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Abstract We show that there is a phenomenologically and
theoretically consistent limit of the generic Einstein-Aether
theory in which the Einstein-Aether field equations reduce
to Einstein field equations with a perfect fluid distribution
sourced by the aether field. This limit is obtained by taking
three of the coupling constants of the theory to be zero but
keeping the expansion coupling constant to be nonzero. We
then consider the further reduction of this limited version of
Einstein-Aether theory by taking the expansion of the aether
field to be constant (possibly zero), and thereby we intro-
duce the Minimal Einstein-Aether theory that supports the
Einstein metrics as solutions with a reduced cosmological
constant. The square of the expansion of the unit-timelike
aether field shifts the bare cosmological constant and thus
provides, via local Lorentz symmetry breaking inherent in
the Einstein-Aether theories, a novel mechanism for recon-
ciling the observed, small cosmological constant (or dark
energy) with the large theoretical prediction coming from
quantum field theories. The crucial point here is that mini-
mal Einstein-Aether theory does not modify the well-tested
aspects of General Relativity such as solar system tests and
black hole physics including gravitational waves.

1 Introduction

One of the most difficult problems in physics today is to
understand how the predicted cosmological constant coming
from the zero point fluctuations of the quantum fields can
differ from the observed dark energy by 50–120 orders of
magnitude, a huge gap that depends on the cut-off used in
the regularization of the quantum field theory. This cosmo-
logical constant problem arises within the context of General
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Relativity coupled minimally with the Standard Model fields.
The difficulty of the problem is related to the fact that due
to the successes of both theories, there is very little room
for modification as the most obvious modifications are with
the gravity sector and often lead to drastic changes in Gen-
eral Relativity. Here we will argue that there is a modified
gravity theory that allows Einstein spacetimes as solutions,
and the effective cosmological constant can be reduced as
a result of local symmetry breaking induced by a non-zero
vacuum value of a vector field. The theory is a sub-class of
the Einstein-Aether theory which we shall describe first.

The so-called Einstein-Aether theory [1,2] is a vector-
tensor theory of gravity that breaks the local Lorentz sym-
metry of spacetime due to the presence of a timelike vector
field [3,4]. The nowhere-vanishing, unit-norm vector field
– called the “aether” – defines a preferred direction at each
point of spacetime and dynamically couples to the metric
tensor to preserve the background independence of the the-
ory. Over the years, Einsten-Aether Theory has attracted a
lot of attention and been investigated in various respects: For
example, the stability issue of the aether was discussed in
[5,6], time-independent spherically symmetric solutions and
black hole solutions were analyzed in [7–11,13–15,29], gen-
eralizations and cosmological implications were studied in
[16–20], extensions to include other fields were considered
in [21,22], all Gödel-type of solutions were given in [23,24],
and the possibilities of spacelike and null aether field were
discussed respectively in [12,25–28].

Einsten-Aether Theory has four dimensionless parame-
ters c1, c2, c3, and c4 that have certain bounds, discussed
here in Sec. II, by comparing the theory with the solar sys-
tem and other observations. In general, these parameters are
assumed to be non-vanishing. It is known that the Einstein-
Aether Theory is an extension of some other well-studied
gravity theories and reproduces these theories to some other
gravity under certain limits of the coupling constants. The
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simplest example is the trivial Einstein limit of Einstein-
Aether theory where all the coupling constants {c1, c2, c3, c4}
are taken to be zero. If the so-called “twist” coupling con-
stant, cw ≡ c1 − c3, is taken to infinity, one gets the Hořava
gravity limit [30]. Recently, yet another limit of Einstein-
Aether theory has been found by Franzin et al. in [31]: Taking
c1 = c3 = c4 = 0 and the expansion θ of the unit timelike
vector field to be zero in Einstein-Aether theory, one obtains
the vacuum Einstein field equations in the absence of mat-
ter fields. This theory is dubbed the Minimal Einsten-Aether
Theory. In this restricted version of the Einsten-Aether The-
ory, there is no contribution to the resulting geometry from
the Einsten-Aether Theory itself. In [31], it was concluded
that the Kerr metric with a unit time-like vector having zero
expansion is an exact solution of the Einsten-Aether Theory.
Here, in this work, we generalize this result by first consid-
ering the limit c1 = c3 = c4 = 0 in general and then taking
θ as constant (with zero being a special case). The last case
defines the Minimal Einstein Theory we introduce here which
is a nontrivial generalization of the recent work [31] in which
θ = 0 specifically. More explicitly, by including a cosmo-
logical constant, we first show that there is a phenomenolog-
ically and theoretically consistent limit – a reduced version
– of the generic Einstein-Aether theory obtained by taking
c1 = c3 = c4 = 0 which lead the Einstein-Aether field equa-
tions to take the form of the Einstein field equations with
perfect fluid distribution sourced by the aether field. Then,
with the additional assumption θ = const., we prove that the
Einstein-Aether theory further reduces to the Einstein theory
with a shifted cosmological constant. In fact, in this new
limit, there is an important contribution to the cosmological
constant in the theory which is proportional to the square of
the constant expansion parameter of the unit timelike vector
field.

Throughout the paper, we shall adopt the sign convention
(−,+,+,+).

2 The Einstein-Aether theory

The general action of Einstein-Aether theory, in the presence
of a cosmological constant � and the matter fields, is given
by

I = 1

16πG

∫
d4x

√−gL + IM (gμν, v
μ, φ), (1)

whereG is the bare gravitational constant related to Newton’s
constant GN by the rescaling [16]

GN =
(

1 − c1 + c4

2

)−1

G, (2)

and IM denotes the matter action with φ collectively rep-
resenting the matter fields. The action of the gravity sector
is constructed from the following vector-tensor Lagrangian
density:

L = R − 2� − Kμν
αβ ∇μ vα ∇ν vβ + λ (vμ vμ + 1), (3)

in which the vector vμ, called the aether field, for non-zero
values, would break local Lorentz invariance. And to ensure
this breaking, the field λ is taken to be the Lagrange multiplier
that enforces the unit-norm constraint

vμ vμ = −1, (4)

which certainly breaks local Lorentz symmetry. In some
sense, this construction resembles Nambu’s construction of
electrodynamics in the nonlinear gauge [32], but here the
underlying vector theory is not generically the usual electro-
dynamics coupled to gravity as the K tensor is judiciously
chosen to be of the form

Kμν
αβ = c1 g

μνgαβ+c2 δμ
α δν

β+c3 δ
μ
β δν

α−c4 vμ vνgαβ, (5)

where {c1, c2, c3, c4} are dimensionless coupling constants
which certainly are phenomenologically bounded.

It pays to reparameterize the theory with the use of the
usual hypersurface decomposition of the timelike aether con-
gruence as [30]

∇νvμ = 1

3
θhμν + σμν + ωμν − aμvν, (6)

where θ is the expansion of the aether field, hμν is the pro-
jection tensor that projects onto the hypersurface orthogonal
to vμ, σμν is the shear, ωμν is the twist, and aμ is the accel-
eration, which are all defined by

θ = ∇μvμ,

hμν = gμν + vμvν,

σμν = a(μvν) + ∇(μvν) − 1

3
θhμν,

ωμν = a[μvν] − ∇[μvν],
aμ = vν∇νvμ, (7)

where we used the usual symmetrization and anti-
symmetrization brackets with a factor of 1/2. With these
new variables, the Lagrangian in (3) reduces to

L = R−2�− 1

3
cθ θ

2−cσ σ 2−cωω2+caa
2+λ̃ (vμ vμ+1),

(8)
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where cθ , cσ , cω, and ca are the redefined dimensionless
parameters with the definitions

cθ ≡ c1 + c3 + 3c2,

cσ ≡ c1 + c3,

cω ≡ c1 − c3,

ca ≡ c1 + c4, (9)

and λ̃ is again the Lagrange multiplier, but not necessarily
the same as λ in (3).

We mentioned above that these parameters are constrained
by some theoretical and observational arguments. This issue
was studied extensively in [1,2,15,16,33–42]. The combi-
nation of the gravitational wave event GW170817 [43] and
the gamma-ray burst event GRB 170817A [44] – together
with other theoretical and observational constraints – puts a
stringent bound on cσ as (see, e.g., Ref. [42])

|cσ | < 10−15. (10)

On the other hand, imposing that the PPN parameters of
Einstein-Aether theory are identical to those of General Rela-
tivity, the stability against linear perturbations in Minkowski
background, vacuum Cherenkov effect and nucleosynthesis
constraints imply that (see, e.g., Refs. [35,42])

0 � ca � 2.5 × 10−5,

0 � cω <
cσ

3(1 − cσ )
,

0 � c2 � 0.095,

c4 � 0. (11)

Furthermore, in [45], it was shown that taking cσ = 0 exactly,
the stability of black holes under odd-parity perturbations
requires c4 = 0 along with c1 ≥ 0.

Let us discuss the field equation of the theory which we
shall need. The fundamental fields of the gravitational sector
are (gμν, v

μ, λ); so, by varying the action (1) with respect
to λ, one obtains the constraint equation (4), and varying
with respect to the metric gμν and the aether field vμ, one
respectively obtains

Gμν + �gμν = T EA
μν + 8πG T M

μν, (12)

c4 a
α ∇μ vα + ∇α Jα

μ + λ vμ = 8πG T M
μ , (13)

where

T EA
μν ≡ ∇α

(
Jα

(μ vν) − J(μ
α vν) + J(μν) vα

)

+c1

(
∇μ vα ∇ν vα − ∇α vμ ∇α vν

)

+c4 aμ aν + λ vμ vν − 1

2
L gμν,

T M
μν ≡ − 2√−g

δ IM
δgμν

, T M
μ ≡ − 1√−g

δ IM
δvμ

, (14)

with

Jμ
ν = Kμα

νβ ∇α vβ, L = Jμ
ν∇μ vν. (15)

Note that in getting (12), we eliminated the term related to
the constraint (4). Multiplying the aether equation (13) by
vμ, one can also derive the Lagrange multiplier

λ = c4a
2 + vμ ∇α Jα

μ − 8πG T M
μ vμ. (16)

This section was a necessary recapitulation of the Einsten-
Aether Theory theory in its full generality and the pertaining
constraints for its viability. Next, we introduce the minimal
version of it.

3 Reduced Einstein-Aether theory

Now we shall introduceReducedEinstein-Aether Theory as a
nontrivial, theoretically and observationally consistent limit
of Einsten-Aether Theory. The following intuitive argument
justifies the motivation for introducing this theory.

As we stated previously, the combination of the gravita-
tional wave observation GW170817 [43] and the gamma-ray
burst observation GRB 170817A [44] immediately puts the
stringent bound (10) on the coupling constant cσ . Since the
upper value for cσ is extremely small, this bound suggests
that one may strictly take

cσ = 0, (17)

which, in turn, requires to strictly take

c4 = 0, (18)

as was pointed out in [45] by the theoretical arguments on
the stability of black holes under odd-parity perturbations.
On the other hand, since the upper bound on the parameter
cω in (11) is directly proportional to cσ , by taking cσ = 0,
one should also strictly take

cω = 0. (19)

Then, from the second and third definitions in (9), it is imme-
diately worked out that one must strictly take

c1 = c3 = 0, (20)

which subsequently means, from the first and the last defini-
tions again in (9), that

cθ = 3c2, ca = 0, (21)

valid strictly. After this reasoning, we see that the only con-
stant that remains nonzero – to have a nontrivial limit of

123



  945 Page 4 of 6 Eur. Phys. J. C           (2024) 84:945 

Einstein-Aether theory – is c2. In other words, c2 is the only
coupling constant in Einsten-Aether Theory that is assumed
to be nonzero, but small (close to zero), satisfying the third
bound in (11).

To sum up, in Einstein-Aether theory, we can consistently
and confidently take

cσ = cω = ca = 0, cθ �= 0, (22)

or, in the original parametrization,

c1 = c3 = c4 = 0, c2 �= 0, (23)

satisfying all the theoretical and observational bounds in Eqs.
(10), (11) discussed in Sect. 2.

The corresponding Lagrangians given in (8) and (3) then
respectively become

L = R − 2� − cθ

3
θ2 + λ̃ (vμ vμ + 1) (24)

= R − 2� − c2θ
2 + λ (vμ vμ + 1), (25)

where θ = ∇μvμ is the expansion of the aether field. With
no any other extra assumptions, we call this nontrivial theory
Reduced Einstein-Aether Theory.

Studying in the original parametrization, with the choices
(23), we immediately have Kμα

νβ = c2 δ
μ
ν δα

β from (5), and

so, Jμ
ν = c2 θ δ

μ
ν and L = c2 θ2 from (15), where θ =

∇α uα . Then, assuming the aether does not couple to the
matter fields (i.e. T M

μ = 0), we obtain the field equations of
Reduced Einstein-Aether theory, from (12) and (13), as

Gμν + �gμν =
(
λ + c2

2
θ2

)
gμν + λ vμvν + 8πG T M

μν,

(26)

∇μθ + λ

c2
vμ = 0, (c2 �= 0) (27)

where, in writing (26), we have made use of

λ = c2v
μ∇μθ, (28)

obtained by multiplying (27) by vμ and using vμvμ = −1.
Here, we should also observe that, due to the Bianchi identity
(∇μGμν = 0) and the metric compatibility (∇μgμν = 0),
the covariant divergence of the right-hand side of (26) must
be equal to zero, which gives the following differential con-
straint on the Lagrange multiplier λ:

∇μλ + vμvν∇νλ + λaμ = 0, (29)

upon using (27). One important conclusion of this equation
is that when the Lagrange multiplier λ = const. �= 0 (note
that λ = 0 gives the Minimal Einstein-Aether theory which
will be discussed in the next section), the aether congruence
must be geodesics since aμ = 0, and in this case, since λ is

an arbitrary constant, the covariant divergence of the aether
equation (27) produces

�θ + λ

c2
θ = 0, (c2 �= 0) (30)

where � ≡ ∇μ∇μ. This is the Klein–Gordon equation for
the expansion of the aether field with the “mass” m ≡ λ/c2,
where λ may be assumed to be positive for having a positive
mass. On the other hand, when λ is constant, we can also
write (26) as

Gμν + (� − λ)gμν = c2

2
θ2gμν + λ vμvν + 8πG T M

μν, (31)

which means that the bare cosmological constant � is shifted
– the Lagrange multiplier behaves like a cosmological con-
stant.

One last observation from the generic equation (26) is that
the right-hand side is of the perfect fluid energy–momentum
tensor form; that is, we can write (26) as

Gμν + �gμν = (ρ + p)vμvν + pgμν + 8πG T M
μν, (32)

with

ρ = −c2

2
θ2, p = λ + c2

2
θ2, (33)

which may be interpreted as the “energy density” and the
“pressure” related to the aether field present in spacetime.

4 Minimal Einstein-Aether theory

As we stated previously, Minimal Einsten-Aether Theory is
obtained by letting λ = 0 or, equivalently, θ = const. (pos-
sibly zero) in (26). In this case, the filed equations simply
reduce to

Gμν + �gμν = c2

2
θ2gμν + 8πGT M

μν, (34)

and the aether equation (13) is satisfied identically. At this
point, it is worth noting that the so-called Minimal Einstein-
Aether Theory studied in [31] is just a special case of our
discussion when θ = 0 specifically. In addition to the triv-
ial Einstein limit c1 = c2 = c3 = c4 = 0, we now have a
nontrivial limit c1 = c3 = c4 = 0 and θ = const. which is
equivalent to the Einstein theory with a shifted cosmological
constant (� − c2

2 θ2). Observe that the contribution from the
aether field to the bare cosmological constant is negative as
c2 is positive; hence the aether field reduces the cosmolog-
ical constant. This result is a generalization of [31] where
the expansion is assumed to be zero. In our case, the Kerr
metric with a cosmological constant, the Carter metric [46],
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is also an exact solution of the Einstein-Aether theory. The
pp-wave metric, the AdS wave metric, and all Kerr–Schild–
Kundt metrics [47–53] are solutions to this minimal theory.

The unit timelike vector vμ satisfies the differential equa-
tion ∇μvμ = θ = constant. For stationary spacetimes, this
equation reduces to

∂i (
√−g vi ) = √−g θ, (35)

where the sum above runs over the spatial indices. The zeroth
component of the vector is found from vμvν = −1. The only
field equation to be solved in Einstein-Aether Theory is given
in (35) which is a linear partial differential equation for the
space components of the vector vμ. For nonstationary cases
such as all Kerr–Schild–Kundt family of metrics we have a
similar equation

∂a (
√−g va) = √−g θ, (36)

where the sum above covers all coordinates except for a
cyclic coordinate on which the metric does not depend. The
remaining component of the timelike vector vμ is found from
vμvν = −1. If the spacetime has no Killing vectors, then one
solves the differential equation

∂α (
√−g vα) = √−g θ, (37)

where the sum above covers all indices. One solves the above
differential equation by eliminating one of the components
of vμ by using vμvν = −1.

5 Conclusions

We first considered the limit c1 = c3 = c4 = 0 in general
and reduced the Einstein-Aether field equations to Einstein
field equations with a perfect fluid distribution where the
expansion parameter is nonconstant. We then showed that
Einstein-Aether theory has a nontrivial limit to Einstein’s
theory where the aether field has a constant expansion with
c1 = c3 = c4 = 0. This result is equivalent to stating that
in this limit, the cosmological constant is shifted and the
effective cosmological constant is less than the bare cosmo-
logical constant that appears in the Lagrangian or the field
equations. Therefore the aether field in this setting provides a
natural way to reduce the cosmological constant which the-
oretically can be very large yet experimentally very small.
From the observational constraints (11) among the coupling
constants, cθ = 3c2 can be considered to be the largest one.
Hence another way of interpreting Minimal Einsten-Aether
Theory is that it is an approximation of Einstein-Aether the-

ory by ignoring the contributions of the other coupling con-
stants except c2 and assuming θ = const.
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