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Abstract This article investigates the geodesic structure
and deflection angle of charged black holes in the pres-
ence of a nonzero vacuum expectation value background of
the Kalb–Ramond field. Topics explored include null and
timelike geodesics, energy extraction by collisions, and the
motion of charged particles. The photon sphere radius is
calculated and plotted to examine the effects of both the
black hole charge (Q) and the Lorentz-violating parame-
ter (b) on null geodesics. The effective potential for time-
like geodesics is analyzed, and second-order analytical orbits
are derived. We further show that the combined effects of
Lorentz-violating parameter and electric charge can mimic
a Kerr black hole spin parameter up to its maximum val-
ues, i.e., a/M ∼ 1 thus suggesting that the current precision
of measurements of highly spinning black hole candidates
may not rule out the effect of Lorentz-violating parameter.
The center of mass energy of colliding particles is also con-
sidered, demonstrating a decrease with increasing Lorentz-
violating parameter. Circular orbiting particles of charged
particles are discovered, with the minimum radius for a
stable circular orbit decreasing as both b and Q increase.
Results show that this circular orbit is particularly sensitive
to changes in the Lorentz-violating parameter. Additionally, a
timelike particle trajectory is demonstrated as a consequence
of the combined effects of parameters b and Q. Finally, the
light deflection angle is analyzed using the weak field limit
approach to determine the Lorentz-breaking effect, employ-
ing the Gauss–Bonnet theorem for computation. Findings are
visualized with appropriate plots and thoroughly discussed.

a e-mail: ahmadbadawi@ahu.edu.jo (corresponding author)
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1 Introduction

Lorentz symmetry, a key notion in modern physics, states
that all inertial reference frames obey the same physical laws.
There have been several experiments and observations that
have shown Lorentz symmetry to be a fundamental sym-
metry of nature. However, some theories have discovered
that Lorentz symmetry can be broken at some energy scale.
These include string theory [1], loop quantum gravity [2],
Horava–Lifshitz gravity [3], non-commutative field theory
[4], massive gravity [5] and others [6–8]. Studying Lorentz
symmetry breaking (LSB) provides valuable insight into the
nature of spacetime and fundamental physics principles. LSB
might occur explicitly or spontaneously. The explicit LSB
happens when the Lagrange density is not Lorentz invari-
ant, which means that physical rules take distinct forms in
different reference frames. However, spontaneous LSB hap-
pens when a physical system’s ground state lacks Lorentz
symmetry, while its Lagrange density is Lorentz invariant.
The Standard-Model Extension [9] provides a general frame-
work for researching spontaneous LSBs. The simplest field
theories presented within this paradigm are called bumble-
bee models [10–19]. Vacuum expectation values (VEVs) are
achieved in bumblebee models by using vector fields called
bumblebee fields. In the presence of a nonzero VEV, particles
are not invariant to Lorentz directions locally.

On the other hand, the Kalb–Ramond (KR) field [20],
which may be described as a self-interacting second-rank
antisymmetric tensor, modifies the Einstein action. The KR
modification is connected to heterotic string theory [21] and
can be understood as closed string excitation. Because of the
non-minimal coupling of the tensor field with the Ricci scalar,
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the Lorentz symmetry may be violated [22]. Lessa et al.
reported a precise static and spherically symmetric solution
using the VEV backdrop of the KR field [23]. Following that,
the motion of massive and massless particles in the vicinity
of this static spherical KR BH was investigated in reference
[24]. Reference [25] investigates the gravitational deflection
of light and shadow cast by revolving KR BHs. Furthermore,
the effects of the VEV backdrop on Bianchi type-I cosmology
were investigated [26] and the fermionic greybody factors
and quasinormal modes of black holes (BHs) in KR gravity
were studied in [27].

Recently, an exact solution for static and spherically sym-
metric BHs in the setting of this Lorentz-violating gravity
theory was reported in [28]. They also investigate the phys-
ical ramifications of Lorentz violation by studying the ther-
modynamic features of these solutions and assessing their
impact on several classical gravitational experiments in the
Solar System. Later, [29] presented electrically charged BHs
in the absence and existence of a cosmological constant in
gravity theory, with Lorentz violation caused by a back-
ground KR field. Moreover, they investigate the correspond-
ing thermodynamic properties and shadow in this charged
BH or Reissner–Nordström-like (RN-like) BH [29]. The
study found that the shadow radius is highly sensitive to the
Lorentz-violating parameter b, and decreases as b increases.
It is to be emphasized that the KR modification as mentioned
above is related to heterotic string theory. It does however
differ from the other charged black hole solutions [30,31].

It should be noted that, from the astrophysical point of
view, it is increasingly important to gain a deeper under-
standing of the nature of the spacetime geometry and the
existing fields that can significantly alter the geodesic struc-
ture of particles and photons and thus can influence observ-
able properties including the innermost stable circular orbits
(ISCO), the size of photon sphere/shadow size, etc which play
a crucial role to help us understand qualitatively not only the
background spacetime geometry but also the existing fields
around astrophysical BHs. It does therefore have value to
explore remarkable insights of the BH solution, which can
provide striking differences from their mimickers in various
theories of gravity in the regions close to the horizon. There
are investigations that address the impact of the existing fields
on the geodesic structure of timelike particles in gravity theo-
ries [32–36]. With this motivation, in this paper, we consider
a RN-like BH spacetime with its line element, as described
by Eq. (1) and we further investigate its important insights
such as the null and timelike geodesic structures as well as the
ISCO and possible particle trajectories. For this geometry, we
also consider the light deflection angle using the weak field
limit approach and determine the Lorentz-breaking effect to
exhibit striking differences of its background geometry near
horizon regions.

Table 1 Constraints on the Lorentz-violating parameter b from Solar
System tests [28]

Solar tests Constraints

Mercury precession −3.7 × 10−12 ≤ b ≤ 1.9 × 10−11

Light deflection −1.1 × 10−10 ≤ b ≤ 5.4 × 10−10

Shapiro time-delay −6.1 × 10−13 ≤ b ≤ 2.8 × 10−14

The paper is structured as follows: Sect. 2 provides an
introduction to the RN-like spacetime background. Section 3
examines the geodesics within RN-like spacetime, discussing
the analytical solutions for both null and timelike geodesics.
In Sect. 4, we investigate the motion of charged particles. Sec-
tion 5 aims to elucidate the process of calculating the deflec-
tion angle under the weak field approximation for the RN-like
BH. Finally, our conclusions are presented in Sect. 6.

2 Introduction to spacetime background

The line element that describes an electrically charged BHs
in gravity with a background KR field in the standard
Schwarzschild-like coordinates is [29]

ds2 = −F (r) dt2 + dr2

F (r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (1)

where

F (r) = 1

1 − b
− 2M

r
+ Q2

(1 − b)2 r2
, (2)

in which, M is the BH mass and b is the dimensionless
parameter. Lorentz-violating effects are characterized by the
parameter b in this spacetime, whose value is constrained to
be very small from classical gravitational experiments within
the solar system such as the perihelion precession of Mercury,
deflection of light, and Shapiro time delay [28]. Based on the
results of these experiments, they were able to constrain the
Lorentz-violating parameter b (Table 1).

When b = 0 we recover RN BH metric. The RN-like
spacetime metric (1) has two horizons

r± = (1 − b)

(
M ±

√
M2 − Q2

(1 − b)3

)
. (3)

For the existence of the horizons the condition Q2/M2 ≤
(1 − b)3 is satisfied. The equality represents the case of
extreme BHs. It is important to note that all numerical values
used in this study meet the condition above. The r+ hori-
zon corresponds to Schwarzschild’s r = 2M event horizon,
while the r− horizon is known as the Cauchy horizon. To
clarify the impact of b we make a plot of the metric function
as shown in Fig. 1. The Figure depicts that the metric (1) sup-
ports three different BH solutions: BH, non-BH, and extreme
BH. Moreover, a brief study of the associated scalars gives a
brief insight into the RN-like BH’s properties. Hence,
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R = 2b

(b − 1) r2 , (4)

RμνR
μν = 4Q4 + 4 (b − 1) bQ2r2 + 2 (b − 1)2 b2r4

(b − 1)4 r8
, (5)

Rμναβ R
μναβ = 4(b − 1)2r2

(
b2r2 + 12(b − 1)2M2 + 4(b − 1)bMr

) − 8(b − 1)Q2r(12(b − 1)M + br)

(b − 1)4r8 + 56Q4

(b − 1)4r8

(6)

This demonstrates that the associated scalars are depen-
dent on the Lorentz violating parameter b. However, the Ricci
scalar is linearly dependent, whereas the Ricci squared and
Kretchmann scalars are nonlinear.

3 The geodesics in RN-like spacetime

To study the geodesics in the RN-like BH, we employ the
Euler–Lagrange equation given by

d

ds

(
∂L

∂
·
xμ

)
= ∂L

∂xμ
, (7)

where s is the affine parameter of the light trajectory, a dot

denotes a differentiation with respect to s and
·
xμ represents

the four-velocity of the light ray. The Lagrangian for the
spacetime described in (1) is given by

L = 1

2

[
−F (r) ṫ2 + ṙ2

F (r)
+ r2

(
θ̇2 + sin2 θφ̇2

)]
. (8)

Since the metric coefficients do not explicitly depend on time
t and azimuthal angle φ, there are two constants of motion
which can be labeled as E and �, therefore

E = −F (r) ṫ, (9)

and

� = r2 sin2 θφ̇, (10)

where E and � are, respectively, the energy and the angular
momentum and of the particle. Furthermore, we require θ =
π/2 and

·
θ = 0, indicating that the particle always moves in

the equatorial plane. With two constants of motion given in
Eqs. (9) and (10) the geodesics equation becomes

(
dr

dφ

)2

= r4

�2

(
E2 −

(
1

1 − b
− 2M

r
+ Q2

(1 − b)2 r2

))

×
(

ε + �2

r2

)
. (11)

We can obtain the r equations as a function of s and t as
follows
(
dr

ds

)2

+ 2Vef f (r) = E2, (12)

(
dr

dt

)2

=
(

1 − 2

E2 Vef f (r)

)

×
(

1

1 − b
− 2M

r
+ Q2

(1 − b)2 r2

)2

. (13)

where the effective potential Vef f (r) can be defined as

Vef f (r) = 1

2

(
1

1 − b
− 2M

r
+ Q2

(1 − b)2 r2

)

Fig. 1 The plots of F(r) for
different values of the Lorentz
violation parameter b
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Fig. 2 The profile of the
photon sphere for various values
of BH charge Q

×
(

ε + �2

r2

)
. (14)

To study the orbits, we make the change of variable u = 1/r
and obtain,
(
du

dφ

)2

= E2

�2 −
(

1

1 − b
− 2Mu + Q2

(1 − b)2 u
2
)

×
( ε

�2 + u2
)

= g (u) . (15)

We choose (ε = 0) for null and (ε = 1) for timelike geodesic.

3.1 The null geodesics

In this part we move now to investigate null geodesics of
particle in RN-like BH spacetime described by Eq. (1). As
was mentioned above for the 4-momentum pμ pμ = ε we
have set ε = 1 for massive particle while ε = 0 for null
geodesics.

For null geodesics we rewrite the radial equations of
motion photons in the following form as

ṙ2 = E2 + εF(r) − �2

r2 F(r) , (16)

where ε = 1 can for simplicity be set for timelike geodesics
so that one describes energy E and angular momentum � per
unit mass. To find the radii of circular orbits for given values
of E and L one can solve ṙ = r̈ = 0 simultaneously, i.e.,

Vef f (r, E, �) = 0,
∂Vef f (r, E, �)

∂r
= 0 , (17)

where Vef f (r, E, �) can be given by

Vef f (r, E, �) = E2r2 + ε r2F(r) − �2F(r) . (18)

For the null geodesics the radius of rph can be determined
by the angular momentum’s minimum value, � = �(r), which
is obtained by solving V ′

e f f = 0. For null geodesics using
V ′
e f f = 0 is sufficient so that one can find the following

condition for the photon sphere radius

1

1 − b
− 3M

rph
+ 2Q2

(1 − b)2 r2
ph

= 0 , (19)

which solves to give the photon orbit rph implicitly as

rph = 3

2
(1 − b)M +

√
(1 − b)

(
9(1 − b)3M2 − 8Q2

)

2(1 − b)
.

(20)

It is obvious that the photon sphere retrieves the
Schwarzschild case in the limit of b = 0 and Q = 0, i.e.,
rph = 3M .

In Fig. 2, we show the dependence of the photon radius
from the parameter b for the various values of black hole
charge Q. As can be observed from Fig. 2, the photon
radius decreases up to its minimum value as the parameter b
increases. Similarly, one can observe the same behaviour for
black hole charge Q, that is the photon radius also decreases
gradually. It is to be emphasized that the presence of the
parameter b has the physical effect of shifting the photon
sphere inwards to the central singularity. The physical effect
of parameter b can therefore be interpreted as a repulsive
gravitational charge, similarly to what is observed for black
hole electric charge Q.
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3.2 Timelike geodesics

The equations describing the radial timelike geodesics are
(� = 0 and ε = 0)

(
dr

ds

)2

= E2 −
(

1

1 − b
− 2M

r
+ Q2

(1 − b)2 r2

)
, (21)

dt

dτ
= E

1
1−b − 2M

r + Q2

(1−b)2r2

. (22)

Because 1
1−b − 2 M

r + Q2

(1−b)2r2 is positive in the inter-

val 0 ≤ r < r−, then the trajectory will have a turning
point inside the Cauchy horizon. Horizon singularities differ
between RN-like and Schwarzschild geometries. The for-
mer provides more insight into the nature of trajectories as it
is timelike, while the latter is spacelike. Particles can move
from one spacetime region to another by crossing the r+ hori-
zon and skirting the singularity. In contrast, in Schwarzschild
geometry, after crossing the event horizon at r = 2 M , the
particle must fall towards the singularity.

The effective potential for timelike particles (ε = 1) is
given by

Vef f (r) = 1

2

(
1

1 − b
− 2M

r
+ Q2

(1 − b)2 r2

) (
1 + �2

r2

)
.

(23)

The effective potential (23) depends on the BH parameters
and the angular momentum �2. The plot of the effective
potential for timelike particles for different values of �2 is
shown in Fig. 3. The Figure demonstrates that the timelike
orbits in RN-like BH are all unstable circular orbits, as the
effective potential curves corresponding to different values
of �2 all exhibit only one maximum point.

The condition for the occurrence of circular orbits are
g(u) = 0 and g′(u) = 0. From these conditions, it follows
that the energy and the angular momentum of a circular orbit
of radius rc = 1/uc is given by

E2 =
(

1
1−b − 2Muc + Q2

(1−b)2 u
2
c

)2

D
, (24)

�2 =
M − Q2

(1−b)2 uc

Duc
, (25)

where D = 1
1−b −3Muc + 2Q2

(1−b)2 u
2
c > 0. Accordingly, with

d2Vef f /dr2 = 0 and Equations (24, 25), we can solve for
the radius of ISCO [29]. Beside this circular orbit, Eq. (15)
with ε = 1 provides an orbit of the second kind determined
by

φ = ±
∫

du√
g(u)

, (26)

Fig. 3 The profile of the effective potential (23) curves of timelike
particles for different values of �2. Here, M = 1, Q = 0.4 andb = −0.4

where

g (u) = (u − uc)
2
[

Q2

(1 − b)2 (u2 − u2
c)

+2

(
M − Q2

(1 − b)2 uc

)
u + Muc − M

�2uc

]
. (27)

Substitute ξ = 1
u−uc

we obtain the solution of (26) as

φ = ± 1

A
ln

⎛
⎝2Aξ + B + 2A

√
A

(
Q2

(1 − b)2 + Bξ + Aξ2
)⎞

⎠ ,

(28)

where

A = 3Muc − 4
Q2

(1 − b)2 u
2
c − M

�2uc
(29)

and

B = 2

(
M − 2

Q2

(1 − b)2 uc

)
. (30)

To gain a deeper understanding qualitatively how timelike
geodesics can behave around the RN-like BH in the presence
of KR field we further demonstrate a timelike particle trajec-
tory as a consequence of the combined effects of parame-
ters b and Q. It should be noted that we shall for simplicity
restrict timelike particle trajectory to the equatorial plane of
the RN-like BH. In doing so, we show the timelike particle
trajectory in Fig. 4. It is clearly seen that the timelike par-
ticle orbits remain the captured orbits in the case of small
values of parameter b, while these orbits gradually become
the bounded as it increases. However, the orbits of the time-
like particles can turn into the escaping orbits for overesti-
mated values of parameter b in the case in which the energy
and angular momentum of the timelike particle are fixed.
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Fig. 4 Plot shows trajectories of the timelike neutral particles for the
polar plane (i.e. z = 0, the first column) and the equatorial plane (i.e.
y = 0, the second column) and the boundaries of neutral particle motion

for the equatorial plane (i.e. y = 0, the third column) around BHs in
KR gravity field for various possible cases
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This happens because the repulsive gravitational impact on
the particle trajectory grows under the combined effects of
parameters b and Q, thus resulting in having the escaping
orbits.

3.3 Astrophysical applications

We now turn to consider astrophysical applications. It has
value to note that although the recent modern experiments
and observations that pertain to gravitational waves [37,38]
and the first image of the galaxy M87 as supermassive BH
candidate [39,40] have proven the existence of astrophysical
BHs in the universe, yet they have remained BH candidates
as that of no exact departures, leaving an open window for
the precise measurements of BH parameters such as mass,
angular momentum, etc. It does therefore make it challenging
to identify the unique signatures of possible BH candidates
as viable sources from theoretical and observational perspec-
tives. With this motivation in mind, we consider the repul-
sive impacts of Lorentz-violating parameter b that can, as
discussed above, affect the observable quantities thus hav-
ing the behaviour of geodesic structure of RN-like BH in
gravity with a background KR field, which is similar in con-
trast with one for a rotating Kerr BH spacetime. Hence, the
effect of Lorentz-violating parameter would be able to mimic
the effects of BH spin parameter and would play an impor-
tant role for testing observable properties, i.e., the innermost
stable circular orbit (ISCO). For being more illustrative, we
consider stable circular orbits and find the relation between
BH spin parameter a of the Kerr spacetime and Lorentz-
violating parameter b of RN-like BH spacetime in gravity
with a background KR field. For that we compare the ISCO
for both spacetime geometries. According to Bardeen et al.
[41] it is more illuminating to write the ISCO expression of
massive test particles moving around Kerr BH, and it is given
by

rISCO = 3 + Z2 ± √
(3 − Z1)(3 + Z1 + 2Z2) (31)

with

Z1 = 1 +
(

3
√

1 + a + 3
√

1 − a
)

3
√

1 − a2 and

Z2 =
√

3a2 + Z2
1 . (32)

To this end, in Fig. 5 we show the values of spin parame-
ter a as a function of b and Q for which the ISCO radius for
RN-like BH is similar to the one for the Kerr BH spacetime.
It is clearly seen from Fig. 5 that the corresponding values of
b and Q refer to the exact values of spin parameter a of Kerr
BH. The effect of Lorentz-violating parameter b can give
similar effect with a larger values of Kerr BH spin param-
eter a, i.e., the geodesics of particles around a RN-like BH
could be the same as the geodesics around a rotating Kerr BH.
Interestingly, it can be observed that the combined effect of b

and Q can expedite the mimicking process, as seen in Fig. 5.
That is, the combined effects of Lorentz-violating parame-
ter and BH charge can mimic the BH spin parameter up to
its maximum values, i.e., a/M ≈ 1. The main concern to be
noted is that a distant observer would not able to differentiate
between two various BH geometries as stated by the analysis
of the emitted electromagnetic radiations from BH accretion
disk. With this in regard, the results suggest that the presence
of Lorentz-violating parameter alone can affect a measure-
ment of BH spin parameter up to 100%. One can then infer
from the above qualitative findings that the current preci-
sion of measurements may not rule out the Lorentz-violating
parameter due to the fact that rapidly rotating astrophysical
BH candidates can be considered as RN-like BH in gravity
with a background KR field [42–45].

3.4 Extracted energy by collisions of timelike particles

In this part, we investigate the acceleration of charged par-
ticles colliding near the BH horizon under an electrically
charged BHs in gravity with a background KR gravity. We
analyze two particles with the same masses, m1 = m2 = m,
at a distance far from BH, and we can write equations of
motion like

Pμ = muμ, ut = E

F(r)
, (33)

uφ7
�

r2 , ur =
√
E2 − F(r)

(
1 + �2

r2

)
. (34)

The extracted energy in the center of mass frame for this
collision is defined as [46]

ECM

2m2 = 1 − gμνu
μ
1 u

ν
2. (35)

When substituting Eqs. (33) and (34) into Eq. (35) we obtain

ECM

2m2 = 1 + E1E2

F(r)
− �1�2

r2

− 1

F2(r)

√√√√E2
1 − F(r)

(
1 + �2

1

r2

)

×
√√√√E2

2 − F(r)

(
1 + �2

2

r2

)
. (36)

In Fig. 6, the CM energy of these two colliding particles is
plotted against the radius of circular orbit according to Eq.
(36). The Lorentz-violating effect is clearly seen in Fig. 6
where the CM energy of colliding test particles decreases as
the Lorentz-violating parameter increases.
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Fig. 5 The profile of the values of spin parameter a/M as a function of Lorentz-violating parameter b and BH charge Q/M for which the ISCO
radius for the Kerr BH is identical as the ISCO for RN-like BH in gravity with a background KR field

Fig. 6 The variation of the CM energy ECM of the colliding neutral particles for the fixed Q and various values of b (left) and constraint value
(right)

4 Motion of a charged particle

In this section we will study the circular motion of a test
particle which has a charge per unit mass q, in the vicinity
of a BH in gravity with a background KR field. Recall that
metric (1) has an electric scalar potential of the form Q

(1−b)r
[29] hence, the Lagrangian

2L = −F (r) ṫ2 + 1

F (r)
ṙ2 + r2

(
θ̇2 + sin2 θφ̇2

)

+ qQ

(1 − b) r
ṫ . (37)

The trajectory equation for the charged particle with mass m
is,

(
du

dφ

)2

= − Q2

(1 − b)2 u
4 + 2Mu3

−
(

(1 − b)2 �2 + Q2
(
1 − q2

)

(1 − b)2 �2

)
u2

+ 1

�2

(
M − qQE

(1 − b)m

)
u + E2 − 1

�2 = g (u) ,

(38)
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where E = E/m and � = �/m. The conditions for the occur-
rence of circular orbits are g (u) = 0 and

g′ (u) = −4
Q2

(1 − b)2 u
3 + 6Mu2

−2

(
(1 − b)2 �2 + Q2

(
1 − q2

)

(1 − b)2 �2

)
u

+ 1

�2

(
M − qQE

(1 − b)m

)
= 0 (39)

The expressions for energy E and angular momentum � of a
circular orbit of radius rc = 1/uc can be obtained from the
above two conditions hence,

E2 =
(

1
1−b − 2Muc + Q2

(1−b)2 u
2
c

)2

D
+

qQE
(1−b)m

[
1

1−b − 4Muc + 3 Q2

(1−b)2 u
2
c

]
uc

D
+

q2 Q2

(1−b)2

[
1 − Q2

(1−b)2 uc
]
u3
c

D
(40)

�2 =
M − Q2

(1−b)2 uc − qQ
(1−b)

(
E
m − qQ

(1−b)uc
)

Duc
. (41)

Recall that, the minimum radius for a stable circular orbit
occurs at the turning point of the function g(u), hence

g′′ (u) = −6
Q2

(1 − b)2 u
2 + 6Mu −

(
(1 − b)2 �2 + Q2

(
1 − q2

)

(1 − b)2 �2

)
= 0. (42)

Using Eq. (41) to eliminate �2 then Eq. (42) becomes

4
Q4

(1 − b)4 u
3
c − 9M

Q2

(1 − b)2 u
2
c − M − q

Q

(1 − b)

[
q

Q

(1 − b)

(
4

Q2

(1 − b)2 u
3
c − 3Mu2

c

)
− E

m

(
6Q2

(1 − b)2 u
2
c − 6Muc + 1

)]
= 0

(43)

or in terms of rc

r3
c − 6 (1 − b) Mr2

c + 9
Q2

(1 − b)2 rc − 4Q4

(1 − b)4 M
− qE

m

Q

(1 − b)

(
r3
c

M
− 6r2

c + 6Q2

(1 − b)2 M
rc

)

−q2 Q2

(1 − b)2

(
3rc − 4Q2

(1 − b)2 M

)
= 0. (44)

Ignoring terms of order Q4

(1−b)4 we obtain

rc =
6 (1 − b) M − 6qE

m
Q

(1−b)

2
(

1 − qE
m

Q
(1−b)

) ±

√(
6 (1 − b) M − 6qE

m
Q

(1−b)

)2 − 4
(

1 − qE
m

Q
(1−b)

) (
9 Q2

(1−b)2 − 9 q2Q2

(1−b)2 − 6qE
m

Q3

(1−b)3M

)

2
(

1 − qE
m

Q
(1−b)

) . (45)

Note that, for Q = 0, then (45) reduces to

rc = 6 (1 − b) M. (46)

which is the ISCO radius of the Schwarzschild-like BH. The
circular orbits for charged particle (45) is shown in Fig. 7.

It is evident from Figure that the circular radius of an RN-
like BH shrinks with increasing Lorentz violating parameter
b and charge Q. Figure 7 illustrates that the ISCO radius is
more responsive to changes in the Lorentz-violating param-
eter b than to changes in the electric charge Q. Similarly to
what is observed in the trajectory of timelike neutral particle,
we further demonstrate how the inclusion of a charged par-
ticle can affect on the behaviour of particle trajectory while
keeping fixed Lorentz-violating parameter b and charge Q;
see Fig. 8. It is clearly seen from Fig. 8 that the charged par-
ticle trajectory can be influenced drastically by the combined
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Fig. 7 Plot of circular radius (45) with varying values of Q and q

effects of Coulomb and gravitational forces, thus leading to
the change in the behaviour of orbits around the RN-like BH.
It turns out that the Coulomb repulsive force dominates over
gravitational force that arises from Lorentz-violating param-
eter b, thus making the stable orbits become the escaping
orbits in the case of a positive electric charge q > 0. How-
ever, the opposite is the case for a charged particle with neg-
ative q < 0, i,e., the timelike charged particle orbits remain
the captured ones under the combined effect of attractive
Coulomb and gravitational forces, as seen in Fig. 8.

5 Deflection angle of RN-like BHs WITH KR FIELDS

This section is dedicated to elucidating the process of com-
puting the deflection angle [47] within the framework of grav-
ity involving a background KR field. The calculation is con-
ducted under the weak field approximation for an electrically
charged and massive BH, resembling the spherically static
configuration. This analysis occurs in a non-plasma medium
and utilizes the Gauss-Bonnet theorem (GBth) [48–51]. The
GBth assumes a pivotal role in bridging the intrinsic geom-
etry of the metric with the underlying topology within the
region �R, delineated by its boundary ∂�R. This profound
connection is succinctly articulated through the following
equation [48]:
∫∫

�R
KdS2D +

∮

∂�R
hdt +

∑
z

αz = 2πϒ (�R) , (47)

where �R ⊂ S2D is a regular subset of a simple two-
dimensional surface Sr f , characterized by a closed, reg-
ular, and positively oriented boundary ∂�R. In this con-
text, h represents the geodesic curvature of ∂�R, defined as
h = ḡ

(∇γ̇ γ̇ , γ̈
)
, where ḡ(γ̇ , γ̇ ) = 1, and γ̈ denotes the unit

acceleration vector. At the zth vertex, αz denotes the exterior

angle. Moreover, in Eq. (47), ϒ (�R) represents the Euler
characteristic number [52]. Besides, K represents the Gaus-
sian optical curvature [53]. To determine K, one must con-
sider the null geodesics deflected by the BH [54]. It is well-
established that light follows null geodesics (i.e., ds2 = 0).
These null geodesics are carefully chosen to define the opti-
cal metric, which characterizes the Riemannian geometry
observed by light. By imposing the null condition together
with θ = π/2 (the equatorial plane in the optical metric
provides a potential surface of revolution), we reveal the fol-
lowing optical metric in the new coordinate system:

dt2 = g̃i j dxi dx j = dr2∗ + F2(r∗)dφ2, (48)

where

F(r∗(r)) = r√
F(r)

, (49)

and r∗ is named as the tortoise coordinate [55–57] and it is
given by

r∗ =
∫

dr

F(r)
= r

α
+ M ln(r2F(r))

α2

−
(
ξ + M2

)
ln

(√
ξ+β√
ξ−β

)

2α2
√

ξ
, (50)

in which

α = 1

1 − b
, (51)

ξ = M2 − α3Q2, (52)

β = αr − M. (53)

The non-vanishing Christoffel symbols [58] associated with
metric are computed as:

�
r∗
φφ = −F(r∗)

dF(r�)

dr�
, (54)
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Fig. 8 Plot shows trajectories of the timelike charged particles for the
polar plane (i.e. z = 0, the first column) and the equatorial plane (i.e.
y = 0, the second column) and the boundaries of charged particle

motion for the equatorial plane (i.e. y = 0, the third column) around
BHs in KR gravity field for various possible cases
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�
φ
r∗φ = 1

F(r∗)
dF(r�)

dr�
, (55)

Note that the determinant can be found as det g̃i j = F2(r�).
Consequently, one can evaluate the Gaussian optical curva-
ture K [50] as follows:

K = − Rr∗φr∗φ
det g̃rφ

= − 1

F(r�)

d2F(r�)

dr�2 . (56)

The expression for optical curvature K can alternatively
be reformulated using the variable r [49]. Consequently, one
finds out the optical curvature as

K = − 1

F(r�)

[
dr

dr�

d

dr

(
dr

dr�

)
dF(r)

dr
+

(
dr

dr�

)2 d2F(r)

dr2

]
.

(57)

After substituting Eqs. (2), (49), and (50) into Eq. (57), the
optical curvature is obtained as follows:

K = −2
Mα

r3 + 3
M2

r4 − 6
Q2α2M

r5
+ 3

Q2α3

r4 + 2
Q4α4

r6 .

(58)

One can observe that the Gaussian optical curvature depends
on various parameters such as mass M , Q, and α. Now, we
would like to determine the deflection angle by employing
the GBth. If we take the limit R → ∞ in Eq. (47), the jump
angle converges to π/2, ensuring θ0 + θS = π , and the Euler
characteristic number becomes unity [59]. As a consequence,
the following equation can be anticipated:
∫∫

�R
KdS +

∮

∂�R
hdt + αz = 2πϒ (�R) , (59)

where αz represents the total angle of jumps, set as π , and as
Sr f → ∞, the geodesic curvatureh (CR) can be expressed as
the magnitude of the gradient of ĊR with respect to ĊR itself:∣∣∣∇ĊRĊR

∣∣∣. The radial component of geodesic curvature can

then be obtained as [60]:
(
∇ĊRĊR

)r = Ċφ

R∂ϕĊ
r
R + �

r∗
φφ

(
Ċφ

R
)2

. (60)

For large R, where CR := r(φ) = R is constant, one

can get
(
Ċφ
R

)2 = F−2(r∗). After making some algebra, the

geodesic curvature can then be obtained as follows [48]:
(
∇Ċr

R
Ċr
R

)r → 1

R , (61)

which means that h (CR) → 1
R . Utilizing the optical metric

(48), we get dt = Rdφ leading to the following expression:

h(CR)dt = lim
R→∞

[h(CR)dt]

= lim
R→∞

[√
g̃φφ

4g̃r∗r∗

(
∂ g̃φφ

∂r∗

)]
dφ = dφ. (62)

Taking into account all of the earlier findings, the GBth
results in
∫∫

�R
KdSr f +

∮

∂�R
hdt

R→∞=
∫∫

Sr f :∞
KdSr f +

∫ π+δ̃

0
dφ.

(63)

In the weak deflection limit scenario, the trajectory of a
light ray is simplified to a straight line, represented by the
equation r(t) ≡ B = p

sin ϕ
, where p denotes the impact

parameter [48,61]. Utilizing this expression, one can com-
pute the deflection angle δ̃ as follows [50]:

δ̃ = −
∫ π

0

∫ ∞

B
KdSr f = −

∫ π

0

∫ ∞

B

K√
det g̃

F(r)
drdφ

= −
∫ π

0

∫ ∞

B

rK
F(r)

3
2

drdφ. (64)

Therefore, in a non-plasma medium, for the spacetime of a
spherically symmetric statically charged BH within a gravi-
tational field coupled with a background KR field, the deflec-
tion angle (by using Eqs. (2) and (58) in Eq. (65)) reads

δ̃ = −
∫ π

0

∫ ∞

B

1

F(r)
3
2

(
−2

Mα

r2

+3
M2

r3 − 6
Q2α2M

r4

+3
Q2α3

r3 + 2
Q4α4

r5

)
drdφ, (65)

which can be approximated to the following form:

δ̃ ≈ −
∫ π

0

∫ ∞

B

(
− 2M√

αr2
− 3M2

α(3/2)r3
+ 3α(3/2)Q2

r3

+6
√

αMQ2

r4 − 6M3

α(5/2)r4

)
drdφ. (66)

After making straightforward calculations, one can obtain
the following deflection angle:

δ̃ ≈ 4M√
αp

− 3α
3
2 πQ2

4p2 + 3πM2

4p2α
3
2

− 8
√

αMQ2

3p3 + 8M3

3p3α
5
2

.

(67)

Thus, one can immediately observe how the Lorentz-
violating effects α, and thus b, originating from the KR
fields influence the deflection angle (67), which reduces to
the Reissner–Nordström BH case [62–64] in the absence of
the b = 0. At this point, it is important to highlight that
the GBth method can be applied to any asymptotically flat
Riemannian optical metric due to its distinctive topological
characteristics.

We then turn to analyze the remarkable effect of Lorentz-
violating parameter b with BH charge on the weak deflection
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Fig. 9 The profile of the deflection angle around the KN-like in gravity with a background KR field as a function of impact parameter p for different
values of Lorentz-violating parameter b for fixed Q = 0.3 (left panel) and of BH charge Q for fixed b = 0.3 (right panel)

angle by adapting the developed method considered here. To
this end we show the dependence of deflection angle pro-
file from the impact parameter in Fig. 9. For being more
informative, in Fig. 9, the left panel reflects the impact of
Lorentz-violating parameter b with fixed Q on the profile
of deflection angle, while the right panel reflects the impact
of BH charge for fixed b. From Fig. 9, Lorentz-violating
parameter b affects the deflection angle so that it decreases
significantly with increasing b. Note that b and Q have a sim-
ilar physical effect thus resulting in decreasing the deflection
angle. This behaviour can be related to the physical inter-
pretation of Lorentz-violating parameter as repulsive gravi-
tational charge.

6 Conclusion

In this paper, we investigated the geodesic structure and
deflection angle of the electrically charged BH (1) in the pres-
ence of a nonzero vacuum expectation value background of
the KR field. Various aspects were explored, including null
geodesics, timelike geodesics, and the motion of charged par-
ticles in the BH close vicinity. Several key findings emerged
from this investigation.

The analysis of null geodesics revealed intriguing insights
into the photon sphere radius and the behavior of photons
around charged BHs. It was demonstrated that the Lorentz-
violating parameter b significantly influenced the photon
sphere radius, affecting the paths of photons in the grav-
itational field of the BH. Moreover, the investigation into
timelike geodesics uncovered the nature of stable circular
orbits for charged particles. The study revealed that the min-
imum radius for a stable circular orbit decreased with increas-
ing Lorentz-violating parameter and charge, highlighting the
sensitivity of these orbits to changes in the background field.

Based on the analysis, we showed that the Lorentz-
violating parameter can alter the particle geodesics thus
affecting the radius of ISCO, usually referred to one of
observable properties. It does therefore could mimic the
effects of BH spin parameter up to a/M ∼ 1, thus having
the same orbits as the one around a rotating Kerr BH. From
observational perspectives, the current precision of measure-
ments of highly spinning astrophysical BH candidates may
not rule out the effect of Lorentz-violating parameter due to
the fact that distant observers would not able to distinguish
between a rotating Kerr BH from a static BH having the same
spin in gravity with a background KR field. Our qualitative
theoretical findings can help to explain astrophysical obser-
vations for distinguishing a variety of BH alternatives and to
make useful astrophysical predictions.

We further examined the motion of charged particles and
analyzed the energy extracted by collisions near the BH
horizon. The findings suggested that the Lorentz-violating
parameter b played a crucial role in determining the center-
of-mass energy of colliding particles, indicating a decrease in
energy as the Lorentz-violating parameter increased. Further-
more, the study provided valuable insights into the behavior
of charged particles in the vicinity of those BHs under the
influence of both gravitational and electromagnetic fields.
By investigating the trajectories of charged particles, our
research shed light on the dynamics of charged particle
motion and the influence of the background KR field on
their trajectories. We also studied gravitational lensing phe-
nomenon for this BH in the weak field approximation by
utilizing the GBth. We analytically showed how the Lorentz-
violating effects α, and thus b, originating from the KR fields
influence the deflection angle (67). Our results showed that
both photon orbits and the deflection angle decrease signifi-
cantly with an increasing Lorentz-violating parameter acting
as a repulsive gravitational charge.
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The research presented in this paper contributed to our
understanding of the intricate interplay between gravitational
and electromagnetic fields in the vicinity of charged BHs with
a background KR field. The findings advanced our knowl-
edge of fundamental physics in extreme gravitational envi-
ronments. These theoretical findings may also help constrain
the validity of alternative models of spacetime geometry for
BHs in explaining quantum effects, non-linear interactions
and astrophysical observations, contributing to the field and
adding a unique perspective to the existing literature. Mov-
ing forward, potential future directions for this study could
involve investigating the effects of other background fields on
the geodesic structure and particle dynamics of charged BHs.
Additionally, exploring the implications of these findings
for observational astronomy and astrophysical phenomena,
such as accretion disks [65,66] and quasinormal modes [67–
72], could further enhance our understanding of the behavior
of matter and radiation in the vicinity of such BHs. More-
over, extending the analysis to incorporate quantum effects
and non-linear interactions, like greybody radiation [73–76],
could offer new perspectives on the behavior of charged BHs
in realistic astrophysical scenarios. Those tasks are slated for
our near-future agenda.
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