
Eur. Phys. J. C          (2024) 84:834 
https://doi.org/10.1140/epjc/s10052-024-13191-w

Regular Article - Theoretical Physics

Yukawa–Casimir wormholes in the framework of f (R) gravity

V. Venkatesha1,a , Chaitra Chooda Chalavadi1,b , Adnan Malik2,3,c

1 Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
2 School of Mathematical Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
3 Department of Mathematics, University of Management and Technology, Sialkot Campus, Lahore, Pakistan

Received: 25 March 2024 / Accepted: 30 July 2024
© The Author(s) 2024

Abstract In this article, we explore the Yukawa modifica-
tion of the Casimir wormhole within the framework of f (R)

gravity. To accomplish this, we adopt an approach proposed
by Garattini (Eur Phys J C 81:824, 2021), wherein the original
Casimir source is modified by a Yukawa term in three dis-
tinct scenarios. We utilize these Yukawa Casimir energy den-
sities to assess the feasibility of traversable wormholes. The
resulting shape function satisfies the criteria for traversability
under the specified parameter values. Furthermore, we scruti-
nize the energy conditions and the violation of the null energy
conditions suggests the presence of exotic matter within the
Yukawa Casimir wormholes. Additionally, we analyze the
embedding procedures for the wormhole geometry.

1 Introduction

A prominent structure known as a wormhole serves to con-
nect two distinct spacetime regions within the same universe
or even different universes. This structure consists of a nar-
row passage called the wormhole throat, functioning simi-
larly to a bridge or tunnel that joins these distinct regions of
the cosmos. The concept of inter-universe connections has
its origins in the groundbreaking research of Flamm in 1916
[1], which emerged shortly after the introduction of Gen-
eral Relativity (GR). In 1935, Einstein and Rosen [2] further
developed this concept by proposing a bridge model based
on Flamm’s theories. Later, Morris and Thorne [3] formu-
lated the concept of traversable wormholes and delineated
its geometric structure via the Morris–Thorne metric. This
study clarifies that the exotic fluid within the wormhole pos-
sesses negative energy, thus violating the null energy condi-
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tions (NEC). This exotic matter presents a problematic issue,
and numerous initiatives have been undertaken to address it
[4–12]. In semiclassical gravity, quantum effects lead to the
emergence of specific wormhole solutions such as Casimir
effects and Hawking evaporation [13], resulting in violations
of energy conditions. Other forms of exotic matter encompass
the generalized Chaplygin gas [14], phantom energy [15–
17], tachyon matter [18], and certain non-minimal kinetic
couplings, etc.

In the realm of theoretical physics, one of the notable mod-
ifications to GR is f (R) gravity, proposed by Buchdahl in
1977 [19]. In this framework, the usual term representing
the curvature scalar or Ricci scalar R in the Einstein-Hilbert
action is replaced by f (R), indicating an arbitrary function
of the Ricci scalar. This adjustment results in a more gen-
eralized version of the Einstein field equations within this
theoretical framework. Indeed, these generalized equations
have exhibited portrayals of cosmic phenomena. Lobo and
Oliveira [20] delved into the geometries of traversable worm-
holes, discussing various solutions incorporating shape func-
tions and specific equations of state. In 2015, Pavlovica and
Sossich examined Lorentzian wormhole solutions that sat-
isfy the Weak Energy Condition (WEC) [21]. Additionally, a
class of thin-shell wormhole solutions within the framework
of f (R) gravity was developed [22]. Recent studies indicate
that f (R) gravity might offer a feasible explanation for var-
ious cosmological and astrophysical phenomena [23–28].

Furthermore, the Casimir effect represents one manifes-
tation of vacuum energy within the framework of quantum
mechanics. Initially predicted by H. Casimir [29], and then
experimentally validated by various researchers [30–34]. The
Casimir effect is characterized by the emergence of an attrac-
tive force between two closely situated, neutral, and parallel
conducting plates within a vacuum. This force arises from the
disturbance of the electromagnetic field in the vacuum and
is associated with the zero-point energy of a quantum elec-
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trodynamics (QED) vacuum modified by the presence of the
plates. Moreover, the Casimir effect is a macroscopic quan-
tum phenomenon that manifests as the attraction of plates
through negative energy. In reference [35], the author exam-
ined the potential of utilizing Casimir energy exclusively for
the construction of Morris–Thorne wormholes in three spa-
tial dimensions and one temporal dimension. Furthermore,
they explored the implications of the Quantum Weak Energy
Condition (QWEC) on the traversability of these wormholes.

Recently, Garattini [36] conducted a study on the theo-
retical characteristics of traversable wormholes within the
framework of GR, delving into the requirement of exotic
energy densities for their viability. They examined the con-
sequences of Yukawa-like energy distributions in achiev-
ing these configurations. The Yukawa–Casimir wormhole is
formulated by modifying the original Casimir source with
Yukawa terms. In [37], the author rigorously investigated
Yukawa modifications on Casimir wormholes, aiming to
attain zero tidal forces using an equation of state. They
explored two methodologies: one fixing the shape function
of modified Casimir wormholes, while the other adjusted
the original Casimir source with a Yukawa term. Inspired
by this research, our objective is to investigate solutions for
traversable wormholes while considering the implications of
modified Casimir energy density. The concept of the Yukawa
Casimir wormhole was thoroughly examined and analyzed
in references [38,39].

The manuscript is organized in the following manner:
Sect. 2 presents the criteria for determining the traversabil-
ity of wormholes. In Sect. 3, we establish the mathemat-
ical framework for f (R) gravity. The energy conditions
are examined in Sect. 4. Section 5 provides a brief review
of Yukawa–Casimir energy density. Section 6 presents a
detailed analysis of Yukawa–Casimir wormholes, including
three different scenarios. In Sect. 7, we consider the specific
form of energy density to explore the wormhole solution in
f (R) gravity. Additionally, embedding procedures with dia-
grams are examined in Sect. 8. Finally, our conclusions are
presented in Sect. 9.

2 Traversability criteria for wormhole

The Morris–Thorne metric for the traversable wormhole is
given by

ds2 = −e2�(r)dt2 +
(

1 − b(r)

r

)−1

dr2 + r2d�2, (1)

where, d� = dθ2 + sin2 θdφ2. The redshift function �(r)
and the shape function b(r) both depend on the radial coor-
dinate r . These functions demonstrate significant character-

istics that illustrate a feasible wormhole solution, as outlined
below:

• The redshift function must be finite throughout the
domain and must also satisfy the absence of horizon
restriction. In this current study, we consider it to be con-
stant.

• The shape function b(r) satisfies the throat condition,
flaring-out condition and asymptotic flatness conditions,
namely 1− b(r)

r > 0 for r > r0, b′(r0) < 1 and b(r)/r →
0 as r → ∞ respectively.

• Another important criterion for traversable wormhole is
proper radial distance function l(r),

l(r) = ±
∫ r

r0

dr√
r − b(r)

r

. (2)

Here, the expression ± combines the upper and lower
parts of the wormhole. This connection decreases from
the upper universe to the throat, and then it increases to
the lower universe.

3 Mathematical formulation of f (R) gravity

In the framework of Einstein’s general theory of relativity, the
Lagrangian for geometry is typically expressed as LG = R,
where R represents the Ricci scalar. However, a more gener-
alized approach involves using LG = f (R). This newly for-
mulated gravitational theory is commonly referred to as the
f (R) theory of gravity. Further, the Einstein–Hilbert action
for f (R) gravity can be written as

S =
∫ [

1

16π
f (R) + Lm

] √−gd4x, (3)

where Lm is the matter lagrangian and g is the determinant
of the metric gμν . Now, applying the metric approach and
varying the action with respect to gμν yields the following
field equations

FRμν − 1

2
f gμν − ∇μ∇νF + gμν�F = Tμν, (4)

where F = d f (R)
dR and �F = 1√−g

∂μ(
√−ggμν∂νF).

Upon contracting Eq. (3), we get

(3� + R)F − 2 f = T, (5)

which demonstrates that the Ricci scalar is entirely a dynamic
degree of freedom andT is the trace of the energy-momentum
tensor.
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From Eqs. (4) and (5), the effective field equation is
obtained as

Gμν = Rμν − 1

2
Rgμν = T ef

μν , (6)

where, T ef
μν is the combination of curvature stress-energy ten-

sor T (c)
μν = 1

F

[∇μ∇νF − 1
4gμν(RF + �F + T )

]
and mat-

ter stress-energy tensor T̂ (m)
μν = T (m)

μν

F [20]. In this article, we
assume that the distribution of matter is characterized by an
anisotropic stress-energy tensor, expressed as:

Tμν = (ρ + pt )ημην + (pr − pt )ζμζν + pt gμν, (7)

with ζμζμ = −ημημ = 1. Here, ρ, pt and pr represent
the energy density, tangential pressure, and radial pressure,
respectively.

Furthermore, the gravitational field equation for the f (R)

theory can be expressed as follows:

ρ = F
b′(r)
r2 , (8)

pr = F ′′ b(r) − r

r
+ F ′ r b′(r) − b(r)

2r2 − F
b(r)

r3 , (9)

pt = F ′ b(r) − r

r2 + F
b(r) − r b′(r)

2r3 . (10)

4 Energy bounds

The energy bounds play a crucial role in assessing the phys-
ical viability of specific cosmological structures, particu-
larly for analyzing the geometric properties of wormholes.
In this section, we discuss the energy bounds, including the
Null Energy Conditions (NEC), Weak Energy Conditions
(WEC), Strong Energy Conditions (SEC), and Dominant
Energy Conditions (DEC), which are expressed as follows:

• NEC: ρ + pt ≥ 0 and ρ + pr ≥ 0.
• WEC: ρ ≥ 0 �⇒ ρ + pt ≥ 0 and ρ + pr ≥ 0.
• SEC: ρ + pr ≥ 0, ρ + pt ≥ 0 and ρ + pr + 2pt ≥ 0.
• DEC: ρ ≥ 0 �⇒ ρ − |pr | ≥ 0 and ρ − |pt | ≥ 0.

5 Yukawa–Casimir energy density

In 1935, Yukawa [40] introduced a proposition to elucidate
nonrelativistic strong interactions among nucleons, employ-
ing a potential. The profile of potential is defined as

V (r) = −χ

r
e−βr , (11)

where χ defines the strength of nucleon interactions and its
range is determined by 1

α
. Numerous researchers adopted

this short-range interaction to comprehend deviations from

the Newtonian potential. If similar deviations were to occur,
the gravitational Newtonian potential would consequently
undergo a Yukawa correction, formally resembling Eq. (11)
as follows:

V (r) = −Gm1m2

r
(1 + χe−αr ). (12)

Here, m1 and m2 represent two points separated by a dis-
tance r . Notably, potentials in the form of Eq. (12) have
undergone extensive study from an astrophysical perspec-
tive, with a specific focus on the graviton mass [41–43].
These Yukawa-type forces are also anticipated within the
context of modified gravity theories [44–46]. Moreover, in
different frameworks, the potential for obtaining traversable
wormholes always exists [38,47].

In this article, we concentrate on the Casimir source of
energy density modified by the Yukawa term, commonly
referred to as Yukawa–Casimir energy density. This modi-
fication results in three distinct Yukawa energy densities, as
outlined below [37]:

1. ρy = r0 ρc
eλ(r0−r)

r
,

2. ρy = ρc

2r

(
μ r + ν r0 eλ(r0−r)

)
and

3. ρy = ρc r0

r

(
μ eλ(r0−r) − (1 − ν) eλ(r0−r)

)
.

6 Yukawa–Casimir wormhole solutions in f (R) gravity

In this manuscript, we study the wormhole solution with the

function f (R) given by f (R) = α

m + 1
Rm+1 with F =

α Rm [48]. Here, the Ricci scalar R is articulated as

R = 2b′(r)
r2 . (13)

Further, we delve into the previously mentioned modified
Casimir energy density and analyze both the properties of
shape function and energy conditions.

6.1 Case -1

Now, we consider the Yukawa energy density written as

ρy = r0 ρc
eλ(r0−r)

r
, (14)

with λ > 0. If r0 = r , then the above equation reduces to
Casimir energy density ρc. We match the Yukawa energy
density (14) with Eq. (8), we get the following differential
equation

2mα

(
b′(r)
r2

)m+1

= −π2 r0 eλ(r0−r)

720r5
. (15)
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Upon solving the aforementioned equation, the resulting
shape function is expressed as follows:

b(r) = C − r 45− 1
m+1 π

2
m+1 e

λr
m+1

(
λr

m + 1

) 2−3m
m+1

×�

(
3m−2

m+1
,

rλ

m+1

)(
−2−m−4r0r2m−3eλ(r0−r)

α

) 1
m+1

,

(16)

where C is an integration constant. To determine the value
of C by imposing an initial condition b(r0) = r0, we obtain

C =45− 1
m+1 r0

(
λr0

m + 1

)− 3m
m+1

⎡
⎣π

2
m+1

(
−2−m−4r2m−2

0

α

) 1
m+1

×e
λr0
m+1

(
λr0

m + 1

) 2
m+1

�

(
3m − 2

m + 1
,

r0λ

m + 1

)

+45
1

m+1

(
λr0

m + 1

) 3m
m+1

⎤
⎦ . (17)

To investigate the asymptotic behavior of the shape func-
tion (16), we examine its expansions for large r. The second-
order expansions are given by

b(r) 

r→∞ −

45− 1
m+1 (m + 1)π

2
m+1

(
2m2 + m(2λr − 11) + λr(λr − 3) + 12

) (
− 2−m−4r0r2m−3eλ(r0−r)

α

) 1
m+1

λ3r2 ,

b′(r) 

r→∞

45− 1
m+1 π

2
m+1

(
λ3r3 − 2(m − 4)(m + 1)(2m − 3)

) (
− 2−m−4r0r2m−3eλ(r0−r)

α

) 1
m+1

λ3r3 ,

b(r)

r



r→∞ −
45− 1

m+1 (m + 1)π
2

m+1 (2m + λr − 3)
(
− 2−m−4r0r2m−3eλ(r0−r)

α

) 1
m+1

λ2r2 .

Upon examining these expressions, it becomes clear that as r

approaches infinity, the term e
(r0−r)λ
m+1 tends to zero. This indi-

cates that the shape function is convergent for large values of

r . Furthermore, for large r , the shape function is independent
of the choice of m, whereas it depends on the choice of m
for finite values. The asymptotic behavior of the shape func-
tion is depicted in Fig. 1. As observed, our obtained shape
function converges as r approaches infinity.

Further, the derived shape function exhibits a monotoni-
cally increasing function with b(r) < r for α ∈ (−∞, 0).
The α range is restricted to (−∞, 0), meeting all the criteria
necessary for a wormhole. However, it leads to the emergence
of imaginary terms within the range (0,∞). This suggests
that the solution is valid exclusively for negative α values.
Mathematically, the presence of imaginary terms indicates
that the solution becomes complex for positive α values,
potentially signifying a breakdown in its physical interpreta-
tion beyond a certain threshold. Consequently, the geometry
depicted by the solution may lack physical significance or
stability in the positive α region. Figure 2 illustrates the ful-
fillment of criteria for a traversable wormhole, including the
throat condition, flaring-out condition, and asymptotic flat-
ness condition. Additionally, our investigation extends to the
features of energy density and energy conditions, as depicted
in Fig. 3. The traits of stress-enery components are shown in
Fig. 3a. The NEC and DEC are violated, while the SEC is
upheld. The infringement of NEC suggests the existence of
a hypothetical fluid.

By substituting Eqs. (16) and (17) into Eqs. (9) and (10),
we obtain the pressure elements as:

Fig. 1 Asymptotic behavior of b(r), b’(r) and b(r)/r with m = 2, r0 = 0.5, and λ = 1.45
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Fig. 2 The graphical representation of the shape function for Yukawa–Casimir wormhole against radial coordinate with m = 2, r0 = 0.5, and
λ = 1.45

Fig. 3 Pictures of the Yukawa energy density and energy conditions with respect to r , where the model parameter values are m = 2, r0 = 0.5,
and λ = 1.45
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Fig. 4 The characteristics of
the shape function b(r) for
Yukawa–Casimir wormhole
with m = 2, r0 = 0.5, and
λ = 1.45

pr = − 2m−1 45− 1
m+1 α

(m + 1)2r3

×

⎛
⎜⎜⎜⎜⎝

45− 1
m+1 π

2
m+1

(
− 2−m−4r0r

2m−3eλ(r0−r)

α

) 1
m+1

r2

⎞
⎟⎟⎟⎟⎠

m

×
⎡
⎢⎣45

1
m+1

(
m2(r(2λ2r2 − 2rλ2r0 + 20rλ − 21r0λ

+60λ) − 63r0) − mrλr0 − 10mr + 11mr0 + 2r0

)

+m(m + 1)π
2

m+1 r(λr + 5)

(
− 2−m−4r0r

2m−3eλ(r0−r)

α

) 1
m+1

+π
2

m+1 (−2 + 11m + mrλ + m2(2r2λ2 + 21rλ + 63))

×
(
re

λr
m+1 E 5

m+1 −2

(
rλ

m + 1

)(
− 2−m−4r0r

2m−3eλ(r0−r)

α

) 1
m+1

−r0

(
− 2−m−4r2m−2

0
α

) 1
m+1

e
λr0
m+1 E 5

m+1 −2

(
r0λ

m + 1

))⎤
⎥⎦ , (18)

pt = α2m−145− 1
m+1

(m + 1)r3

×

⎛
⎜⎜⎜⎜⎝

45− 1
m+1 π

2
m+1

(
− 2−m−4r0r

2m−3eλ(r0−r)

α

) 1
m+1

r2

⎞
⎟⎟⎟⎟⎠

m

×
[

45
1

m+1 (2mr(λr − λr0 + 5) − 9mr0 + r0) − (m + 1)π
2

m+1 r

×
(

− 2−m−4r0r
2m−3eλ(r0−r)

α

) 1
m+1

+ π
2

m+1 (m(2λr + 9) − 1)

×
(
re

λr
m+1 E 5

m+1 −2

(
rλ

m + 1

)(
− 2−m−4r0r

2m−3eλ(r0−r)

α

) 1
m+1

−r0e
λr0
m+1 E 5

m+1 −2

(
r0λ

m + 1

)(
− 2−m−4r2m−2

0
α

) 1
m+1 )]

. (19)

6.2 Case -2

In this scenario, our analysis explores the modified Casimir
energy density provided by:

ρy = ρc

2r

(
μ r + ν r0 e

λ(r0−r)
)

, (20)

where λ > 0 and μ = ν = 1. At r = r0, the Yukawa energy
density (20) reduces to the Casimir energy density. Now, by
comparing Eqs. (20) and (8), one can get

2mα

(
b′(r)
r2

)m+1

= −π2
(
r0 eλ(r0−r) + r

)
1440r3 . (21)

The aforementioned non-linear differential equations are
generally more difficult to solve analytically than linear ones
due to their inherent complexity and the lack of a univer-
sal solving method. While most non-linear equations require
numerical or approximate methods due to their intricate
and often unpredictable nature. Consequently, we utilize
numerical methods to solve it, taking into account the ini-
tial condition b(0.5) = 0.5. Additionally, specific values
will be substituted for other unknown parameters, such as
m = 2, r0 = 0.5, and λ = 1.25. Figure 4 illustrates the
behavior of the shape function b(r) with different values of α.
In this depiction, the shape function maintains a non-negative
and increasing nature across the entire domain of r . Notably,
it adheres to the asymptotic flatness condition, as the ratio

123



Eur. Phys. J. C           (2024) 84:834 Page 7 of 12   834 

Fig. 5 The behavior of energy density and various energy conditions for Yukawa–Casimir wormhole with m = 2, r0 = 0.5, and λ = 1.45

of b(r)/r → 0 as r → ∞. Additionally, the derivative of
the shape function at the throat remains less than one. Con-
sequently, it can be observed that the shape function satisfies
all the essential criteria for traversable wormholes.

In Fig. 5, we present the graphical trends of the Yukawa
energy density, pressure elements and energy conditions. It
can be observed that the Yukawa energy density is consis-
tently negative across the entire domain of r . Furthermore,
both the NEC and DEC are violated, while the SEC remains
satisfied.

6.3 Case -3

In this scenario, we examine another form of Yukawa energy
density, denoted as

ρy = ρc r0

r

(
μ eλ(r0−r) − (1 − ν) eλ(r0−r)

)
, (22)

with λ > 0. In this instance, Eq. (22) is simplified to the
Casimir energy density when μ = 1, ν = 0 and r0 = r .
From Eqs. (22) and (8), we obtain the differential equation

2mα

(
b′(r)
r2

)m+1

= −π2r0
(
μeλ1(r0−r) + (ν − 1)eλ2(r0−r)

)
720r5

. (23)

Since Eq. (23) is a non-linear differential equation, it
proves challenging to find analytical solutions. Hence, we
will employ a numerical approach to explore the behavior of
the shape function with the initial condition b(0.5) = 0.5.

The visual representation of b(r), b′(r), b(r)/r, b(r)− r are
shown in Fig. 6. In this case, we choose some particular values
of parameters to satisfy all the properties of the shape function
associated with m = 2, r0 = 0.5, and λ = 1.45. Clearly, the
shape function is a monotonically increasing function. The
derivative of the shape function is less than one, thereby ful-
filling the flaring-out condition. Additionally, the ratiob(r)/r
approaches 0 as the radial coordinate increases, indicating the
asymptotic flatness of the metric. The throat of the wormhole
occurs where b(r) − r intersects the r -axis.

Both the NEC and DEC are found to be violated. The
breach of the NEC suggests the existence of hypothetical
matter at the throat of the wormhole. On the other hand, the
SEC is upheld. These features are visually depicted in Fig. 7.

7 Power-law form of specific energy density

In this portion, we shall consider the specific power-law form
of energy density denoted as [49–51]

ρ = ρ0

(r0

r

)n
, (24)

where n, ρ0 > 0 are some constants. By comparing the spe-
cific energy density (SED) (24) and Eq. (8), we derive the
shape function in the following form:

b(r) =
(m + 1)r

(
2−mrn0 r

2m−n+2ρ0

α

) 1
m+1

3m − n + 3
+ C . (25)
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Fig. 6 The profile of
b(r), b′(r), b(r) − r and b(r)/r
versus r with m = 2, r0 = 0.5,

and λ = 1.45

Fig. 7 The profile of energy density and energy conditions with m = 2, r0 = 0.5 and λ = 1.45

Through the imposition of an initial condition b(r0) = r0,
we find out the value of C as given below:

C =−
r0

⎛
⎜⎝m

(
2−mr2m+2

0 ρ0

α

) 1
m+1

+
(

2−mr2m+2
0 ρ0

α

) 1
m+1

− 3m+n−3

⎞
⎟⎠

3m − n + 3
.

(26)

For our investigation, we know that 0 < b(r) < r for
r ≥ r0 will satisfy if −1 < m < n − 1. Using the
aforementioned expression of the shape function, we plot
b(r), b′(r), b(r) − r, b(r)/r in Fig. 8. It is evident that the
shape function is a positively increasing function throughout
the region. It also satisfies the throat condition, flaring-out
condition, and asymptotic flatness condition. This charac-
teristic ensures that the derived shape function fulfills the
traversability conditions for a wormhole.
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Fig. 8 The profile shows the
behavior of shape function with
m = 2, n = 5, r0 = 0.5, and
λ = 1.45

Figure 9 illustrates the features of stress- energy tensor
components and energy conditions. It is important to note
that the energy density remains positive throughout the entire
spacetime. By examining the inequalities ρ + pr < 0 and
ρ + pt > 0, we observe a violation of the NEC for various
α values. Furthermore, the conditions ρ − |pr |, ρ − |pt | and
ρ + pr + 2pt are violated.

Now, by substituting Eqs. (25) and (26) into (9) and (10),
the pressure elements can be rewritten as

pr = α2m−1

(m+1)2r3(3m−n+3)
×

⎛
⎜⎜⎝

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

r2

⎞
⎟⎟⎠

m

×
⎡
⎣ −

(
(3 + 3m − n)(2mn(1 + m + mn)r

−(2 + m(2 + n))(−1 + m(−1 + 2n))r0)

)

×2m3n2r

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

−2m3r

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

+3m2n2r

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

−6m2r

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

+mn2r

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

−6mr

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

−2r

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

−(m + 1)r0(m(n + 2) + 2)(m(2n − 1) − 1)

×
(

ρ02−mr2m+2
0

α

) 1
m+1

⎤
⎦ , (27)

pt = α2m−1

(m + 1)r3(3m − n + 3)

×

⎛
⎜⎜⎝

(
ρ02−mrn0 r

2m−n+2

α

) 1
m+1

r2

⎞
⎟⎟⎠

m

⎡
⎣2m2nr0

(
ρ02−mr2m+2

0

α

) 1
m+1

+2mnr0

(
ρ02−mr2m+2

0

α

) 1
m+1

−2mr0

(
ρ02−mr2m+2

0

α

) 1
m+1

−r0

(
ρ02−mr2m+2

0

α

) 1
m+1
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Fig. 9 The profile represents the characteristics of energy density and energy conditions with m = 2, n = 5, r0 = 0.5, and λ = 1.45

−m2r0

(
ρ02−mr2m+2

0

α

) 1
m+1

−(m + 1)r(2m(n + 1) − n + 2)

×
(

ρ02−mrn0 r
2m−n+2

α

) 1
m+1

+(3 + 3m − n)(r0 + m(2n(r − r0) + r0))

⎤
⎦ (28)

8 Embedding procedures for wormhole geometry

In this section, we have employed an embedding diagram
to visually elucidate the characteristics of wormhole geom-
etry. The effectiveness of this visualization depends on the
selection of the shape function b(r). In the framework of
spherically symmetric spacetime, we specifically focus on
the equatorial slice defined by θ = π

2 for a fixed time i.e.,
t = constant. Under these conditions, the metric (1) reduces
to

ds2 =
(

1 − b(r)

r

)−1

dr2 + r2dφ2. (29)

Now, the aforementioned slice can be embedded into its
hypersurface with cylindrical coordinates (r, φ, z) as

ds2 = dz2 + dr2 + r2dφ2. (30)

Fig. 10 The two-dimensional embedding diagram of Yukawa–Casimir
Wormhole solutions

By comparing Eqs. (29) and (30), we can find the embedding
surface, which is expressed as follows:

dz

dr
= ±

[
b(r)

r − b(r)

]1/2

. (31)

The two-dimensional embedding diagrams for three dis-
tinct scenarios are depicted in Fig. 10.

9 Conclusion

Our research is centered on investigating the existence of
Yukawa–Casimir wormholes within the framework of f (R)

gravity. To achieve this, we have scrutinized the influence
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of anisotropic fluid in a spherically symmetric spacetime.
Casimir energy serves as a source of exotic energy with
a negative nature, and it has the capacity to facilitate the
traversable nature of wormhole geometries. By introduc-
ing the Yukawa term into the initial Casimir wormhole, we
have constructed the Yukawa–Casimir wormhole. Presently,
the concept of Yukawa–Casimir wormholes signifies pio-
neering research within the scientific community. Through-
out this investigation, we incorporated modified Casimir
energy density to explore the feasibility of traversable worm-
holes under three distinct scenarios. In [37], Garattini intro-
duced the concept of modified Casimir energy density. Our
aim in examining the implications of this modified Casimir
energy density was to elucidate the fundamental princi-
ples dictating the behavior of traversable wormholes. Fur-
thermore, our investigation extended to examine the worm-
hole solution utilizing a specific energy density and to elu-
cidate the embedding procedures for wormhole geometry.
The summary of results obtained from our analysis are as
follows:

• In this document, we considered the power-law form

of wormhole model expressed as f (R) = α

m + 1
Rm+1

with F = α Rm [48], where F is derivative of the model.
We assumed a constant redshift function in our analysis
to derive asymptotically flat wormhole solutions using
Yukawa–Casimir energy density.

• In the first case, we examined the original Casimir energy
density modified by a Yukawa term, given by ρy =
r0 ρc

eλ(r0−r)

r
, where λ > 0 and ρc is Casimir energy

density. We observed that when r0 = r , one can read-
ily obtain the pure Casimir energy density. Here, we
derived the shape function and conducted a comprehen-
sive examination of the energy conditions. Notably, the
shape function is found to meet the necessary condi-
tions for traversable wormholes as shown in Fig. 2. More-
over, the features of stress-energy tensor components and
energy conditions are depicted in Fig. 3, revealing a vio-
lation of the NEC.

• Secondly, we considered the modified Casimir energy

density ρy = ρc

2r

(
μ r + ν r0 eλ(r0−r)

)
, where parame-

ters μ = ν = 1 and λ > 0. In this scenario, the obtained
differential equation proves challenging to solve analyti-
cally. Therefore, we employed a numerical method with
initial condition b(0.5) = 0.5 to solve it. The visual rep-
resentation of shape function and energy conditions are
presented in Figs. 4 and 5. Clearly, one can observe that
the violation of the NEC indicates the presence of a hypo-
thetical fluid at the throat of the wormhole.

• In the third case, we explored the implication of Yukawa–
Casimir energy density, which is in the form of ρy =

ρc r0

r

(
μ eλ(r0−r) − (1 − ν) eλ(r0−r)

)
with λ,μ, ν are

some parameters. Similarly, we employed the initial con-
dition b(0.5) = 0.5 to solve the obtained differential
equation numerically. Remarkably, we also found that
the wormhole throat contains exotic fluid, evidenced by
the violation of the NEC at the throat (Fig. 7).

• Subsequently, we assumed the power law form of specific
energy density to investigate wormhole solutions within
f (R) gravity. The resulting shape function demon-
strated satisfactory behavior, meeting all necessary crite-
ria within the specified parameter range, where n, ρ0 >

0,m = 2 and α ∈ (0,∞) (Fig. 8). In this instance, the
conditions ρ+ pr < 0 and ρ+ pt > 0 indicate a violation
of the NEC (Fig. 9).

• The asymptotic expansion was discussed in the first case,
but in the remaining two cases, we solved the differential
equation numerically, so we did not obtain an analytic
expansion. Furthermore, the asymptotic series expansion
also provided the same expression of the shape function,
so here we check the range of m in the specific energy
density case.

• Finally, we have provided detailed explanations and dia-
grams illustrating the embedding of wormhole configura-
tions in both two and three-dimensional Euclidean space.

Overall, this research elucidates the physically plausible
behavior of Yukawa–Casimir wormholes within the frame-
work of f (R) gravity.
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