0,20,0) cross section is far higher than
for (0,11,0). We believe that our result is more accurate,
supported by a similar pattern in Figure 14c in which the
(1,20,0) cross section is lower than that of the (1,11,0) cross
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Fig. 14. Total absorption cross section for the X1A′ → 21A′

transition with the N2O molecule starting from different ini-
tial vibrational states: (a) ground state (0,00,0) and excited
states of pure bending modes (0,11,0), (0,20,0) and (0,31,0); (b)
excited states of pure stretching modes (1,00,0) and (2,00,0);
(c) excited states of coupled bending-stretching modes (1,11,0)
and (1,20,0).

section. In order to understand the general shape and the
intensity of the cross section, it is mandatory also to take
into account the coordinate dependence of the transition
dipole function. Since the transition dipole rises toward
larger bond angle, the cross section generally increases and
becomes wider. Not surprisingly, due to the complexity
of the function particularly in the Franck-Condon region,
the excitation strength from the (0,20,0) state is sligthly
weaker than the (0,11,0) state.
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Fig. 15. Total absorption cross section for the X1A′ → 11A′′

transition with the N2O molecules starting from different ini-
tial vibrational states: (a) ground state (0,00,0) and excited
states of pure bending modes (0,11,0), (0,20,0) and (0,31,0); (b)
excited states of pure stretching modes (1,00,0) and (2,00,0);
(c) excited states of coupled bending-stretching modes (1,11,0)
and (1,20,0).

Figure 15 depicts the total absorption cross section
for the transition to the 11A′′ state from different initial
rotational-vibrational ground states. Generally, they are
more structured than the 21A′ cross section. Basically,
the same trends can be seen as observed for the case of
21A′ with only one notable exception. A couple of simi-
larities are not surprising due to the resemblance of the
topography between the two surfaces. Absorption to the
11A′′ state from the two lowest bending vibrational states
(0,00,0) and (0,11,0) results in a two-peaked cross section.

This double hump structure has nothing to do with the re-
flection of the bending wave function in the ground state,
as previously discussed for the reflection of the stretch-
ing mode wave function. It is a consequence of the node
in the transition dipole moment function near equilibrium
collinear geometry θ = 1◦ and R = 3.35 Bohr, displayed in
Figure 4. The node coincides with the node of the initial
wave packet as can be seen in Figure 7. The double hump
structure, nevertheless, is damped with increasing bend-
ing quantum number, since the breadth of the bending
wave function becomes larger and the initial wave packet
samples more and more the strongly anisotropic portion
of the potential energy surface.

The manner in which only one component μx of the
21A′ transition dipole moments (i.e. μx and μz) cross zero
has produced a quite smooth change in the magnitude
of the transition dipole moment. It can be said that a
node of the initial wave packet on the 21A′ potential en-
ergy surface is washed out along the N-O coordinate sim-
ply because the effect of the zero transition dipole of one
component μx is cancelled by the non-zero one of the
other component μz. Mathematically, the exact relation
between the two components μx and μz is derived through
equation (26), but a simple qualitative picture is difficult
to extract.

For comparison with experimental spectra, the total
absorption cross section of each transition to two lowest
absorption bands has been computed from contributions
of initial states (0,00,0), (0,11,0), (0,20,0), (1,00,0), (0,31,0)
and (1,11,0) at a room temperature of 297 K. A Boltzmann
average of cross sections over initial vibrational states is
given by:

σ21A′/11A′′(T ) =
(
σ000 + 2σ010e

Γ010 + 3σ020e
Γ020

+ σ100e
Γ100 + 4σ030e

Γ030 + σ110e
Γ110

)
/(

1 + 2eΓ010 + 3eΓ020 + eΓ100

+4eΓ030 + eΓ110
)
, (36)

where
Γijk =

−εijk

kT
, (37)

k is the Boltzmann constant, T is the temperature in
Kelvin, ε (≡ ΔEi) is vibrational energy of the ground
state (refer to Tab. 1) and the coefficients 1, 2, 3 and 4 are
used to account for the degeneracy of the states (0,00,0),
(0,11,0), (0,20,0) and (0,31,0). Finally, the total absorp-
tion cross section is constructed from the sum over the
Boltzmann averaged absorption line shapes of the two low-
est excited states 21A′ and 11A′′:

σtotal(T ) = σ21A′(T ) + σ11A′′(T ). (38)

At 297 K, we found that almost 100% of the popu-
lation of N2O is in the ground state (0,00,0) and one
quantum of bending vibration (0,11,0). Moreover, there
is a substantial contribution due to hot-band excitation
from the (0,11,0) vibrationally excited state, which is
in accordance with previous experimental measurements
of the temperature-dependent absorption spectrum by
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Fig. 16. Comparison between the calculated total absorp-
tion cross section and the experimental spectrum of the
N2O molecule. (a) Calculated cross section; (b) measured by
Yoshino et al. (297 K) [32]; (c) measured by Selwyn and
Johnston (298 K) [33,35]; (d) measured by Merienne et al.
(296 K) [34]. The theoretical cross section is calculated from
the contribution of the two lowest excited states, 21A′ and
11A′′. Each total absorption cross section of the excited states
is obtained by Boltzmann averaging at 297 K of six total cross
sections with the N2O molecule initially in its (0,00,0), (0,11,0),
(0,20,0), (1,00,0), (0,31,0) and (1,11,0) vibrational states.

Selwyn and Johnston [31]. The total absorption cross sec-
tion σtotal from the contribution of two excited states is
plotted in Figure 16, along with the experimentally mea-
sured high resolution ultraviolet absorption spectrum ob-
tained by Yoshino et al. [32] from photolysis of N2O in
the wavelength region 170–220 nm at a temperature of
297 K. In general, the calculated absorption cross section
is in excellent quantitative agreement with the experimen-
tal spectrum in respect of, both the absolute value of the
cross section and the position of the maximum absorp-
tion peak, and of the overall shape of the cross section.
The absolute value of the spectrum measured by Yoshino
et al. has been confirmed by three independent experi-
mental results [33–35], and, hence, the value should be
correct for comparison purposes. The diffuse structures
are absent in the cross section which was attributed by
Schinke [30] to N-N streching vibration. By considering
the N-N dimension, the structures were seen in their three-
dimensional calculation. However, their cross section has
been multiplied by 1.37 to shift the cross section upward
by 0.05 × 10−19 cm2 in order to reproduce the same in-
tensity as found in the experimental spectrum. Mean-
while, the three-dimensional calculation by Nanbu and
Johnson [36] yielded a rather narrow cross section in log-
arithmic scale near the absorption peak. Simplification in
their calculation by taking the final angular momentum
to be zero only is not enough to reproduce the experi-
mental cross section. Now it is clear from these two pieces
of evidence that the full-dimensional dynamics approach
is not sufficient to produce accurate values of the cross
section without having considered all aspects of angular
momemtum coupling. Surprisingly, our current reduced
dimensionality model with proper treatment of angular
momentum coupling has produced better results when

compared to them and to our previous two dimensional
result [37]. Nevertheless, it cannot be denied that the
three-dimensional model has produced vibrationally dif-
fuse structures around the absorption peak very well due
to the N-N vibrational effects.

The likelihood of hot-band excitation being involved
in the photoabsorption of N2O is indicated by a num-
ber of experimental measurements. The increase in the
total cross section for absorption from the initial vibra-
tional state (0,11,0) and its shift to longer wavelengths
relative to the (0,00,0) cross section quantitatively agrees
well with the experimental results of the temperature-
dependent absorption spectrum reported by Selwyn and
Johnston [31]. They measured the absorption spectrum at
151 K peaking at 55 000 cm−1 (181.8 nm) with a maxi-
mum value of approximately 110 × 10−21 cm2 and, they
attributed this spectrum as providing a good approxima-
tion for excitation from the pure (0,00,0) state. Current
work supports their approximation very well, as depicted
in Figure 17 of the (0,00,0) cross section. For the sake
of comparison, Figure 17 also displays the deconvoluted
experimental spectrum adopted from the paper by Selwyn
and Johnston [31]. By deconvoluting spectra at five dif-
ference temperatures and using an appropriate weighting
factor (see Ref. [31] for details), the resultant spectrum
displays a peak at 54 400 cm−1 (183.8 nm) with a maxi-
mum value of approximately 425 × 10−21 cm2 which rep-
resents a spectrum from the hot-band excitation of the
pure (0,11,0) state. Noted that the structures appear in
the (0 1 0) spectrum was not found in the calculation
due to the reduced dimensionality applied by keeping N-N
fixed at its equilibrium geometry. This has been discussed
in the earlier paragraph in which the structures are related
to the N-N vibrational motion during dissociation. Our ra-
tio σ(0,00,0)/σ(0,11,0) of the position of the maximum peak
is in excellent agreement with that measured by Selwyn
and Johnston. However, our ratio σ(0,00,0)/σ(0,11,0) of the
absolute values of the maximum peak is underestimated
by a factor of 0.45 due to the discrepancy in the (0,11,0)
cross section.

4 Conclusion

Present work shows that through a correct ab initio rep-
resentation of the dynamics of photoabsorption processes,
it is possible to obtain essentially quantitative agreement
between theoretical results and the experimental observa-
tion. A detailed discussion of the angular momentum the-
ory required for two kinds of photoabsorption processes
has been presented, emphasizing: (a) the correct combi-
nation of initial and final parities and total angular mo-
menta; (b) the relative contributions of each of the helicity
quantum numbers which are coupled to each other during
wave packet propagation. Selecting a single initial rota-
tional and vibrational state from various modes allows us
to characterize the controlling role of the potential energy
and transition dipole moment surfaces on the dynamics
of the model system N2O + hν → N2 + O. Our calcula-
tions revealed that a large contribution of the transition

http://www.epj.org
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Fig. 17. Comparison between the calculated total absorp-
tion cross section (upper panel) and the experimental spec-
trum (lower panel) of the N2O molecule measured by Sel-
wyn and Johnston [31]. Each of the theoretical cross sections
(upper panel) of the N2O molecule starting from the initial
(0,00,0) and (0,11,0) vibrational states are calculated from the
contribution of two lowest excited states, 21A′ and 11A′′.

dipole lies on the molecular plane parallel to the direction
of the N-O bond in accord with a large positive anisotropy
parameter (β) observed for nearly all of the N2 levels ex-
perimentally [10–18]. In general, the resulting total cross
section reported here is in excellent agreement with the
experimental observation and thus provides a quantitative
test of the method.
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University of Malaya under research Grant RG243-12AFR and
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