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Abstract. The nonlinear interaction between electron-acoustic shock waves in a dissipative, non-
Maxwellian plasma composed of cold fluid electrons, stationary background ions, and inertialess superther-
mal electrons has been studied. The effects of plasma parameters on the trajectory changes (i.e., phase
shifts) of shock waves after their head-on collision is our main concern. The results indicate that the in-
teractions between shocks are different from those of solitons. Also, it is found that the occurrence and
variation of trajectory shifts may be due to the combined role played by the dispersion and dissipation of
the colliding nonlinear structure.

1 Introduction

Electron-acoustic wave (EAW) is electrostatic plasma
wave with an unusually small phase velocity compared to
Langmuir wave. The name of this wave mode suggests that
electrons are involved in the wave dynamics, and there-
fore, it is a high frequency wave. This wave can exist in
an unmagnetized plasma with three components, namely,
highly dense energetic electrons which we often call as hot
electrons, diluted cold electrons, and massive ions. These
two electron components are obviously different from each
other, because the hot electron component has energy of
the order of KeV, while the cold electron component has
energy not greater than 60 eV [1]. Ions have less energy
in comparison with electrons, therefore, this component
is not taking part in the EAW dynamics, they just serve
as a stationary charge neutral back ground. What happens
physically is that the mass of the cold electrons provides
the inertia, while the restoring force comes from the pres-
sure of the inertialess hot electrons.

EAW is similar to the ion-acoustic wave (IAW), the
difference is that for this wave mode, the cold electrons
do the same job as the ions do in the usual IAW. In con-
trast to the IAW, EAW usually suffers strong damping,
this is because the cold electrons have the easier mobil-
ity than ions. The propagation of EAW is only possible
within a restricted range of the plasma parameter val-
ues, since Landau damping will become stronger when
the wave phase velocity approaches the thermal veloc-
ity of cold (hot) electron component. EAWs were found
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in many spacecraft observations and experimental stud-
ies. For example, the observations by the FAST in the
intermediate auroral region (altitude <4000 km) [2], as
well as the observations by the POLAR at higher altitude
auroral region (between 2RE ∼ 8RE , RE being earth’s
radius) [3], these finding confirm the existence of EAWs
in several parts of magnetosphere [4–6]. Experimentally,
in reference [7], Montgomery et al. have pointed out that
EAW can also be excited in laboratory plasma with two
electron components. Motivated by these observations, a
number of efforts on modelling methods have been made
to understand the properties of EAWs in such plasma
systems. Recently, Kourakis and Shukla [8] presented a
theoretical and numerical study on the amplitude modu-
lation of EAWs propagating in space plasmas whose con-
stituents are inertial cold electrons, Boltzmann distributed
hot electrons, and stationary ions, it is shown that their
system can exist different types of localized EAW excita-
tions. More recently, Baluku et al. [9] studied the EAW in
a plasma kinetic model which treats both the cool and the
hot electrons as having a kappa velocity distribution. Us-
ing a particle-in-cell simulation, Koen et al. [10] discussed
the characteristics of electron plasma and EAWs in plas-
mas containing an ion and two electron components. The
electron velocities are modeled by a combination of two κ
distributions.

In the natural space environment, e.g., planetary
magnetospheres, astrophysical plasmas, and the solar
wind, plasmas are generally observed to possess a non-
Maxwellian high-energy tai1 [11–13]. Superthermal parti-
cles may arise due to the effect of external force acting on
the natural space environment plasmas or to wave-particle
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interactions. A useful distribution function to model such
plasmas is the generalized Lorentzian (kappa) distribu-
tion. It is shown that kappa distribution rather than
Maxwellian distribution gives a better fit to the observed
physical phenomena. For vary larger values of the spectral
index κ (i.e., κ → ∞), the kappa distribution reduces to
the Maxwellian distribution, while for smaller values of κ,
it represents a strong high-energy tail having a power-law
form distribution function. During the past several years,
a great deal of interest has been shown on the proper-
ties of linear and nonlinear wave modes with superther-
mal particles in various plasma systems (see for examples,
Refs. [14–16]).

It is generally known that wave-wave interaction is one
of important physical phenomena in nonlinear physics,
during the last several years, there has been a growing
interest in the investigation of head-on collision between
solitons in various plasma models, the basic features of
this nonlinear phenomenon are well understood now. In
a recent paper, Harvey et al. [17] experimentally and nu-
merically studied the interaction of two counter propagat-
ing solitons of equal amplitudes in a monolayer strongly
coupled complex plasma, their finding confirm the knowl-
edge of previous studies about soliton interactions. More
recently, Verheest et al. [18] investigated the head-on col-
lision of electrostatic solitons in a plasma composed of
a number of cold (positive and negative) ion species and
Boltzmann electrons. Eslami et al. [19] discussed the head-
on collision of EAWs in unmagnetized plasma with nonex-
tensive plasma hot electrons. Theoretical and experimen-
tal papers in the literature shown that there are positive or
negative phase shifts after the soliton interactions. How-
ever, up to now, to the best of our knowledge, there are
rare investigations consider the problem of interaction be-
tween shock waves. Therefore, the aim of the present study
is to study the head-on collision between two electron-
acoustic shock waves (EASWs) in a generalized Lorentzian
plasma with κ distributed superthermal electrons. The ef-
fects of plasma parameters, especially the superthermal
effect on the trajectory shifts of shock waves after their
interaction will be our may concern.

The paper is organized as follows. In the second sec-
tion, the basic set of fluid equations for the electrostatic
wave are presented. In the third section, we derive two
Korteweg-de Vries-Burgers (KdV-Burgers) equations gov-
erning the nonlinear dynamics of the EASWs. In the
fourth section, the numerical results and discussion are
given, while the last section is kept for conclusion.

2 Basic set of equations

In order to construct the model, we consider a un-
bounded, homogeneous, collisionless, and unmagnetized
plasma system consisting of three components, namely
cold fluid electrons, inertialess hot electrons with a gener-
alized Lorentzian (κ) velocity distribution, and uniformly
distributed stationary ions. Now the governing equations
of the cold electron fluid are given by the following set of

equations.

∂Nc

∂t
+
∂(NcUc)
∂x

= 0, (1)

∂Uc

∂t
+ Uc

∂Uc

∂x
+

σ

Nc

∂Pc

∂x
=
∂Ψ

∂x
+ ηe

∂2Uc

∂x2
, (2)

∂Pc

∂t
+ Uc

∂Pc

∂x
+ γPc

∂Uc

∂x
= 0, (3)

∂2Ψ

∂x2
= Nc + βNh − β − 1. (4)

In the above equations, Nc and Nh are the cold and hot
electron number densities, respectively. σ = Tc/Th, ε0 is
the permittivity constant and e is the magnitude of the
elementary charge. Here, the electrostatic wave potential
Ψ is normalized by kBTh/e, the cold electron fluid veloc-
ity Uc and pressure Pc are respectively normalized by the
EA speed ce = (kBTh/me)1/2 and Nc0kBTc. The space
coordinate x and time coordinate t are normalized by the
electron Debye length λD =

√
ε0kBTh/Nc0e2 and the elec-

tron plasma period ω−1
pc =

√
ε0me/Nc0e2, respectively.

In addition, at equilibrium, we have ZNi0 = Nc0 + Nh0,
whereNi0,Nc0, andNh0 are the unperturbed ion, cold and
hot electron number densities, respectively. It is shown
that ZNi0/Nc0 = 1 + β, in which β = Nh0/Nc0 is the un-
perturbed hot-to-cold electron number density ratio. Ac-
cording to the results given in references [20,21], Landau
damping is minimized in the situation of 0.25 ≤ β ≤ 4. ηe

is the coefficient of electron kinematic viscosity, it arises
by considering the kinematic viscosity among the plasma
constituents. γ = (d + 2)/d indicates the specific heat ra-
tio, where d denotes the freedom degree of the system. In
the present study, we shall use γ = 3 (viz., d = 1) for the
adiabatic cold electrons.

To model the hot electron distribution, we employ a
three-dimensional generalized Lorentzian(or κ) distribu-
tion function, which takes the following form [22,23]:

fκ(vh) =
Nh0

(πκθ2)3/2

Γ (κ+ 1)
Γ (κ− 1

2 )

(
1 +

v2
h

κθ2

)−κ−1

, (5)

where θ2 = [(κ − 3/2)/κ](2kBTh/m), θ is the effective
thermal speed, modified by spectral index κ. Nh0 is the
equilibrium number density of the hot electrons, and Th

is the kinetic temperature. Γ (x) is the gamma function
which arises from the normalization of fκ(vh). It should
be noted that for a physically realistic thermal speed, one
requires κ > 3/2.

Integrating the kappa distribution over the velocity
space, the hot electron number density are given as

Nh = Nh0

[
1 − eΨ

(κ− 3
2 )kBTh

]−κ+ 1
2

. (6)

And then, it can be written in dimensionless form as

Nh =
(

1 − Ψ

κ− 3
2

)−κ+ 1
2

. (7)
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3 Derivation of KdV-Burgers equation

To investigate the head-on collision between two shock
waves propagating in opposite directions along x-axis, we
assume that, there are two shock waves in the plasma, they
are, asymptotically, far apart in the initial state and travel
toward each other. After some time, they meet, collide,
and then separate away. We also assume that the interac-
tion between two shocks are weak, ideally, we expect that
the collision will be quasi-elastic. The extended Poincaré-
Lighthill-Kuo perturbation method is a useful method to
investigate the effects of collision on the propagation of
nonlinear waves. By using this method, a number of stud-
ies have been made to discuss the head-on collisions of
planar or nonplanar solitary waves in various kinds of
plasma systems [24–27]. It is generally known that in a
plasma system, the presence of electron kinematic viscos-
ity can introduce a dissipation that causes the Burgers
term and this is responsible for the generation of EASW.
The formation of these shocks is due to the balance be-
tween the nonlinearity and the combined effect of disper-
sion and dissipation, their dynamics are governed by the
usual KdV-Burgers equation. In a dissipation plasma sys-
tem, several papers in the literature confirm the existence
of both monotonic and oscillatory dispersive shock waves.
Considering the dissipative mechanism of KdV-Burgers
equation, in order to study the head-on collision between
two shock waves, we use the stationary propagation shock
solution in the present study. To model the head-on col-
liding process of two shock waves, first, we introduce the
following co-ordinates transformations (wave frames):

ξ = ε(x− λt) + ε2M (0)(η, τ) + . . . , (8)

η = ε(x+ λt) + ε2N (0)(ξ, τ) + . . . , (9)

τ = ε3t, (10)

where ε is a smallness formal perturbation parameter,
which characterizes the strength of nonlinearity. Subse-
quently, for convenience, we denote the right-going and
left-going waves by superscripts R and L, and ξ and η
denote the trajectories of the two shock waves R and L,
respectively. Next, we expand quantities Nc, Uc, Pc and
Ψ about their equilibrium values in power series of ε

Π = Π(0) +
∞∑

n=1

ε(n+1)Π(n), (11)

where

Π =
[
Nc Uc Pc Ψ

]T
,

Π(n) =
[
N

(n)
c U

(n)
c P

(n)
c Ψ (n)

]T

,

and

Π(0) = [1 0 1 0 ]T .

Considering the value of electron kinematic viscosity ηe is
small in many experimental situations, so we set its value

as ηe = εη0. Then, substituting equations (8)–(11) into
equations (1)–(4), we obtain a set of coupled equations in
different orders of ε. To the leading order, we have

λ

(
∂N

(1)
c

∂η
− ∂N

(1)
c

∂ξ

)

+

(
∂U

(1)
c

∂ξ
+
∂U

(1)
c

∂η

)

= 0, (12)

λ

(
∂U

(1)
c

∂η
− ∂U

(1)
c

∂ξ

)

+ σ

(
∂P

(1)
c

∂ξ
+
∂P

(1)
c

∂η

)

=
∂Ψ (1)

∂ξ
+
∂Ψ (1)

∂η
, (13)

λ

(
∂P

(1)
c

∂η
− ∂P

(1)
c

∂ξ

)

+ 3

(
∂U

(1)
c

∂ξ
+
∂U

(1)
c

∂η

)

= 0, (14)

N (1)
c = −χΨ (1), (15)

where χ = β
κ− 1

2
κ− 3

2
, from equations (12)–(15), one can get

the following relations

N
(1)
cR (ξ, τ) = −χΨ (1)

R (ξ, τ), (16)

N
(1)
cL (η, τ) = −χΨ (1)

L (η, τ), (17)

U
(1)
cR (ξ, τ) = −λχΨ (1)

R (ξ, τ), (18)

U
(1)
cL (η, τ) = λχΨ

(1)
L (η, τ), (19)

P
(1)
cR (ξ, τ) = −3χΨ (1)

R (ξ, τ), (20)

P
(1)
cL (η, τ) = −3χΨ (1)

L (η, τ). (21)

As mentioned before, Ψ (1)
R (ξ, τ) and Ψ (1)

L (η, τ) describe the
right-going and left-going shock waves, which propagate
in opposite directions along the trajectories ξ and η, re-
spectively. The wave velocity λ also can be obtained as
λ2 = 3σ + 1

χ .
To the next higher order of ε, we obtain a set of equa-

tions as follows:

∂Ψ
(1)
R

∂τ
+ PΨ

(1)
R

∂Ψ
(1)
R

∂ξ
+Q

∂3Ψ
(1)
R

∂ξ3
−R1

∂2Ψ
(1)
R

∂ξ2
= 0, (22)

∂Ψ
(1)
L

∂τ
+ PΨ

(1)
L

∂Ψ
(1)
L

∂η
+Q

∂3Ψ
(1)
L

∂η3
−R2

∂2Ψ
(1)
L

∂η2
= 0, (23)

and

2
∂M (0)

∂η
= ΓΨ

(1)
L , (24)

2
∂N (0)

∂ξ
= ΓΨ

(1)
R , (25)

where

P = −� + 3χ2 + 12σχ3

2λ2χ2
, Q =

1
2λ2χ2

, R1 =
η0
2λ
,

R2 = − η0
2λ
, Γ =

� − χ2

2λ2χ2
, and � =

χ(κ+ 1
2 )

κ− 3
2

.
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Table 1. Location of the colliding shock waves Ψ
(1)
R and Ψ

(1)
L

in terms of asymptotic values of ξ and η.

Before collision After collision

Right-going Ψ
(1)
R η → −∞ η → +∞

Left-going Ψ
(1)
L ξ → +∞ ξ → −∞

It is clear that equations (22) and (23) are the two-side
traveling wave KdV-Burgers equations in the reference
frames of ξ and η. The dissipative terms in the right-hand
side of equations (22) and (23) represent the Burgers term,
arising due to the kinematic viscosity among the plasma
constituents. It is obviously shown that the nonlinear co-
efficient P is negative, it implies the existence of a kink-
type shock shape. According to the discussion of the pa-
per by Kourakis et al. [28], the corresponding stationary
propagation shock wave solutions of EASWs governed by
equations (22) and (23) take the following form:

Ψ
(1)
R =

3R2
1

25PQ
[
1 − tanh2Ξ1 + 2(1 − tanhΞ1)

]
, (26)

Ψ
(1)
L =

3R2
2

25PQ
[
1 − tanh2Ξ2 + 2(1 − tanhΞ2)

]
, (27)

where

Ξ1 =
R1

10Q
(ξ− 6R2

1

25Q
τ −X0), Ξ2 =

R2

10Q
(η− 6R2

2

25Q
τ −Y0).

X0 and Y0 are two real constants, they represent the initial
wave positions of shock waves R and L, respectively, τ is
the stretched time coordinate representing the slow time
scale.

We now identify the right- and left-going waves as ψ(1)
R

and ψ(1)
L , respectively. The location of these waves before

and after collision in terms of asymptotic values of ξ and
η are specified in Table 1. And then, the phase functions
M (0) and N (0) can be calculated as

M (0) =
Γ

2

∫ η

−∞
Ψ

(1)
L (η, τ)dη

=
Γ

10P
(ΘB |η=η −ΘB|η=−∞), (28)

N (0) =
Γ

2

∫ ξ

+∞
Ψ

(1)
R (ξ, τ)dξ

=
Γ

10P
(ΘA|ξ=ξ −ΘA|ξ=+∞), (29)

�200

�100

0
100

200

x

�50

0

50

100

150

t

0

�0.2

�0.3

Ψ

Fig. 1. Profile of head-on collision process between two same
structures EA shock waves, the parameters are given as: κ = 2,
β = 1, σ = 0.01, η0 = 0.7, X0 = −30, and Y0 = 30.

where,

ΘA =
6R2

1ξ

5Q
− 12R1 logΥA + 6R1ΛA,

ΘB =
6R2

2η

5Q
− 12R2 logΥB + 6R2ΛB,

ΥA = cosh
[
R1ξ

10Q
− R1

250Q2

(
6R2

1τ + 25Qξ
)]
,

ΥB = cosh
[
R2η

10Q
− R2

250Q2

(
6R2

2τ + 25Qη
)
]
,

ΛA = tanh
{

R1

250Q2

[−6R2
1τ + 25Q(ξ −X0)

]}
,

ΛB = tanh
{

R2

250Q2

[−6R2
2τ + 25Q(η − Y0)

]
}
.

4 Results and discussions

To examine the effect of collision on the propagation of
shock waves, in this section, we numerically study the
results obtained in the above section. As shown in Fig-
ure 1, the red and blue shocks respectively represent the
right-going wave Ψ (1)

R and left-going wave Ψ (1)
L . Those two

colliding shocks are described by equations (26) and (27)
and propagate along the ξ and η trajectories, respectively.
It is clear that the interactions between shock waves are
different from those between solitary waves. For soliton
interaction, the results suggest that during the wave col-
lision process, one practically motionless composite non-
linear structure will be generated, this structure survives
during some time interval, the amplitude of the structure
is larger than those colliding solitary waves and the veloc-
ity of the structure depends on the colliding wave heights.
However, for shock interaction, clearly, there is no new
structure formed in their colliding region, the interaction
will only induce a change of propagation trajectories.

Figures 2–5 show the effects of the superthermal pa-
rameter κ, the electron temperature ratio σ, the electron

http://www.epj.org


Eur. Phys. J. D (2014) 68: 340 Page 5 of 7

Fig. 2. Showing the effect of superthermal parameter κ on the
colliding process of shock waves (×10−1) for various values of
(a) κ = 2; (b) κ = 3; (c) κ = 4; (d) κ = 5. Other parameters
are set as: β = 1, σ = 0.01, η0 = 0.8, X0 = −30, and Y0 = 30.

Fig. 3. Showing the effect of electron temperature ratio σ on
the colliding process of shock waves (×10−1) for various values
of (a) σ = 0.01; (b) σ = 0.04; (c) σ = 0.07; (d) σ = 0.10. Other
parameters are set as: κ = 2, β = 1, η0 = 0.8, X0 = −30, and
Y0 = 30.

number density ratio β, and the normalized electron kine-
matic viscosity η0 on the trajectory changes (phase shifts)
of the colliding shock waves, respectively. As shown in
these figures, the brightness corresponding to the relative
wave amplitude value, the red dashed lines marked the
shock wave paths when the waves propagate alone, and
the white dashed lines marked the shock wave paths after
their head-on collision. As the yellow arrows pointed out,
before and after the interaction, there is a angle between
the wave paths for each colliding shocks. This is obviously
different from the results obtained for soliton interactions.
It is generally known that the head-on collision of solitary
wave can induce positive or negative trajectory changes
(phase shifts). That is to say, the colliding waves quicken
or slower their velocities after the interaction. Further-
more, whether the phase shifts are positive or negative,
the trajectories before and after wave interaction are par-

Fig. 4. Showing the effect of electron number density ratio
β on the colliding process of shock waves (×10−1) for various
values of (a) β = 0.5; (b) β = 1.0; (c) β = 1.5; (d) β = 2. Other
parameters are set as: κ = 2, σ = 0.01, η0 = 0.8, X0 = −30,
and Y0 = 30.

Fig. 5. Showing the effect of electron kinematic viscosity η0 on
the colliding process of shock waves (×10−1) for various values
of (a) η0 = 0.1; (b) η0 = 0.3; (c) η0 = 0.5; (d) η0 = 0.7. Other
parameters are set as: κ = 2, σ = 0.01, β = 1, X0 = −30, and
Y0 = 30.

allel (see Refs. [17,29]). However, for shock interaction,
the wave paths before and after collision are not parallel.
That is, for the colliding shocks, there are shifts of the
propagation trajectory after their collisions, more impor-
tantly, the propagation directions of the colliding shocks
are changed.

The results obtained in Figures 2–5 are shown in Ta-
ble 2, here, let us introduce a new parameter θ, here θ
refer to the angle between the wave path for each collid-
ing shock wave before and after the interaction, i.e., the
shift of propagation trajectory. First of all, let us exam-
ine the effect of the electron kinematic viscosity η0 on the
interaction of shock waves. It is found that the trajectory
changes increase with the increase of η0. To explain the
above phenomenon, we need to make a detailed analysis
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Table 2. Effects of the plasma parameters κ, σ, β, and η0

on the trajectory changes θ (in ◦) of the colliding EA shock
waves.

κ Angle σ Angle β Angle η0 Angle
2 θ = 9 0.01 θ = 9 0.5 θ = 6 0.1 θ = 0
3 θ = 0 0.04 θ = 8 1.0 θ = 9 0.3 θ = 0
4 θ = 0 0.07 θ = 7 1.5 θ = 0 0.5 θ = 5
5 θ = 0 0.10 θ = 6 2.0 θ = 0 0.7 θ = 8

Fig. 6. Effects of plasma parameters on the nonlinearity, dis-
persion, and dissipation coefficients of colliding shock waves.

of the effects of plasma parameters on the nonlinearity,
dispersion and dissipation coefficients of colliding shocks.
Combined with the results shown in Figure 6, we may say
that dissipation has a decisive effect on the occurrence of
trajectory shift, and the increase in the dissipation leads
to an increase in the trajectory shift. Furthermore, the
trajectory shifts will appear only when the dissipation of
the system (i.e., the value of η0) is large enough.

Secondly, let’s consider the electron number density
ratio β. It is shown that angle θ increases with the in-
crease of β for smaller values of density ratio. However,
with the increase of β, one can clearly note that there are
no trajectory changes for bigger values of β (i.e., β = 1.5
and 2.0). For the physical mechanism of this phenomenon,
it may be due to the combined role played by the dis-
persion and dissipation of the nonlinear structure. First,
let us take a look at Figure 6g, it is shown that dissipa-
tive coefficient |R| increases with the increase of β, this is
the mainly reason for the increase of θ at the beginning.
In addition, the changing of the curve is relatively uni-
form, therefore, the variation of dissipation can not lead

the disappearance of trajectory change later; second, from
Figure 6d, we note that dispersive coefficient Q decreases
sharply with the increase of β at the range of 0.5 to 1.5,
and then the decreasing rate become slowly at the range
of 1.5 to 2.0, the slowly decreasing rate just leads to the
disappearance of the trajectory shifts. Thus, we can pre-
dictably conclude that there are two roles that maybe
account for this phenomenon, the increasing role played
by the dissipation, and the decreasing role played by the
dispersion. Obviously, when the decreased effect is larger
than the increased effect, there are no trajectory shifts for
the colliding shock.

Thirdly, for electron temperature ratio σ, it is clear
that θ uniformly decreases with the increase of σ, this
changing trend is the same as the trends of the nonlinear-
ity, the dissipative, and the dissipative coefficients change
with σ (see Figs. 6b, 6e, and 6h, respectively). And lastly,
let us investigate the superthermal parameter κ on the
trajectory changes. It is found that except for the strong
superthermal case (small spectral index κ = 2), for the
cases of κ = 3, 4, 5, there are no shifts of wave trajecto-
ries. To get a better understanding of this phenomenon,
we take the value of κ = 1.7 as an academic study, and
we get a result of θ = 10◦, this makes us to think that the
trajectory change decreases with the increase of κ. Com-
bined with the results shown in Figure 6, we may say that
there are two contributions that maybe account for these
phenomena, first, the decreasing role played by the dissi-
pation, it decreases with the increase of κ, and when the
dissipation of the system is small enough, we already know
that there is no trajectory shift for the colliding shock; sec-
ond, the decreasing role played by the dispersion, it is clear
that dispersive coefficient increases with κ, this effectively
leads to the disappearance of trajectory shifts.

5 Conclusion

Summarizing our results, we have studied the head-on col-
lision of shock waves in a three-component plasma com-
posed of cold fluid electrons, uniformly distributed sta-
tionary ions, and inertialess κ distributed hot electrons. It
is shown that the interactions between shock waves are ob-
viously different from those between solitary waves. First,
there is no newly formed nonlinear structure during the
colliding process of shocks; second, the head-on collision
can induce the shifts of wave propagation direction, that
is, the trajectories of colliding shocks before and after in-
teraction are not parallel, there is a angle between those
two paths. Also, it is found that dissipation has a decisive
effect on the occurrence of trajectory changes, and the
variation of trajectory shifts may be due to the combined
role played by the dispersion and dissipation of the collid-
ing nonlinear structure. Furthermore, when the decreasing
role made by dispersion is larger than the increasing role
made by dissipation, or the combined effect of these two
roles reach a balanced state, there will be no trajectory
changes in the present system.
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