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Abstract A novel theory was proposed earlier to model
systems with thermal gradients, based on the postulate that
the spatial and temporal variation in temperature can be recast
as a variation in the metric. Combining the variation in the
metric due to the thermal variations and gravity, leads to the
concept of thermal gravity in a 5-D space-time-temperature
setting. When the 5-D Einstein field equations are projected
on to a 4-D space, they result in additional terms in the field
equations. This may lead to unique phenomena such as the
spontaneous symmetry breaking of scalar particles in the
presence of a strong gravitational field. This theory, origi-
nally conceived in a quantum mechanical framework, is now
adapted to explain the galaxy rotation curves. A galaxy is
not in a state of thermal equilibrium. A parameter called the
“degree of thermalization” is introduced to model partially
thermalized systems. The generalization of thermal gravity
to partially thermalized systems, leads to the theory of many-
body gravity. The theory of many-body gravity is now shown
to be able to explain the rotation curves of the Milky Way and
the M31 (Andromeda) galaxies, to a fair extent. The radial
acceleration relation (RAR) for 63 galaxies, with their galac-
tic masses spanning three orders of magnitude, has been repli-
cated. Finally, the wide binary star (WBS) system is touched
upon.

1 Introduction

Einstein’s field equations [1] have proven to be very effec-
tive in explaining the phenomenon of gravity. Various exper-
iments [2–7] including the detection of gravitational waves
[8,9] and gravitational lensing [10,11] have reinforced Ein-
stein’s general theory of relativity. The galaxy rotation curves
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have however been baffling, to say the least. Newtonian
gravity, or Einstein’s general theory of relativity, predicts
the orbital speeds of stars around the center of a galaxy to
decrease radially, as one goes away from the center. However,
the stars are seen to have a constant speed [12–15]. Many the-
ories have been formulated to explain the rotational speed of
stars or what is known in the literature as the galaxy rota-
tion curves. The theories propounded to explain the galaxy
rotation curves can be classified into two categories. The first
category hypothesizes the existence of a hidden mass or dark
matter [16–20], while the second looks at the modification
of the laws of gravity, especially for weak gravitational fields
[21–26]. The current article falls within the category of mod-
ified gravity. However, importantly, the theory has not been
developed with the goal of explaining the galaxy rotation
curves, unlike many other such theories. The genesis of the
current theory lies in modeling spatial and temporal varia-
tions of thermal systems, and can be validated experimentally
[27,28]. Moreover, the theory is manifestly relativistic.

Reference [29] first introduced the concept of recasting
the variation in the temperature as a variation in the metric.
This was done for systems in local thermal equilibrium. The
concept was used to calculate the quark-antiquark potential,
in a quark gluon plasma, using the anti de-Sitter/conformal
field theory (AdS-CFT) correspondence. The concept was
placed on firmer grounds in Ref. [27], using the Polyakov
loop, the partition function, the geodesic equation etc. Cal-
culations were performed in the field theoretic domain to
calculate the pressure and the energy density of a scalar gas
system, possessing spatial thermal gradients. The interpreta-
tion of the geodesic equation in the context of a curved space
due to thermal variations was explained in Ref. [27]. The
formulation was extended to thermal systems with tempo-
ral variations in a 5-D space–time–temperature framework,
in Ref. [28]. Calculations were made for the energy den-
sity of a scalar gas system with a time varying temperature.
Gravitational fields were combined with the metric modifi-
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cations for temperature variations. This was shown to lead
to novel phenomena like the spontaneous symmetry break-
ing of scalar fields under a very strong gravitational field,
if the scalar field is non-minimally coupled with the Ricci
scalar. The new phenomenon manifests due to the additional
terms that appear in the Ricci tensor, if the 5-D Einstein field
equations are expressed in terms of 4-D operators [28].

The above formulation is now applied to explain the
galaxy rotation curves. Unfortunately, the application is not
straightforward, as a galaxy does not constitute a thermal
medium in thermal equilibrium. However, a system being or
not being in thermal equilibrium is not a binary state. There
could be varying degrees of equilibration. It would depend
on the extent to which the particles constituting the system
have interacted and influenced each other. A system of par-
ticles with nil interaction with each other, continue to be in a
state of absolute non-equilibrium. The behavior of one parti-
cle has no bearing on another particle, and the system is just
a collection of individual particles. A system, where parti-
cles interact with each other to such an extent, that only the
ensemble properties describe the state of the system (namely
the Fermi–Dirac or Bose–Einstein statistics), can be said to
be in thermal equilibrium. While the stars in a galaxy are
not in thermal equilibrium (either local or global), they do
have a certain degree of interaction with each other. A given
star would be affected by the tugs and pulls of the nearby
stars and the interstellar gasses. To capture the aforemen-
tioned phenomenon, a degree of equilibration parameter, k,
is introduced.

A system with k = 0, constitutes a completely non-
interacting system, and thus in complete non-equilibrium.
In this case, we shall later see that the equations of grav-
ity reduce to the classical Einstein field equations in a 4-D
space-time.

The rest of the article is as follows. An overview of the the-
ory developed in Refs. [27,28] is given in Sect. 2. The appli-
cation of the theory to galaxy rotation curves begins from
Sect. 3. The field equations in 5-D space-time-temperature
are solved in the weak field limit in Sect. 3. Numerical simu-
lations are performed in Sect. 4 for the Milkyway and M31.
Other phenomena such as pseudo mass, RAR, wide binary
star systems, the Bullet cluster and the ultra diffuse galaxies
(UDG) are touched upon in Sect. 5. Finally, Sect. 6 draws
the conclusions.

2 An overview of the underlying theory

A brief overview of the theory developed in Refs. [27,28] is
now provided. The reader is, however, referred to Refs. [27,
28], for the motivation, derivations, inferences and details of
the theory.

2.1 The 5-D and 8-D space

We begin by summarizing the 5-D and 8-D spaces, intro-
duced in Ref. [27]. A covariant approach could involve con-
sidering a complex 4-D space as Xμ ≡ xμ + iβμ, with xμ

being the conventional space-time, and βμ = βuμ, where,
uμ is the four-velocity representing the flow of the ther-
mal medium, and β is the inverse temperature. It is trivially
seen that this space, under a Lorentz boost, would trans-
form as, X ′ν = �ν

μX
μ, where �ν

μ represents the Lorentz
transformation. If the thermal medium is stationary, i.e.,
uμ = (1, 0, 0, 0), then the complex space-time reduces to
(t + iβ, x, y, z). In the case of a time invariant system, it
is sufficient to consider the sub-space (iβ, x, y, z), which
forms the co-ordinate space for the imaginary time formal-
ism. One might also be tempted to view the original 4-D
complex space, xμ + iβμ, as a 8-D, βμ × xν , space. The 8-D
space under a Lorentz boost would transform as:[

β ′γ
x ′δ

]
=

[
�

γ
α 0

0 �δ
β

] [
βα

xβ

]
. (1)

Let us consider the following metric tensor in this 8D space:

G8D =
[
hρσ 0

0 gμν

]
. (2)

The ρ, σ, μ and ν indices vary within their 4-D subspaces
respectively. The metric elements, gμν , are the usual metric
elements describing the curvature of space-time, xμ, under
a gravitational field. In the limit uμ = (1, 0, 0, 0), the 8-
D βμ × xν space, reduces to the five dimensional space
(iβ, t, x, y, z). Under the additional more restrictive condi-
tions,

• the thermal bath and the system immersed in it is time
invariant,

• g00 = 1; g0i = 0 ∀i = 1, 2, 3,

it suffices to consider the 4-D Euclidean subspace, (iβ, x, y, z),
which again leads to the imaginary time formalism. The met-
ric for the 4-D sub-space, (iβ, x, y, z), can be inferred from
Eq. (2) as:

GEuc =
[
h00 0
0 gi j

]
, (3)

where i, j = 1, 2, 3. The interpretation of h00 is explained
in Sect. 2.2.

2.2 The partition function

In Ref. [27], the Quantum field theoretic aspects of a non-time
varying thermal field with spatial variations, were developed.
In Ref. [28], it was extended to time varying thermal fields
in the 5-D space-time-temperature (iβ, t, x, y, z). We now
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summarize the Quantum field theoretic aspects of the more
generic case of a time varying thermal field, developed in
Ref. [28]. Importantly, this section provides a brief as to why
the variation in the temperature can be recast as a variation
in the metric [27,28]. This would form a crucial aspect of
the theory, which would subsequently be used to model the
galaxy rotation curves. The field theory is developed for a
non-interacting Lagrangian, in 5-D space-time-temperature.
The Lagrangian density in a 5-D space, for a neutral scalar
field would be,

L(φ̂, ∂a φ̂) = 1

2

(
∂a φ̂∂a φ̂ − m2φ̂2

)
, (4)

with the index a = 0, 1, 2, 3, 4 corresponding to the dimen-
sions [τ, t, x, y, z]. τ is the inverse temperature and varies
from 0 to β. The sign convention used is (−,+,−,−,−).
This gives rise to the equation of motion:

∂a∂
a φ̂ + m2φ̂ = 0. (5)

The constraining 5 momentum delta function would be,
δ(E2 − ω2 − p2 − m2), and the 5-D integral measure is:

1

β

∑
n

∫
d3 p

(2π)3

dE

2π
2πδ(E2 − ω2

n − p2 − m2)

= 1

β

∑
n

∫
d3 p

(2π)3

1

2E
, (6)

where, the Matsubara frequency, ωn = 2nπ
β

, for a boson.
As mentioned in Ref. [27], E , may be considered the orig-
inal intrinsic energy of a particle, and ωn = i Ec, can be
considered as the interaction energy of the particle with the
thermal medium. The variable, ωn , determines the decay or
enhancement of a particle wave-function with temperature
(for example, the Dirac spinor in Ref. [27]). Since E and ωn

lie in orthogonal dimensions (conjugate momenta to time and
temperature respectively), the magnitude of the total energy
is then = √

E2 − ω2
n(=

√
E2 + E2

c ). It is intuitive, that a
particle’s 3-momentum would be affected by both E and Ec,
and not just E . Thus, one may consider E2 −ω2

n = p2 +m2.
A portion of the particle’s original energy, E , is lost due to
interaction with the thermal medium. This provides an intu-
ition behind the delta function, δ(E2 − ω2

n − p2 − m2).
The operator for a neutral scalar field in 5-D space-time-

temperature is,

φ̂(x, τ, t) = 1

β

∑
n

∫
d3 p

(2π)3

1√
2Ep

×
∑
s

(
a†
p,ωn

e−i px e−iωnτ + ap,ωn e
ipx eiωnτ

)
. (7)

The operator, a†
p,ωn , creates a particle with 3-momentum

p, and Matsubara frequency ωn .

One may premise the below commutation relation:

[ap1,ωn1 , a
†
p2,ωn2

] = (2π)3δ3(p1 − p2)ζ(β)δn1,n2, (8)

where, ζ(β) is a scalar normalization function, and needs to
be determined. Let us define,

ap =
∑
n

f (ωn)ap,ωn ,

a†
p =

∑
n

f ∗(ωn)a
†
p,ωn

. (9)

Equation 9 can be interpreted in the following way. When a
momentum state |p〉 is created, then |p〉 itself can be treated
as a superposition of the momentum-Matsubara eigenstates
|p, ωn〉, with probability amplitudes f (ωn). Since f (ωn) is
a probability amplitude,

∑
n | f (ωn)|2 = 1. In Ref. [28], it

was shown that the commutator,

[ap1, a
†
p2

] =
∑
n1

(2π)3ζ(β)δ3(p1 − p2)| f (ωn1)|2. (10)

Since
∑

n1 | f (ωn1)|2 = 1, let us assign ζ(β) = 1, in Eq. (10),
to obtain,

[ap1, a
†
p2

] = (2π)3δ3(p1 − p2). (11)

Thus, the usual commutation relation between the 3-
momentum annihilation and creation operator is recovered.

We now proceed to determine the conjugate momenta and
the Hamiltonian. There can be a conjugate momenta w.r.t.
either the time variable or the temperature variable, i.e.,

π̂t = δL
δ

∂φ̂
∂t

; π̂β = i
δL
δ

∂φ̂
∂τ

. (12)

The corresponding Hamiltonian densities are:

Ht = π̂t
∂φ̂

∂t
− L; Hβ = −i π̂β

∂φ̂

∂τ
− L. (13)

They would obey the evolution equations:

i
∂φ̂

∂t
= [φ̂, Ht ]; ∂φ̂

∂τ
= [φ̂, Hβ ]. (14)

Since we are modeling a thermal system, and are interested
in evolution in τ , the main object of interest would be Hβ

and πβ . For convenience, we now drop the subscript β. In
the rest of this section, unless otherwise mentioned, H and
π̂ refer to Hβ and π̂β . We now follow a similar procedure as
Refs. [27,30], albeit modified for a 5-D space with thermal
variations. Let φ(x) and |φ(x)〉 be the eigenfunction and the
eigenket of the Schrodinger picture field operator φ̂(x, 0, 0),
while, π(x) and |π(x)〉 be the eigenfunction and the eigenket
of the conjugate momentum field operator π̂ (x, 0, 0). In other
words,

φ̂(x, 0, 0)|φ〉 = φ(x)|φ〉,
π̂(x, 0, 0)|π〉 = π(x)|π〉. (15)
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The eigenkets, |φ〉 and |π〉, obey the following relation:

〈φ|π〉 = exp

(
i
∫

d3xπ(x)φ(x)
)

. (16)

For a time-dependent system, the time-dependent Hamilto-
nian can be written as:

H(t) = H0 + HI (t), (17)

where H0 is the time independent part, and HI (t) be the time
dependent part. H0 is written in terms of the Schrodinger
picture operators π̂(x, 0, 0) and φ̂(x, 0, 0).

H0 =
∫

d3xH0(π̂(x, 0, 0), φ̂(x, 0, 0)) ≡
∫

d3xH0(x).

(18)

For simplicity of notation, the form, H0(x), is used as a rep-
resentation of H0(π̂(x, 0, 0), φ̂(x, 0, 0)).

The free Hamiltonian density, corresponding to the
Lagrangian in Eq. (4), would then be,

H0 = 1

2

⎛
⎝π̂2 + (∇φ̂)2 −

(
∂φ̂

∂t

)2

+ m2φ̂2

⎞
⎠ . (19)

But, ∂φ̂
∂t = −i E φ̂. In a gas composed of scalar fields, which

is equilibrated, E → 0, as only the ensemble interaction
energy, captured by the Matsubara frequency, ωn , is non zero
[27]. We are then left with the standard imaginary time for-
malism. On similar lines, in a vacuum, as β → ∞, ωn → 0.
Then, the only energy left is the particle energy, E . The
Lagrangian in Eq. (4), then boils down to the normal 4-D
space-time Quantum Field Theory (QFT). With, E → 0, the
Hamiltonian density in Eq. (19) becomes,

H0 = 1

2

(
π̂2 + (∇φ̂)2 + m2φ̂2

)
. (20)

Equations (11) and (20), indicate that the generalizations to
5-D, characterized by Eqs. (7), (8), (12), (13), are backward
compatible with the existing 4-D imaginary time formalism.
A fairly generic time-dependent Hamiltonian density can be
written as:

HI (t) =
∫

HI (x, t)d3x, (21)

where,

HI (x, t) =
∑
i

ci (x, t) fi (φ̂, ∂μφ̂, π̂ , ∂μπ̂), (22)

and ci (x, t) are arbitrary scalar functions. However, varia-
tions in ci (x, t), should not be sharp enough to throw the
system out of local thermal equilibrium. In Ref. [28], the
thermodynamic properties were evaluated for the below spe-
cific cases:

1. HI (x, t) = V (x, t)φ̂2,

2. HI (x, t) = λ(x, t)φ̂4.

The evolution operator Uβ(Hβ, β, t) provides the evolution
w.r.t. β, i.e.,

Uβ(Hβ, β, t) = exp

(
−

∫ ∫ β(x,t)

0
Hβ(x, t)dτd3x

)
. (23)

As mentioned earlier, we drop the subscript β from U , H
and H, and obtain,

U (H, β, t) = exp

(
−

∫ ∫ β(x,t)

0
H(x, t)dτd3x

)
,

= exp

(
−

∫ ∫ β0

0
s(x, t)H(x, t)dτd3x

)
, (24)

where, H(x, t) = H0(x) + HI (x, t). The integral in
Eq. (24) is akin to evaluating H(x, t) in a curved 5-D space,
with metric [−s(x, t)2, 1,−1,−1,−1] and volume element
s(x, t)dτd3x , at time slice t . We can then define the parti-
tion function Z(β0, t), at a time slice, t , in 5-D space-time-
temperature as:

Z(β0, t) = tr
[〈φ f |U (H, β0, t)|φ0〉

]
, (25)

with, |φ0〉 and |φ f 〉 being the eigenkets at τ = 0 and τ = β0

respectively.
Finally, the partition function after evaluation using path

integral methods, becomes [28],

Z(β0, t) = tr K (φ f , φ0, β0, t)

=
∫
periodic

Dφ

∫
Dπ

2π
exp

{∫ β0

0
dτ

∫
d3x

√
g5(x, t)

×
[
iπ(x, τ )

1

s(x, t)
Dτ φ(x, τ )

−H(π(x, τ ), φ(x, τ ), t)
]}

. (26)

The above expression is precisely what one would have
obtained if one had considered a space with the metric
G5 = diag[−s(x, t)2, 1,−1,−1,−1]. This is a curved 5-
D space-time-temperature. Further, for the metric, G5 =
diag[−s(x, t)2, 1,−1,−1,−1]. We have,

√|G5| = s(x, t).
We denote the determinant of the Euclidean metric, |G5|, by
g5. This indicates that the variation in the temperature can
be recast as a variation in the metric. Additional intuition
and justification in terms of Polyakov loop, and AdS-CFT
duality, are provided in Ref. [27].

2.3 Einstein field equations

We now touch upon the combined effects of both gravity and
temperature variations, first introduced in Ref. [28]. We use
the letters, a and b, as indices for the 5-D space-time, i.e., a,
b = 0, 1, 2, 3, 4, with the index 0 referring to the temperature
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dimension, and the index 1 referring to the time dimension,
The letters, μ and ν, are indices for the 4-D Lorentzian space-
time, i.e., μ, ν = 1, 2, 3, 4. A superscript, (N ), within brackets,
refers to N dimensional space. For example, ∇(4)

μ , refers to
the covariant derivative in 4-D space-time.

Based on Eq. (2), we consider the 5-D metric, g(5)
ab , as:

g(5)
ab =

[
s2(g(4)

μν (x, t), x, t) 0

0 g(4)
μν

]
, (27)

where, g(4)
μν , is the usual metric tensor in 4-D space-time, and

is purely due to gravitational fields. It is also noted that s
would now additionally be a function of g(4)

μν also. For the

metric, g(5)
ab , the Einstein field equations in the 5-D space

become:

R(5)
ab − 1

2
g(5)
ab R

(5) = 8πG

c4 T (5)
ab , (28)

where,

T (5)
ab = − 2√

g(5)

δS

δg(5)
ab

, (29)

with, S, being the action. Finally the 5-D Ricci scalar, R(5),
can be expressed as:

R(5) = R(5)a
a = R(4) − 2

s
∇(4)μ∇(4)

μ s. (30)

In Ref. [28], Eq. (28) was shown to predict new phenom-
ena such as the spontaneous symmetry breaking of scalar
fields in the presence of a strong gravitational field.

This concludes the overview of the theory developed in
Refs. [27,28], and we now apply the theory (Eq. (28) in par-
ticular) to galactic systems.

3 Formulation

Based on the theory developed in [28], we consider the 5-D
metric, g(5)

ab , as:

g(5)
ab =

[
s2(x, t) 0

0 g(4)
μν

]
, (31)

where, g(4)
μν , is the usual metric tensor in 4-D space-time, and

is purely due to gravitational fields, while, s(x, t) captures
the variation in the inverse temperature, β. The sign conven-
tion used is (+,−,+,+,+). For a system that is in thermal
equilibrium, the Einstein field equation in 5-D space-time-
temperature is given by Eq. (28) (Ref. [28]), i.e.:

R(5)
ab − 1

2
g(5)
ab R

(5) = 8πG

c4 T 1(5)
ab , (32)

where, the stress energy tensor, T 1(5)
ab , is given by:

T 1(5)
ab =

(
ρ + P1

c2

)
uaub + P1g

(5)
ab , (33)

with, ρ being the density, and P1, the pressure. The Ricci
tensor, R(5)

ab , can be expressed in terms of the 4-D covariant

derivative operator, ∇(4)
μ , and the 4-D Ricci tensor, R(4)

μν , as:

R(5)
ab =

[
Rββ 0

0 R(4)
μν − 1

s ∇(4)
μ ∇(4)

ν s

]
, (34)

where, Rββ = −s∇(4)μ∇(4)
μ s. In contrast, for systems that

are non-interacting and in complete non-equilibrium, the par-
ticles behave as if there are no other particles.

Without an ensemble or temperature concept, the temper-
ature dimension becomes meaningless. To model this sce-
nario, let us take thermal gradient → 0, i.e., ∂μs → 0, fol-
lowed by s → 0. A system with zero temperature cannot
have thermal gradients. This mandates ∂μs → 0. ∂μs → 0
leads to a system with uniform temperature. Subsequently,
s = 0, eliminates the temperature dimension from the metric
dS2 = s2dβ2 − dt2 + dx2 + dy2 + dz2. As, ∂μs → 0, it
is evident that the 5-D Ricci tensor in Eq. (34), is reduced to
a 4-D Ricci tensor. The reduction to 4-D field equations is
explained in more detail in Ref. [28]. Moreover, the reduc-
tion of 5-D thermal field theory to the standard 4-D imaginary
time formalism or the normal 4-D space-time quantum field
theory is also covered in Ref. [28]. One may also refer to
Eqs. (9) to (20), for the relations between the field theories in
5-D and 4-D. After reduction to 4-D, the 4-D Einstein’s field
equations, represented in 5-D, are:
[

0 0

0 R(4)
μν

]
− 1

2

[
0 0
0 gμνR(4)

]
= 8πG

c4

[
0 0
0 T 2

μν

]
. (35)

The stress energy tensors, T 1 and T 2, have the same ρ, but
different pressures, P1 and P2. P1 is the pressure due to an
ensemble interacting gravitation-ally, while P2 ∼ 0 in the
absence of any ensemble (a single particle has no concept of
pressure).

An equation representing the behavior of a partially ther-
malized system, needs to be a generalization of Eqs. (32)
and (35), with Eqs. (32) and (35) being special cases. To
motivate the generalization, let us rewrite Eq. (32) by taking
all terms that depend on s to the R.H.S.. This is inspired by the
fact that s is related to inverse temperature, and thus related to
inverse energy, and consequently, can be interpreted to act as
a source causing space-time curvature. We also apply the sim-
plification that, for a time-invariant system, u0 = c ∂β

∂τp
= 0,

where β is the inverse temperature, and τp is the proper time.
Equation 32 then becomes,
[

0 0

0 R(4)
μν

]
− 1

2

[
0 0
0 gμνR(4)

]
= 8πG

c4
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×
⎡
⎣ s2c4R(4)

16πG + s2P1 0

0 T 1
μν + c4

(
1
s ∇μ∇νs− gμν

s ∇α∇αs
)

8πG

⎤
⎦ ,

(36)

where, α = 1, 2, 3, 4, and we have skipped the superscript
(4) in ∇(4) for simplicity of notation. The terms in the R.H.S.
of Eq. (36), can be viewed as new source terms describing
a thermalized system, with thermal gradients, which causes
the curvature of 4-D space-time. We now hypothesize that
the source term of a partially thermalized system may be
considered to be a linear combination of the source terms in
Eqs. (35) and (36). In other words,

T p(5)
ab = (1 − k)

[
0 0
0 T 2

μν

]
+ k

×
⎡
⎣ s2c4R(4)

16πG + s2P1 0

0 T 1
μν + c4

(
1
s ∇μ∇νs− gμν

s ∇α∇αs
)

8πG

⎤
⎦ .

(37)

Here, k represents the degree or extent of equilibration. Addi-
tional interpretation on k in the context of a galaxy, is pro-
vided in Sect. 3.3. The corresponding 5-D Einstein field equa-
tions for a partially thermalized system are then,
[

0 0

0 R(4)
μν

]
− 1

2

[
0 0
0 gμνR(4)

]
= 8πG

c4 T p(5)
ab . (38)

If k is very small (as in a galaxy with hindsight), then, 1−k ∼
1, and Eq. (38) can be written as

− 1

2
ks2R(4) = 8πG

c4 kP1s
2, (39)

and,

Rμν − k

s
∇μ∇νs − 1

2
gμνR

(4)

+kgμν

s
∇α∇αs = 8πG

c4 Tμν, (40)

where, Tμν = (ρ + P2
c2 + kP1

c2 )uμuν + gμν(P2 + kP1). The
form of the pressure terms in Tμν , suggests, one can define
an effective pressure,

Pef f = P2 + kP1. (41)

For the sake of completeness, we note that, if k were not
small, one would have obtained:

Pef f = (1 − k)P2 + kP1. (42)

Pef f can be interpreted as the pressure of a partially thermal-
ized system, with degree of equilibration, k. If k is small one
can neglect kP1, and given that P2 ∼ 0, Eq. (40) reduces to,

Rμν −k

s
∇μ∇νs − 1

2
gμνR

(4) + kgμν

s
∇α∇αs

= 8πG

c4 ρuμuν . (43)

Making use of the fact that u1 = cγ , the time component
(μ = ν = 1) of Eq. (43), becomes:

R11 −k

s
∇1∇1s − 1

2
g11R

(4) + kg11

s
∇α∇αs

= 8πG

c2 ργ 2. (44)

Since, the velocity of stars is very small, We take γ ≈ 1.
In the weak field approximation, gμν = ημν + hμν , with

||hμν ||  1. If additionally, hμν is time-invariant, i.e., the
time derivatives are 0, we then have,

R11 + 1

2
R(4) ≈ −1

2
∇2h11 + 1

2

(
−∇2h + ∂α∂βh

αβ
)

, (45)

where, ∇2 represents the Laplacian operator, ∂2
x +∂2

y +∂2
z . If

k is very small, then we can take a perturbation, i.e., hμν =
− 2φ0(x)

c2 δμν + �hμν , where,

�hμν =
[

�h11 0
0 �hi j

]
, (46)

with i, j = 2, 3, 4. We have ended up introducing an extra
variable φ0. In order to unambiguously specify the hμν split
between − 2φ0(x)

c2 δμν and �hμν , we apply the constraint:

∇2�hs − ∂2
x�h22 − ∂2

y�h33 − ∂2
z �h44

−2
(∂2�h12

∂x∂y
+ ∂2�h23

∂y∂z
+ ∂2�h13

∂x∂z

) = 2�h11, (47)

where, �hs = �h22 + �h33 + �h44. Then,

R11 + 1

2
R(4) = 2

c2 ∇2φ(x), (48)

where 2φ

c2 = h11 = 2φ0
c2 − �h11. Substituting Eq. (48) in

Eq. (44), and recognizing, ∇1∇1s ≈ ∂2 s
∂t2

= 0 for a time-
invariant s, and g11 ≈ −1, we obtain in the weak field case,

∇2φ(x) = 4πGρ(x) + kc2 1

2s(x)
∇2s(x). (49)

At large distances, where ρ becomes very small, the potential
is dominated by kc2 1

2s∇2s term. For k = 0, one recovers the
Newtonian gravity.

A two-body system, where there is no concept of an
ensemble, illustrates a system that is quite precisely described
by k = 0. The solar system is almost a two-body system, with
k being very near zero or zero. The 4πGρ term is signifi-
cant for a solar system, and hence dominates. A system with
k = 1, constitutes a thermal system in a gravitational field
and, we may call this theory, the theory of thermal gravity.
This is essentially, the Einstein field equations in 5-D space-
time-temperature as described in Ref. [28]. A system with
0 < k < 1, constitutes a partially thermalized, many-body
system in a gravitational field. We may call this theory, the
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theory of many body gravity (MBG). The value of k is a free
parameter, and is determined by a fit to the data in this paper.
One may extend the above scenario, to systems larger than
the galaxy. On a much larger cosmic scale, it may be possible
to envisage galaxies, as point particles interacting with each
other. It is now shown that the MBG theory is able to explain
the rotation curves of the Milky Way and the M31 galaxies.

For the rotation curves, it is useful to determine ∇φ in
the radial direction. Once, Eq. (49) is solved, then, the radial
component of ∇φ is:

∂φ

∂r
= ∂φ

∂x
cos(θ) + ∂φ

∂y
sin(θ), (50)

where, θ is the angle subtended by the radial vector r on the
x-axis.

3.1 The geodesic equations

We solve the geodesic equation for the metric in cylindrical
co-ordinates, i.e., for the metric:

g(5)
ab = diag

[
s2,−(1 + 2φ

c2 ) + �h11, 1 − 2φ

c2 + �hrr ,

r2(1 − 2φ

c2 + �hθθ ), 1 − 2φ

c2 + �hzz

]

+spatial non-diagonal elements. (51)

For a time-invariant galactic system, we assume the condi-
tion, ∂s

∂t = 0. Further, if a star has only orbital velocity, then,
∂r
∂t = 0, ∂z

∂t = 0. Also, close to the galactic plane, we assume
that derivatives of the metric components w.r.t z ∼ 0, due to
symmetry above and below the r − θ plane.

Consequently, for small φ0 and �hμν , taking the lowest
power terms in φ0 and �hμν , the geodesic equations lead to:

r

(
∂θ

∂t

)2

=
(

∂φ0

∂r
− c2

2

∂�h11

∂r

)
= ∂φ

∂r
. (52)

Finally,

v2 = r2
(

∂θ

∂t

)2

= r
∂φ

∂r
, (53)

where, v is the rotational speed of the star.

3.2 Modeling of s

For a partially thermalized system like a galaxy, the stress
energy tensor is modeled as a linear combination of the stress
energy tensors of a thermalized system in local thermal equi-
librium, with variation in inverse temperature, s, and a sys-
tem in complete non-equilibrium (Ref. Eq. 37). Though, s
appears in Eq. (49), only the properties of a galaxy can be
measured. Thus, it is required to relate s to a state variable

of a galaxy, which can then be used to determine s, or used
in place of s.

For a fully thermalized system, the energy expectation
value is given by

〈E〉 = 1

Z

∑
i

ni Ei exp

(
− Ei

KT

)
, (54)

where,ni particles have energy Ei , Z is the partition function,
and K is the Boltzmann constant. For a given distribution,
ni , it is a bijective mapping between 〈E〉 and temperature,
T . Thus, the temperature of a thermal system is a measure
of the energy expectation value of the system. As long as
the distribution is constant, one may use the two quantities
interchangeably. In general, the inverse temperature or s, can
be generalized to some function of the variation of the inverse
energy 〈E〉, i.e., s = 1

f (〈E〉) . The function itself may depend
on the distribution of particles, such as Boson gas, Fermion
gas, classical system, etc. Let 1

KT (x) = β(x) = s(x)β0, with
β0 = a constant, be the inverse temperature at a point x in the
thermalized system (Refs. [27,28] for the relation β(x) =
s(x)β0). For a classical system in local thermal equilibrium,
the expected energy, 〈Ecl(x)〉, of a particle at a point x, can
be taken as: 〈Ecl(x)〉 ≈ KT (x), and one obtains,

s(x) ≈ 1

β0〈Ecl(x)〉 . (55)

Thus, for a thermalized system (the degree of equilibration
k = 1), the energy expectation value and the temperature can
be used interchangeably, as they represent the same physics.

For a partially thermalized system (0 < k < 1), from
Eq. (42), we have, Pef f = (1 − k)P2 + kP1. Here, P1 is the
pressure of the thermalized system, with inverse temperature,
β(x) = s(x)β0. Then, the energy expectation value, 〈E(x)〉,
of a particle at a point x, in a partially thermalized system is,

〈E(x)〉 = 1

�n(x)

∫
�Vx

Pef f dV

= 1

�n(x)

∫
�Vx

{(1 − k)P2 + kP1} dV, (56)

where, �n(x) is the number of particles within a small vol-
ume, �Vx, around the point x. In Sect. 3, we had taken
P2 ∼ 0, for a non-interacting system in complete non-
equilibrium, like an isolated single particle, or collection of
isolated non-interacting particles, as there is no concept of
pressure for such a system. We then obtain,

〈E(x)〉 = 1

�n(x)

∫
�Vx

kP1dV = k〈E1(x)〉, (57)

where, 〈E1(x)〉 = 1
�n(x)

∫
�Vx

P1dV , is the energy of a parti-
cle within the small volume, �Vx, existing in a thermalized
system at local thermal equilibrium, equilibrated via grav-
itational interactions. If the thermalized system is a classi-
cal system in local thermal equilibrium, then from Eq. (55),
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〈E1(x)〉 ≈ 1
β0s(x)

. Finally, from Eq. (57), we have:

〈E(x)〉 ≈ k

β0s(x)
. (58)

In a gravitational system, like a galaxy, the potential
energy of a particle (star) is proportional to the gravitational
potential, φ, it sees due to the presence of other particles
(stars) in the system. Subsequently, we take the energy expec-
tation value, 〈E(x)〉 ∝ φ(x), where φ is the gravitational
potential. Putting everything together, we get, s ∝ 1

φ
. It is

to be noted that, since 1
s ∇2s is scale-invariant, any constant

of proportionality in s is irrelevant. In this case, Eq. (49)
becomes:

∇2φ − kc2 φ

2
∇2 1

φ
= 4πGρ. (59)

3.3 Interpretation of k for a galaxy

Let us touch upon the intuitive reasons why the many-body
system may be expected to affect the dynamics of stars in a
galaxy. If there is no interaction between the stars, they sim-
ply act as individual particles and follow Einstein’s general
relativity. But in the event of interactions, the stars are not
able to act individually. They act like a bunch. The interstellar
gasses may augment the grouping effect. Their velocities are
affected by the position and velocities of the other stars and
gasses within the group. The extent to which they act like a
group is determined by the value of k.

To elaborate a little bit more, consider a particle mov-
ing under the influence of Newtonian gravity. It would have
a deterministic velocity v(t)deter . A particle which is part
of a fully thermalized system would have a random veloc-
ity expectation value 〈v(t)rand〉. But a particle which has a
combination of random velocity and deterministic velocity
could have the final velocity as:

v f inal = (1 − k)v(t)deter + k〈v(t)rand〉, (60)

where, k can be a constant, and determines the degree of
mixing. However, if instead of velocities, the energies are
linearly added, then the relation would be:

v2
f inal = (1 − k)v(t)2

deter + k〈v(t)2
rand〉. (61)

In the case of the stars in a galaxy, the k〈v(t)2
rand〉 obtains a

non-zero value due to the random interaction with the other
stars and gasses. Instead of adding energies which are scalars,
Eq. (37) incorporates a linear combination of the tensor form
of the energy, namely, the stress energy tensors. The ramifi-
cations of vrand and vdeter can be different. As an example, a
bunch of particles in random thermal motion can have a ten-
dency to fly away from each other (a negative Ricci scalar).
On the other hand a bunch of particles under each other’s
gravitational pull, will have a radial vdeter towards each other

(a positive Ricci scalar). A real system may be a combination
of both the effects. An explosive with an energy of explosion,
E, would expand. But, the gravitational effect of energy E ,
would try to contract, although a much weaker effect. The
resultant effects of these two phenomena is captured by the
MBG theory, with 0 < k < 1. k = 1 is a pure explosion,
while k = 0 is pure Einstein gravity. 0 < k < 1 indicates
a combination of the two phenomena. An implosive process
on the other hand would have a positive Ricci scalar, and
reinforce the gravitational force. In general, the random ther-
mal part can lead to a positive or negative contribution to the
Ricci scalar based on the sign of the second derivative term,
i.e., the 1

s ∇2s term in Eq. (49).
The explosion or implosion is an extreme case. Let us

instead moderate the random velocity effects significantly,
by reducing k. Let us also say that the reduction is to such
an extent, that the energy of the random component is com-
parable or lesser than the gravitational energy. In this case,
a particle rotating around the gravitational center of mass,
would see a decreased or increased pull towards the center,
leading to a decreased or increased rotational velocity.

In a galaxy, stars acquire a non-zero random velocity due
to interaction with other stars and gasses. The effect of such
interactions is captured by a non-zero k in the MBG. This
is however, a very feeble effect, and hence is manifest only
when gravity is very weak.

Another point of view would be to look at the equivalence
between the thermal and gravitational accelerations. Let us
say that there is an ant, confined to a safe and sealed, sound
proof, and thermally insulated titanium canister placed inside
the explosive material. The ant has no way to know whether
it is accelerating due to an explosion or due to gravity, essen-
tially suggesting an equivalence between the two accelera-
tions. Thus, both the phenomena should lead to curvature of
space-time.

A completely different point of view would be to consider
a thermalized state as a state of maximal entropy. Equation 37
then depicts a state, that is a linear combination of energy and
some function of entropy. An analogy can be found in ther-
modynamics, where one defines the free energy as a linear
combination of energy and entropy, i.e.,

�G0 = �E − ��S ′, (62)

where, G0, E , �, S ′, are the Gibbs free energy, energy, tem-
perature and entropy respectively.

The inference of Eq. (59) is that the whole is more than
the sum of the individual particles or stars. If the Newto-
nian gravity is extremely feeble, then the group effect can
dominate.
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Table 1 *Reference [32]; **Reference [33]; †Reference [34]

Galaxy Bulge Disc BH

Mb ρ0b n Rb (kpc) Md ρ0d Rd (kpc) MBH
1e10 1e11 1e10 1e6 1e6
M� M�

kpc2 M� M�
kpc2 M�

Milkyway 1.8* 68* 4* 0.5* 6.5* 844* 3.5* 3.7*

M31 3.1† 1.063 2.2** 1.0** 5.6† 324 5.3** 80†

3.4 Tully Fisher relation

At large distances in a galaxy, the mass density, ρ, is negli-
gible. For cases where ρ can be neglected, Eq. (59) can be
written as:

∇2φ ≈ kc2 φ

2
∇2 1

φ
. (63)

The term φ∇2 1
φ

is scale invariant, i.e., if we scale φ, the

term φ∇2 1
φ

does not scale. Consequently, based on Eq. (63),

in terms of scaling, ∇2φ ∝ k ⇒ ∇φ ∝ k. Near the galac-
tic plane, assuming symmetry above and below the galactic
plane, ∂φ

∂z ≈ 0. Then, in cylindrical co-ordinates, ∇φ ≈ ∂φ
∂r .

From Eq. (53), we then obtain,

v2 = r
∂φ

∂r
∝ k. (64)

The interaction a star experiences with the rest of the galaxy
would depend on the total number of stars in the galaxy
and their masses. Therefore, the degree of interaction, k, is
expected to be a function of the galactic mass, M . If k ∝ √

M ,
we reproduce the Tully Fisher relation [31]. Thus, empiri-
cally, we premise:

k ∝ √
M . (65)

In fact, in Sect. 5.2, it is shown that, k ∝ √
M is able to cap-

ture the trend spanning three orders of magnitude in galactic
masses. In Appendix A, mathematical arguments are pre-
sented, which show that the relation between k and M , should
resemble Eq. (65). However, the relation k ∝ √

M requires
deeper understanding.

4 Numerical simulations and results for Milkyway and
M31

Equation 59 is a non-linear partial differential equation
(PDE) in φ. To make the solution of Eq. (59) more tractable,
and allow numerical techniques like the discrete cosine trans-
form (DCT), we apply an initial estimate, s = 1

φclas
. Here,

φclas is obtained by solving the classical Einstein field equa-
tions, i.e., ∇2φclas = 4πGρ. The potential, φ, obtained by
solving Eq. (49), with s = 1

φclas
, then becomes a first order

Fig. 1 Milky way rotation curves: root mean square (r.m.s.) error =
σMBG = 9.3899 km/s, σNewton = 37.649 km/s

modification of φclas . We then iterate over the obtained func-
tion, φ, i.e., s is assigned the newly obtained value of φ,
and subsequently, Eq. (49) is again solved. In this work, the
results after four of these iterations, have provided a reason-
able fit to the observed galaxy rotation curve,

We solved Eq. (49), with s = 1
φ

, using 3D DCT with
Octave (a clone of Matlab). DCT was preferred over Fast
Fourier transform (FFT), since DCT returns real-valued coef-
ficients. A grid size of 256×256×256 was used at the start,
with a sampling rate of 0.5kpc per sample. In each succes-
sive iteration, we reduce the grid size, in order to remove
errors at the boundary of the grid, probably due to finite
size grid effects. The grid size for the fourth iteration was
150×150×150. The galactic mass distribution was modeled
as a 2D disc in the z = 0 plane. We model the mass distri-
bution in only one octant. The 3D DCT, by its very nature,
symmetrizes the distribution by mirroring the values in one
octant onto the other octants. Thus, by default, a symmetrical
3D distribution is obtained, even though the mass distribu-
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Fig. 2 M31 rotation curves: r.m.s. error = σMBG = 27.980 km/s,
σNewton = 83.076 km/s

Fig. 3 Milkyway: comparison of the NFW dark matter profile with the
pseudo mass curve. The pseudo mass curve depicts the density along
the galactic plane

tion is explicitly modeled in a single octant. This approach
enhances the quality of the numerical results. In the first iter-
ation, we take s = 1

φclas
in Eq. (49), and obtain φ1. In the next

iteration, assign s = 1
φ1

, and obtain φ2, and so on. To facil-
itate the use of DCT, we have chosen (x, y, z) co-ordinate

Fig. 4 M31: comparison of the NFW dark matter profile with the
pseudo mass curve. The pseudo mass curve depicts the density along
the galactic plane

system, even though, ρ has rotational symmetry around the
z-axis. This brings about some numerical issues. In order to
minimize the impact of such numerical errors, we take the
value of φ, and ∇φ, along the diagonal line, x = y, in the
plane, z = 0. We now present the results for the Milky way
and the M31 galaxies.

The values in the Table 1, have been obtained from Refs.
[32–34]. The parameters, ρ0b and ρ0d , have been calculated
for M31 based on the other M31 parameters in Table 1, and
assuming a flat 2D mass profile. The sersic profile is used
to model the mass distribution. The mass profile in the disc
region is taken as exponential. The observed experimental
data (red line) for the Milky way in Fig. 1 is obtained from
[35] and the observed data(red error bars) for the M31 in
Fig. 2 is obtained from [34]. Based on Eq. (65), the value of
k in the simulation is, k = 2.8157 × 10−11

√
Mgalaxy , where

Mgalaxy = MBH + Mb + Md . Although the value of k is

very small, the kc2

2s ∇2s term is able to dominate at large radial
distances, as the Newtonian gravity is very feeble. Overall,
in Figs. 1 and 2, the simulated curves from the proposed
MBG theory, lie relatively close to the observed experimental
values (red curve) to a reasonable extent, especially at larger
radial distances. The k = 0 curve provides the result based on
the usual Newtonian gravity and significantly underestimates
the galaxy rotation curve.
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Fig. 5 Milkyway: pseudo mass contours on a plane perpendicular to
the galactic plane. At the intersection of the r and z-axis (dashed lines)
with the inner contours, the curve is not very smooth. This is an artifact
of using DCT based numerical simulation and is not a real effect. In
the larger outer contours, the boundary aberration becomes less pro-
nounced. Due to the inherent periodicity of the DCT, it is performed
in only one quadrant. The aberrations near the axis are aberrations that
occur at the boundary. The full image is reconstructed by mirroring and
abetting the mirrored images in all the four quadrants

5 NFW curve, RAR, WBS and other phenomenon

5.1 The pseudo mass and the NFW curve

Let ∇2φ = 4πGρ + kc2

2 φ∇2 1
φ

= 4πGρe f f . Then, �ρ =
ρe f f −ρ = kc2

8πGφ∇2 1
φ

, becomes a pseudo mass, the analogue
of dark matter in the proposed MBG theory. The value of the
pseudo mass would depend on the value of ∇2 1

φ
, or � 1

φ
, in

the case of time-varying systems, and also on the value of k.
The Navarro–Frenk–White (NFW) [36] profile is a com-

monly used profile to model the dark matter distribution. In
Fig. 3, the NFW curve for the Milkyway is compared with
the Milkyway’s pseudo mass profile. The NFW curve for
Milkyway was obtained from Ref. [37]. The pseudo mass
curve depicts the density along the galactic plane. The NFW
profile and the pseudo mass curve along the galactic plane
for M31 are compared in Fig. 4. The NFW curve is based on
the M31 NFW parameters from Ref. [38]. The NFW and the
pseudo mass curves are comparable for both the Milkyway
and the M31.

The pseudo mass contours on a plane perpendicular to
the galactic plane are depicted in Fig. 5. The contours are
observed to have an elliptical shape. This means that the
corresponding 3-D distribution would be an ellipsoid. The
M31 contours are similar (not shown). Overall, it is seen that
the pseudo mass distribution is qualitatively similar to the
distribution of the dark matter halo [39,40], in the sense that

Fig. 6 RAR: the colored lines are based on the MBG calculations
(Eq. (59)). The curve given by the solid line is the double power law fit to
experimental data provided in Ref. [43], i.e,. y = ŷ

(
1 + x

x̂

)α−β ( x
x̂

)β ,
with α = 0.94, β = 0.6, x̂ = 2.3, ŷ = 2.6 and x = gNewton . The
dashed line is the Newtonian limit

the 3-D distribution in either case is an ellipsoid. The tilt in
the ellipsoid mentioned in [40], could be due to the wrap
in the Milkyway galaxy [41], which is not modeled in the
current work. Thus, it is possible that the effects attributed to
dark matter in literature, are actually the effects of the pseudo
mass, i.e., the kc2

8πGφ∇2 1
φ

term.

5.2 The radial acceleration relation (RAR)

A correlation between the radial acceleration traced by
the rotation curves and the acceleration predicted from
the observed distribution of baryons, was reported in Ref.
[42,43]. The question arises as to how the dark matter and
baryonic matter, which are supposed to be independent, can
be correlated. However, in the proposed MBG theory, the
pseudo mass is a function of the gravitational potential, φ.
Therefore, it is natural for the baryonic matter ρ, and the
pseudo mass term, kc2

8πGφ∇2 1
φ

, to correlate with each other.
We now explore the RAR within the framework of the MBG
theory.

A random set of 63 galaxies of various sizes were selected
from the SPARC database [44]. The mass distribution of the
gas in the galaxies was calculated from the velocity profile
using the formula derived by Toomre [45], and scaled based
on experimentally determined total mass of gas. Tables 2
and 3 present the 63 galaxies that were chosen and their cal-
culated masses. The M�/L� information for the disc is also
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provided in Tables 2 and 3. The bulge M�/L� is obtained
by scaling disc M�/L� by a factor of 1.4 [43].

Figure 6 depicts the plot of acceleration due to gravity
obtained from the MBG theory, gMBG , and the Newtonian
gravity, gNewton , for the selected galaxies. The gMBG and
gNewton variables correspond to gobs and gbar respectively in
Ref. [42,43]. The velocity plots for the individual galaxies are
provided in Figs. 7, 8 and 9 in Appendix B. Based on Eq. (65),
the same value of k = 2.4135 × 10−11

√
M (where M is the

mass of the individual galaxy), provides a reasonably good
fit across the mass spectrum of galaxies. As seen in Tables 2
and 3 (Appendix B), the masses are spread across three orders
of magnitude, and the proposed MBG theory, i.e. Equation 59
with k = 2.4135 × 10−11

√
M , is able to predict the trend.

The value of k = 2.4135 × 10−11
√
M , used for RAR, is

almost same as that of k = 2.8157×10−11
√
M , used for the

Milkyway and M31. While, one value of k is based on a fit to
a wide spectrum of galaxies, the other is based on the optimal
fit to two galaxies (Milkyway and M31). It is worth noting
that the black-hole is not modeled in the SPARC dataset.
The galaxies in Tables 2 and 3 include both gas-rich and gas-
deficient galaxies. Figure 6 indicates that the same value of
k is able to predict the trend across galaxies with different
amounts of gas. This is consistent with the observation in
Ref. [46], where it was shown that the Tully Fisher relation
is maintained regardless of the gas composition.

As a final note, we now discuss some of the sources of
error. In galaxies such as DDO161 (Fig. 8c), there is a devi-
ation at the periphery of the galaxy. One probable reason
could be that, near the periphery, φ can be very small lead-
ing to inaccuracies in ∇2 1

φ
calculations. This aspect can be

perceived in some other galaxies also. While, a lot of care
has been taken to maintain numerical accuracy, a superior
numerical technique may improve accuracy further.

5.3 Wide binary star systems

WBS systems are a pair of stars rotating around each other.
If the separation between the stars are sufficiently large, then
the gravitational acceleration becomes very weak. These are
of significant interest as these systems have been used to
determine as to whether dark matter theory or the MOND
theory is the correct theory. There have been mixed reports.
Refs. [47,48] have reported that the wide binary stars deviate
from the standard Newtonian gravity. However, Ref. [49] has
reported, that if WBS with noisy data are removed, then WBS
follows Newton’s laws of gravity.

We now look at the prediction based on the MBG the-
ory. A binary system is not an ensemble, and is the smallest
system conceivable. Thus a concept of an ensemble would
not be applicable for any pure binary systems. In Eq. (61),
k〈v(t)2

rand〉 → 0. In the equivalent tensor form of Eq. (61),
i.e., Eq. (37), the stress energy component due to thermal

considerations should not play any contribution. This can
be effected by taking the degree of equilibration, k = 0. If
k = 0, then Eq. (59) reduces to

∇2φ = 4πGρ, (66)

which is the Newtonian gravity. With this, one may conclude
that the proposed MBG theory predicts that any pure binary
system (pure binary means that the two masses should not
see any different set of interactions from the surroundings)
will obey Newton’s laws of gravity.

5.4 Bullet cluster and the UDG

For ultra diffuse galaxies, the grouping effect may be very
small, leading to a very low value of k. This could lead to
a very small value of the pseudo mass, as seen in the UDG,
NGC 1052-DF2 and NGC 1052-DF4 [50,51]. However, the
ultra diffuse galaxy, Dragonfly 44 [52], seems to have a large
discrepancy between the baryonic mass and mass determined
based on rotation curves. It is possible that the discrepancy is
incorrect, or that another factor is in play, which may increase
k in UDG.

One of the foremost pieces of evidence of dark matter is
the 1E 0657-56 (Bullet cluster), where the visible matter and
the matter inferred via gravitational lensing, are in different
regions of space [53–56]. In the proposed theory, it is possi-
ble that the effect of � 1

φ
term and the effect of visible matter,

given by ρ, are dominant in different regions of space. For
instance, within a galaxy, the pseudo mass is present consid-
erably above and below the galactic plane, where there is no
stellar mass (Ref. Fig. 5). The pseudo-mass term may there-
fore explain the gravitational lensing phenomenon observed
in 1E 0657-56. It is planned to analyze the bullet cluster in
future.

6 Conclusion

We see that the proposed MBG theory, originally conceived
for modeling thermal systems at the quantum mechanical
level, is able to reproduce to a reasonable extent, the observed
rotation curves for the Milky way and the M31 galaxy. It is
also able to explain the RAR relation, and consistent with
WBS observations. Finally, in Eq. (49), the 1

2s∇2s term can
be seen as an additional source term.

It is possible that the presence of this term can account for
the extent of the gravitational lensing phenomenon [10,11].
It is hoped to touch upon the gravitational lensing problem
in future work.
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Appendix A: The relation k ∝ √
M

For an observer near the galactic periphery or much beyond,
one may approximate the galactic mass to be centered at
the origin. As such, one may assume a spherical symmetry
as an approximation. We now determine the solution to the
asymptotic equation 63 in spherical co-ordinates. In spherical
co-ordinates, Eq. (63) becomes

1

r2

∂

∂r
r2 ∂φ

∂r
≈ kc2

2

φ

r2

∂

∂r
r2 ∂

∂r

1

φ
. (A1)

Substitute r = et , and subsequently, assign ζ(φ) = ∂φ
∂t . This

gives

ζ ′ − 2K

φ2 + Kφ
ζ = −1, (A2)

where K = kc2

2 . The integration factor for this is

f (φ) =
(
K + φ

φ

)2

. (A3)

Multiplying the integration factor on both sides of Eq. (A2),
and solving, we get

f (φ)
∂φ

∂t
= −

∫
f (φ)dφ. (A4)

After solving, we get:

−
∫

f (φ)dφ = K 2

φ
− 2K ln(|φ|) − φ − c2. (A5)

One may again rewrite Eq. (A4) as:

f (φ)dφ∫
f (φ)dφ

= −dt. (A6)

Solving the integration and reverse substituting t = ln(r),∫
f (φ)dφ = −c1

r
. (A7)

Comparing Eqs. (A5) and (A7), we finally obtain:

K 2

φ
− 2K ln(|φ|) − φ = c1

r
+ c2, (A8)

where, c1 and c2 are constants of integration.
We now, simplify Eq. (A8), and bring out the dominant

factors that relate to K , in the region where Eq. (63) is appli-
cable, i.e., when r is large.

For large r , c1
r − c2 ≈ c2. The gravitational potential φ

would also tend to be a small value, i.e. φ → φ0, where φ0

is small. In Newtonian gravity, φ0 is normally taken as 0.
However, in this theory, we shall see that a relation exists
between K , c2 and φ0, which prevents φ0 or c2 from being
zero for a non-zero K .

The asymptotic Eq. (63), is applicable only at far away
distances (galactic periphery or beyond), where φ is very
small. Hence, the limiting value as r → ∞, i.e., φ0, should
be very small. Since, limφ0→0 φ0 ln(φ0) = 0, for a small φ0,
one may approximate:

K 2 − 2Kφ ln(|φ0|) ≈ K 2. (A9)

Then, Eq. (A8) reduces to

K 2 ≈ c2φ0 + φ2
0 . (A10)

For a given non-zero K , if φ0 is very small, then c2 has
to be large enough to satisfy Eq. (A10) and c2φ0 becomes
dominant. In other words, c2 � φ0. Subsequently,

K ≈ ±√
c2φ0. (A11)

Since K is positive,

K = √
c2φ0. (A12)

As a check, we substitute K = √
c2φ0 in Eq. A9 to obtain,

K 2 − Kφ0 ln(|φ0|) = c2φ0 − 2
√
c2φ

3/2
0 ln(|φ|0)

= 2
√
c2φ0

[√
c2

2
− √

φ0 ln(|φ0|)
]

≈ cφ0 = K 2, (A13)

thus validating Eq. (A10). The last line in Eq. (A13),
makes use of the fact that, since limφ0→0

√
φ0 ln(φ0) = 0,√

φ0 ln(|φ0|), would become negligible for very small φ0.
To determine the relation of φ0 with M , we start with

Newtoniant gravity as the starting point and iterate. To begin
with, if we substitute φ0 ∝ M in Eq. (A12), we get K ∝ √

M .
As one iterates, the φ∇2 1

φ
term would apply corrections to
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Table 2 Galaxies from SPARC database used in RAR simulation.
Galaxy names with a “*” have significant gas content

Galaxy name Galaxy
mass ×
1e9 M�

Disk M�
L� MBG r.m.s. err

(Newton r.m.s.
err) km/s

CamB* 0.21 1.2 1.60 (22.46)

F568-V1* 6.40 2.2 26.45 (57.67)

F583-4 1.62 1.5 7.24 (35.87)

NGC0247 7.71 0.5 7.37 (29.77)

NGC2955 67.75 0.2 16.44 (41.53)

NGC3741* 0.62 2.4 5.98 (32.95)

NGC3972 11.95 0.5 11.04 (43.80)

NGC4088 28.80 0.18 15.02 (70.08)

NGC5585* 3.73 0.5 10.02 (50.38)

NGC6789 2.63 4.5 12.09 (37.16)

UGC00128* 9.70 0.5 22.85 (72.74)

UGC03205 42.81 0.33 32.50 (75.45)

UGC04499* 2.45 0.7 11.49 (47.26)

UGC05764* 1.09 2.5 11.44 (36.53)

UGC06614 47.15 0.2 12.79 (122.79)

UGC06923 5.09 0.9 6.75 (43.49)

UGC07232 0.80 1.3 3.16 (29.34)

UGC07603 1.81 0.9 6.97 (42.36)

UGC08699 69.63 0.5 32.61 (59.97)

UGC11557 5.56 0.5 9.57 (32.91)

UGCA442* 0.66 0.5 7.12 (42.12)

D631-7* 0.60 0.7 3.86 (38.25)

DDO161* 1.99 0.5 4.40 (36.20)

ESO079-G014 19.78 0.2 11.39 (31.27)

ESO563-G021 60.27 0.15 19.16 (88.45)

F574-1 7.81 1 13.62 (37.93)

φ. If, K is of the order of
√
M , the first order corrections to φ

would be of the order
√
M , i.e., φ0 ∼ O(M) +O(

√
(M)) +

.... For large M , if M1 is dominant, one can ignore these
corrections. Then, as an approximation, substituting φ0 ∝
M , in Eq. (A12), we get

K ∝ √
M . (A14)

Substituting K ∝ √
M (and hence, k ∝ √

M), in Eq. (64),
we reproduce the Tully Fisher relation.

Appendix B: Rotation curve figures and tables

The details of the galaxies used for RAR simulation are pro-
vided in Tables 2 and 3. The corresponding figures are in
Figs. 7, 8 and 9.

Table 2 continued

Galaxy name Galaxy
mass ×
1e9 M�

Disk M�
L� MBG r.m.s. err

(Newton r.m.s.
err) km/s

F583-1* 3.29 1.4 11.07 (37.13)

IC4202 33.77 0.1 27.96 (59.15)

NGC0055 6.50 0.2 11.52 (30.43)

NGC0289 49.90 0.3 24.68 (70.28)

NGC0891 61.80 0.25 15.68 (93.37)

NGC2683 27.93 0.15 31.67 (81.51)

NGC2915 2.83 0.7 9.79 (65.86)

NGC2998 43.83 0.3 21.93 (71.48)

NGC3521 83.26 0.5 21.34 (62.44)

NGC3769 14.29 0.23 22.21 (61.43)

NGC3917 12.43 0.4 8.89 (38.42)

NGC4013 23.52 0.08 24.05 (105.39)

NGC4085 18.01 0.3 10.82 (56.63)

NGC4214 2.85 0.5 11.84 (60.71)

NGC4559 12.98 0.35 11.03 (55.87)

NGC5055 44.52 0.2 23.63 (71.97)

NGC6015 19.66 0.5 16.06 (67.16)

NGC6674 64.25 0.3 19.13 (98.49)

NGC7331 76.62 0.16 15.64 (102.55)

UGC00891* 1.05 0.6 5.60 (43.94)

UGC02487 100.15 0.5 10.32 (126.23)

Table 3 More galaxies from SPARC database used in RAR simulation.
Galaxy names with a “*” have significant gas content

Galaxy name Galaxy
mass ×
1e9 M�

Disk M�
L� MBG r.m.s. err

(Newton r.m.s.
err) km/s

UGC02953 92.58 0.4 22.70 (77.58)

UGC03580 16.61 0.45 9.83 (44.29)

UGC04325 3.99 1.5 22.99 (59.72)

UGC05005* 4.11 1 8.24 (50.14)

UGC05716* 1.89 1.5 8.60 (51.06)

UGC05986 11.15 0.5 14.77 (56.27)

UGC06446* 3.09 1.5 13.46 (56.37)

UGC06667 9.53 0.5 6.38 (20.64)

UGC06818 2.30 0.5 6.88 (39.96)

UGC06930 8.14 0.7 14.91 (58.58)

UGC07089 3.19 0.3 3.51 (35.12)

UGC07399 6.75 1.8 16.14 (60.98)

UGC07577 0.07 0.12 4.77 (9.56)

UGC08490* 2.75 0.8 15.98 (56.88)

UGC08837 0.71 0.5 3.88 (26.56)

UGC12506 53.56 0.08 22.05 (76.45)

123



Eur. Phys. J. C           (2024) 84:935 Page 15 of 18   935 

Fig. 7 Rotation curves. The red curve is the experimentally observed curve, the black curve is calculated using MBG, and the blue curve is
Newtonian
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Fig. 8 Rotation curves. The red curve is the experimentally observed curve, the black curve is calculated using MBG, and the blue curve is
Newtonian
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Fig. 9 Rotation curves. The red curve is the experimentally observed curve, the black curve is calculated using MBG, and the blue curve is
Newtonian
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The r.m.s. errors provided in Tables 2 and 3 are in the units
of km/s, and estimates the r.m.s. error between the calculated
rotation curve and the observed rotation curve.
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