
Eur. Phys. J. C          (2024) 84:808 
https://doi.org/10.1140/epjc/s10052-024-13172-z

Regular Article - Theoretical Physics

Existence of non-singular stellar solutions within the context of
electromagnetic field: a comparison between minimal and
non-minimal gravity models

Tayyab Naseer1,a , Jackson Levi Said2,3,b

1 Department of Mathematics and Statistics, The University of Lahore, 1-KM Defence Road, Lahore 54000, Pakistan
2 Institute of Space Sciences and Astronomy, University of Malta, Msida, MSD 2080, Malta
3 Department of Physics, University of Malta, Msida, MSD 2080, Malta

Received: 5 June 2024 / Accepted: 30 July 2024
© The Author(s) 2024

Abstract In this paper, we explore the existence of vari-
ous non-singular compact stellar solutions influenced by the
Maxwell field within the matter-geometry coupling based
modified gravity. We start this analysis by considering a
static spherically symmetric spacetime which is associated
with the isotropic matter distribution. We then determine the
field equations corresponding to two specific functions of this
modified theory. Along with these models, we also adopt dif-
ferent forms of the matter Lagrangian. We observe several
unknowns in these equations such as the metric potentials,
charge and fluid parameters. Thus, the embedding class-one
condition and a particular realistic equation of state is used
to construct their corresponding solutions. The former con-
dition provides the metric components possessing three con-
stants, and we calculate them through junction conditions.
Further, four developed models are graphically analyzed
under different parametric values. Finally, we find all our
developed solutions well-agreeing with the physical require-
ments, offering valuable insights for future explorations of
the stellar compositions in this theory.

1 Introduction

Cosmologists have recently revealed revolutionary discov-
eries that defy traditional beliefs regarding the spatial orga-
nization of celestial structures in our cosmos. Rather than
presenting a random dispersion, these formations exhibit
a discernible order, sparking significant curiosity among
researchers. The meticulous study of these entities has
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become a central topic of exploration for scientists committed
to unraveling the mystery surrounding the accelerated expan-
sion of the universe. Empirical testimonies strongly indicate
the existence of an extensive counter-force to gravitational
attraction, driving the observed rapid expansion. Referred
to as dark energy, this enigmatic force presents a significant
puzzle for scientists. While Einstein’s general relativity (GR)
provides some insights into this expansion, it encounters dif-
ficulties in fully explaining dark energy, particularly in rela-
tion to the cosmological constant �. Therefore, it has been
necessary to introduce modifications to the existing theory
to better comprehend and enhance our knowledge regarding
fundamental dynamics of the cosmos.

Einstein’s GR has straightforwardly been modified to
f (R) gravity, representing a substantial advancement in
experimental physics. This theory alters the action func-
tion by interchanging the curvature scalar R and its gen-
eral functional. Notable progress has been made within this
gravity theory, with implications reaching into the study of
celestial structures [1–4]. Astashenok with his collaborators
[5] investigated the upper mass limit for massive objects in
the current framework. Their research produced an intrigu-
ing result that as a second object in the binary GW190814,
there must be either a rapidly rotating neutron star or a
black hole. A significant body of literature underscores the
remarkable contributions made by various researchers [6–
8]. One notable contribution comes from Bertolami and his
colleagues [9], who were instrumental in put forwarding the
coupling between matter and spacetime geometry in f (R)

gravity. Their methodology involved integrating the matter
Lagrangian and R into a unified functional form, known as
f (R,Lm) theory. This novel concept prompted astronomers
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to focus on discussions related to the rapid universe’ expan-
sion [10].

Following these developments, Harko et al. [11] intro-
duced a ground-breaking gravitational theory, called f (R, T )

gravity at the action level. This theory utilizes a generalized
function that leads to a non-conserved phenomenon, resulting
in the emergence of an extra force, causing moving particles
to follow non-geodesic path [12]. Houndjo [13] employed a
particular model based on the minimal interaction to explain
the shift from one cosmic era to the other phase in which
we are living right now. Among the various functional forms
of f (R, T ) theory, the R + 2βT candidate has attracted
considerable attention in scientific literature due to its abil-
ity to generate physically existing internal structures. Differ-
ent researchers, including Das et al. [14], utilized a similar
model to develop a three-layer gravastar geometry. Various
methodologies were implemented to explore diverse geomet-
rical structures in this context [15–21]. An essential facet of
the f (R, T ) gravity is its incorporation of some effects at
quantum level, which introduces the potential for particle
creation. This characteristic is of great significance in astro-
nomical investigations as it sets out a connection between the
extended theory and quantum mechanics. Notable findings
in this area have been produced and can be seen in [22,23].
In a recent research endeavor, Zaregonbadi et al. [24] have
examined the feasibility of this modification to GR to study
the impact of dark matter on clusters of galaxies.

The f (R, T ) theory has indeed presented an intriguing
extension to GR, showing a diverse range of phenomenol-
ogy in modern research. However, researchers [25,26] delved
into the challenges associated with constructing a viable and
realistic cosmology within this theory. Their study demon-
strated that the currently discussed models of this theory do
not yield an expandable cosmic background. In response
to these challenges, Haghani and Harko [27] undertook a
considerable effort by simultaneously unify two categories
of gravitational theories, and call it the f (R,Lm, T ) grav-
ity. This strategic approach aims to address the limitations
encountered in the previously discussed gravity models and
offers a more comprehensive understanding of the intricate
dynamics governing the universe. They explored the New-
tonian limit of the field equations and provided some terms
representing an extra-acceleration, particularly focusing on
scenarios involving small velocities of particles and weak
fields of gravity. This exploration enlightens how different
choices of Lagrangian influence the description of the cos-
mic expansion. Zubair et al. [28] reconstructed some cosmo-
logical solutions such as de Sitter and �CDM models in this
theory and found them to be cosmologically stable through
suitable perturbations.

The study of celestial entities characterized by the field
equations possessing high non-linearity, either in the frame-
work of GR or extended theories, has prompted astronomers

to actively seek their numerical or exact solutions. The signif-
icance of compact interiors lies in the physical interest they
hold, contingent upon the satisfaction of specific conditions
by the developed model. Various methodologies have been
engaged in the scientific literature to derive such solutions,
including the utilization of a specific ansatz or the imple-
mentation of particular equations of state, among other tech-
niques. One approach to solving this challenge is through the
implementation of the embedding class-one phenomenon,
which posits that one can embed any space in another hav-
ing at least one higher dimension. Bhar et al. [29] employed
the same method, coupled with particular metric potentials
and derived physically existing anisotropic solutions. Mau-
rya et al. [30,31] used the same approach to construct a new
solution, delving into its stability and exploring the impact
of anisotropic pressure on relativistic systems. Singh with
his collaborators [32] devised a singularity-free solution for
spherical geometry by proposing a specific metric function
within the framework of this technique. Exploring this con-
dition into a matter-geometry coupled theory, several works
have yielded stable as well as viable solutions [33–37].

In this paper, we explore various isotropic solutions in
conjunction with the Maxwell field within the framework of
f (R,Lm, T ) theory. The paper’s structure is organized as
follows. The following section establishes some basics of
this extended theory and derives the generalized field equa-
tions. Sect. 2 presents the Karmarkar condition, which aids
in determining the metric potentials. Additionally, we utilize
the Reissner-Nordström vacuum solution and compute the
constants associated with the overhead condition. We outline
particular criteria that, once fulfilled, guarantee the model’s
physical validity in Sect. 3. Advancing further, Sect. 4 reveals
the newly formulated solutions and offers a visual represen-
tation to aid in understanding the physical relevance of the
obtained results. Conclusively, in the final section, our find-
ings are encapsulated, summarizing the main outcomes and
insights acquired in this study.

2 Fundamentals of modified theory

The action of the modified f (R,Lm, T ) theory is obtained
after replacing the Ricci scalar with this functional [27]. This
has the form

S =
∫ √−g

[
f (R,Lm, T )

16π
+ Lm + LE

]
d4x, (1)

where the electric charge and ordinary matter have Lagrangian
densities, denoted by LE and Lm , respectively. Also, g =
|gεω| with gεω being the metric tensor and the two lines
enclosing it symbolize the determinant. Varying the action
(1) w.r.t. gεω, the tensorial form of the modified field equa-
tions become
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Gεω = 8πT (e f f )
εω , (2)

where the entity Gεω, namely the Einstein tensor, expresses
the geometry of the considered fluid distribution and T (e f f )

εω

refers to the matter enclosed by that geometry. This effec-
tive term is further classified into three different energy-
momentum tensors as

T (e f f )
εω = 1

fR

(
T (m)

εω + Eεω

)
+ T (cr)

εω , (3)

where

• T (m)
εω correspond to the ordinary matter configuration,

• Eεω indicates the presence of charge in the self-gravitating
system,

• T (cr)
εω are modified correction terms.

We express T (m)
εω as follows

T (m)
εω = − 2√−g

{
δ
(√−gLm

)
δgεω

}
⇒

T (m)
εω = gεωLm − ∂Lm

∂gεω

.

On the other hand, the last term on the right side of Eq.
(3) have the value given by

T (cr)
εω = 1

8π fR

[
1

2

(
2 fT + fLm

)
T (m)

εω − (gεω� − ∇ε∇ω) fR

+ 1

2

(
f − R fR

)
gεω − (

2 fT + fLm

)
Lmgεω

+ 2 fT gζβ ∂2Lm

∂gεω∂gζβ

]
, (4)

where fT = ∂ f (R,Lm ,T )
∂T , fLm = ∂ f (R,Lm ,T )

∂Lm
and fR =

∂ f (R,Lm ,T )
∂R . The mathematical definitions of the

D’Alembertian operator and covariant derivative are � ≡
(−g)

−1
2 ∂ε

(√−ggεω∂ω

)
and ∇ε fR = fR,ε − 
ω

εω fR,
respectively. Equations (2)–(4) provides after combining as

Gεω = 1

fR

[{
8π + 1

2

(
2 fT + fLm

)}
T (m)

εω + 8πEεω

− (gεω� − ∇ε∇ω) fR + 1

2

(
f − R fR

)
gεω

− (
2 fT + fLm

)
Lmgεω + 2 fT gζβ ∂2Lm

∂gεω∂gζβ

]
. (5)

The energy-momentum tensor plays a pivotal role in for-
mulating the gravitational field equations, enabling a precise

representation of the interaction between matter and space-
time curvature. This tensor proves indispensable in under-
standing a wide array of physical phenomena, from celestial
bodies’ gravitational influences to the dynamics of fluid sys-
tems. Its incorporation not only facilitates the development
of accurate models for diverse astrophysical scenarios but
also contributes to the exploration of fundamental principles
in the broader context. The models possessing the isotropic
fluid among all existing in the literature holds significance.
Its application proves instrumental in various scientific dis-
ciplines, contributing to the development of accurate and
tractable models for the study of diverse physical processes.
Such matter distributions can be defined in the following way
[38]

T (m)
εω = ρVεVω + (

VεVω + gεω

)
P, (6)

where P being the pressure, ρ symbolizes the energy density
and Vε indicates the four-velocity. The stress-energy tensor
expressing the electromagnetic field is defined by [39]

Eεω = 1

4π

[
1

4
gεωWαηWαη − Wη

ε Wηω

]
,

whereas we can write Maxwell equations in concise (or ten-
sorial) form as

Wεω
;ω = 4πεε, W[εω;η] = 0. (7)

Here, Wεω = ϕω;ε − ϕε;ω is written in terms of the four
potential defined by ψω = ψ(r)δ0

ω. Also, the current εε and
charge density � are combined with each other through the
relation εε = �Vε .

Determining the trace of Eq. (5), we have the following

2
{
f − (

2 fT + fLm

)
Lm

} + T
(
fT + 8π + 1

2
fLm

)

− 3� fR − R fR + 2 fT gζβgεω ∂2Lm

∂gζβ∂gεω
= 0.

As functional of this theory is generalized in terms of the
geometry and matter terms, the divergence of the stress-
energy tensor becomes non-null. As a result, a supplemen-
tary force emerges within the gravitational field of a massive
object, leading to modifications in the geodesic trajectory of
moving test particles. This force is mathematically expressed
as follows

∇εT (m)
εω = 1

16π + 2 fT + fLm

[
∇ω

{(
2 fT + fLm

)
Lm

}

− T (m)
εω ∇ε

(
2 fT + fLm

) − (
fT ∇ωT + fLm∇ωLm

)

− 8π∇εEεω − 4gζβ∇ε

(
fT

∂2Lm

∂gεω∂gζβ

) ]
. (8)
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Considering a spherical spacetime as an interior geometry is a
significant starting point as its investigation involves under-
standing the curvature dynamics and gravitational interac-
tions specific to a spherical space. The following metric rep-
resents such geometry as

ds2 = −e�1(r)dt2 + e�2(r)dr2 + r2(dθ2 + sin2 θdφ2), (9)

where radial/temporal components depend only on the radial
coordinate, showing that the geometry under consideration
is static. We observe the presence of the four-vector in Eq.
(6) which now becomes

Vε = −δ0
ε e

�1
2 = (−e

�1
2 , 0, 0, 0). (10)

Equation (7) (left) along with the metric (9) yields

ψ ′′ + 1

2r

[
4 − r(�′

1 + �′
2)

]
ψ ′ = 4π�e

�1
2 +�2 ,

where ′ = ∂
∂r . Implementing an integration on the above

second-order equation results in the following expression

ψ ′ = s

r2 e
�1+�2

2 ,

where the total interior charge is defined as s ≡ s(r) =∫ r
0 �e

�2
2 r̄2dr̄ .

The isotropic modified field equations representing spher-
ical structure are now formulated by combining Eqs. (5), (6)
and (9). The non-vanishing components are given by

e−�2

(
�′

2

r
− 1

r2

)
+ 1

r2

= 1

fR

[{
8π + 1

2

(
2 fT + fLm

)}
ρ + (� − ∇0∇0) fR

+ s2

r4 − 1

2

(
f − R fR

) + (
2 fT + fLm

)
Lm

]
, (11)

e−�2

(
1

r2 + �′
1

r

)
− 1

r2

= 1

fR

[{
8π + 1

2

(
2 fT + fLm

)}
P − (� − ∇1∇1) fR

− s2

r4 + 1

2

(
f − R fR

) − (
2 fT + fLm

)
Lm

]
, (12)

e−�2

4

[
�′2

1 − �′
2�

′
1 + 2�′′

1 − 2�′
2

r
+ 2�′

1

r

]

= 1

fR

[{
8π + 1

2

(
2 fT + fLm

)}
P + s2

r4 − (� − ∇1∇1) fR

+ 1

2

(
f − R fR

) − (
2 fT + fLm

)
Lm

]
. (13)

Also, the terms T and R are defined as

T = −ρ + 3P,

R = e−�2

[
�′′

1 + 2(1 − e�2) + �′2
1

2
−�′

1�
′
2

2
+2(�′

1 − �′
2)

r

]
.

Solving Eqs. (11)–(13) presents a complex challenge due to
the intricate relationships among multiple quantities, includ-
ing (�1, �2, ρ, P, q). To address this complexity and arrive at
a definitive solution, it is essential to introduce specific con-
straints. Without these constraints, obtaining a unique solu-
tion proves to be an insurmountable task.

2.1 Embedding class-one condition and smooth matching
of interior and exterior spacetimes

The incorporation of embedding class-one condition is cru-
cial in discussing compact stars as they provide essential
constraints and insights into the equilibrium and stability
of these astrophysical objects. This mathematical condi-
tion contribute to a more comprehensive understanding of
the physical properties governing celestial systems, aiding
researchers in formulating accurate models and predictions
for their behavior in extreme environments. According to
this, if a tensor Qεω possessing the property of being sym-
metry fulfills the Gauss–Codazzi equations given in the fol-
lowing

Rεωαη = 2pQε[αQη]ω, Qε[ω;α]−
η
ωαQεη+


η
ε[ωQα]η = 0,

(14)

then an (n− 2)-dimensional space can be embedded into the
space of (n − 1)-dimension. Here, Qωε and Rεωαη symbol-
ize the coefficients of second differential form and the curva-
ture tensor, respectively, and p = ±1. The above left equa-
tion, known as the Gauss equation, characterizes the intrin-
sic geometry of the surface by relating its curvature to that of
the ambient space. This equation is crucial for understanding
how the surface curves within the space it is embedded. On
the other hand, the Codazzi–Mainardi (or Codazzi) equation
given on the right side, expresses the compatibility between
the intrinsic and extrinsic geometry of the surface. Mathe-
matically, this condition can be written as follows [40]

R2323R0101 − R0303R1212 − R1303R1202 = 0, (15)

resulting in the second-order differential equation after merg-
ing with the metric (9) as

(
�′

2 − �′
1

)
�′

1e
�2 + 2

(
1 − e�2

)
�′′

1 + �′2
1 = 0, (16)

that provides one component, say radial, in terms of the tem-
poral coefficient. This takes the form

�2(r) = ln
(
1 + b1�

′2
1 e

�1
)
, (17)
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involving b1 as an integration constant. To calculate the grr
component accurately, it is essential to adopt the temporal
coefficient. For this, we refer to widely recognized gtt com-
ponent within the astrophysics research community [30,31].
This is taken by

�1(r) = 2b2r
2 + ln b3, (18)

possessing two positive constants, denoted as b2 and b3, the
values of which remain unspecified yet. Lake [41] introduced
a criterion to assess the physical relevance of the metric
potentials under consideration. By applying this evaluation to
the specific component (18), it is determined whether such
component holds significance in the context of the study.
Therefore, we have

�′
1(r) = 4b2r, �′′

1(r) = 4b2.

We notice that �1(r) = ln b3, �′
1(r) = 0 and �′′

1(r) > 0 at
r = 0, representing the star’s center. This validates the suit-
ability of Eq. (18). Upon insertion into Eq. (17), the function
�2(r) assumes the following value

�2(r) = ln
(
1 + b2b4r

2e2b2r2)
, (19)

where b4 = 16b1b2b3.
By enforcing consistency at the boundary of the object,

junction conditions enable a smooth transition between dif-
ferent regions of spacetime, preserving the physical integrity
of the model. This is crucial for accurately representing the
gravitational field both inside and outside the compact object,
contributing to a more realistic understanding of its structure
and gravitational effects. Since a charged interior sphere (9)
is considered, it must be adopted the Reissner-Nordström
metric as an exterior spacetime. With S and M as the total
charge and mass, this metric is given as follows

ds2 = −
(

1 − 2M
R

+ S2

R2

)
dt2 +

(
1 − 2M

R
+ S2

R2

)−1

dr2

+r2(dθ2 + sin2 θdφ2). (20)

It must be stressed here that the first fundamental forms
equals the radial as well as temporal components of both
of the exterior and interior spacetime at the surface bound-
ary, say mathematically � : r = R. This is also true for the
term gtt,r . Following this, we have

gtt
�=e�1(R) = b3e

2b2R2 = 1 − 2M
R

+ S2

R2 , (21)

grr
�=e�2(R) = 1 + b2b4R2e2b2R2 =

(
1 − 2M

R
+ S2

R2

)−1

,

(22)

∂gtt
∂r

�=�′
1(R) = 4b2R = 2MR − 2S2

R
(
R2 − 2MR + S2

) . (23)

The quartet (b1, b2, b3, b4) can now be easily found by simul-
taneously solving Eqs. (21)–(23). Their values are

b1 = R4
(
2MR − S2

)
4
(
MR − S2)2

, (24)

b2 = MR − S2

2R2
(
R2 − 2MR + S2

) , (25)

b3 =
(

R2 − 2MR + S2

R2

)
e

MR−S2

2MR−R2−S2 , (26)

b4 = 2
(
2MR − S2

)
MR − S2 e

MR−S2

2MR−R2−S2 . (27)

Determining the dimension of these constants is significant in
such analysis of the compact stars. We find that the constant
b1 has a dimension of �2 and b2 having 1

�2 . However, the other
constants, i.e., b3 and b4 have null dimensions. The graphical
interpretation of the solutions (which shall be obtained later)
needs some definite values of these constants. In order to
make this possible, a star LMC X-4 is considered along with
its observed data [42]. In the following, the numerical values
of these four constants are calculated in Tables 1 and 2 for
multiple stars by choosing the exterior charge as 0.2 and 0.8,
respectively with M⊙ being the mass of the Sun.

The relation between the values of b1, b3, b4 and the
electric charge is evident, as an increase in the later term
is directly associated with the variations in these three con-
stants. However, the value of b2 is decreased as the electric
charge is increased.

3 Physical requirements admitting by Stellar models

In this section, we review multiple conditions that have
been discussed in the literature whose satisfaction leads to
the compact interior models to be physically relevant [43–
48]. We highlight some interesting and necessary conditions
among them that must be discussed while studying the stars
in the following.

• A critical aspect involves the investigation of geometric
quantities such as e�1 and e�2 . It must be verified that both
these components are positive to maintain physical sig-
nificance. Additionally, the regularity of these functions
should be confirmed within the defined physical domain,
ensuring they do not exhibit singularities.

• Within compact stars, the behavior of energy density and
pressure, along with their first two derivatives, is criti-
cal in understanding the internal configuration of these
astrophysical objects. Typically, as one moves from the
stellar surface towards the center, both these parameters
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Table 1 Values of embedding class-one constants (b1, b2, b3, b4) for S = 0.2

Compact stars LMC X-4 4U 1820-30 SMC X-4 SAX J 1808.4-3658 Her X-I

M (M⊙) 1.04 1.58 1.29 0.9 0.85

R (km) 9.1 7.95 8.1 8.831 8.301

b1 187.321 162.134 181.623 190.332 213.199

b2 0.00211845 0.00316083 0.00241950 0.00197398 0.00170023

b3 0.471224 0.289282 0.390542 0.519452 0.552855

b4 2.99193 2.37202 2.74590 3.12262 3.20645

Table 2 Values of embedding class-one constants (b1, b2, b3, b4) for S = 0.8

Compact stars LMC X-4 4U 1820-30 SMC X-4 SAX J 1808.4-3658 Her X-I

b1 201.499 169.301 191.865 207.971 233.803

b2 0.00199084 0.00302633 0.00230181 0.00183519 0.00157849

b3 0.486203 0.300188 0.40315 0.536174 0.569192

b4 3.12067 2.46086 2.84874 3.27424 3.36101

tend to increase, reaching their maximum values at the
core. The first derivatives with respect to radial distance
capture the rate of change of these quantities, highlight-
ing the distribution of mass and the response of matter to
gravitational forces.

• A point of discussion among researchers is the mass func-
tion that describes the fluid content enclosed by a body.
This helps in understanding the gravitational impact of
that structure. We express this in the form of energy den-
sity as

m(r) = 1

2

∫ R

0
r̄2ρdr̄ . (28)

The strength of a field surrounding a self-gravitating
structure due to its gravity in relation with its size is mea-
sured by the compactness. It is actually a ratio between
the mass of a body and its radius. Its expression is given
by

λ(r) = m(r)

r
, (29)

which must be less than 4
9 to get a physically relevant inte-

rior [49]. The redshift characterizes the extent to which
photons are stretched as they climb out of the gravita-
tional well of a compact star. We describe it as

z(r) = 1 − √
1 − 2λ(r)√

1 − 2λ(r)
. (30)

It has been found that the redshift at the surface boundary
must not be higher than 2 [49], i.e., z� ≤ 2. On the other
hand, when Ivanov dealt with anisotropic pressure fluid,
he established this limit to be 5.211 [50].

• The incorporation of energy conditions holds paramount
significance in discussions about compact stars. These
conditions play a pivotal role in constraining the mat-
ter distribution within these dense astrophysical objects.
By imposing constraints on energy density and pressure,
energy conditions ensure the physical viability of solu-
tions, guiding the development of realistic models for
self-gravitating structures. Upholding these conditions
not only fosters mathematical consistency but also pro-
vides crucial insights into the nature of matter supporting
these stellar objects. For the case of charged fluid, they
have the form

ρ + P ≥ 0, ρ − P + s2

4πr4 ≥ 0,

ρ + 3P + s2

4πr4 ≥ 0.

• Various approaches have been proposed to assess the sta-
bility of celestial systems, with one method involving
the consideration of the causality condition derived from
the sound speed, expressed as v2

s = dP
dρ . According to

Abreu et al. [51], this condition ensures that informa-
tion within the stellar medium propagates at speeds less
than the speed of light, preventing causality violations,
i.e., 0 < v2

s < 1. At the same time, one can check the
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stability by studying the thermodynamic behavior of the
celestial object. This can be discussed through the adia-
batic index, indicated by 
ai , whose formula is given as
follows


ai = ρ + P

P

(
dP

dρ

)
.

To maintain the equilibrium of a compact model, the out-
ward pressure must be as enough as it can counterbal-
ance the force of gravity acting inward. This can only be
achieved if the adiabatic index gain its value greater than
4
3 everywhere [52].

4 Brief discussion on two different f (R,Lm,T )

models

In this section, we obtain different solutions and perform a
comprehensive analysis on their physical properties corre-
sponding to two distinct models of the considered modified
gravitational theory. We further extend our exploration by
choosing two different forms of the matter Lagrangian den-
sity, one in terms of the energy density and other in the form
of an isotropic pressure. A large body of literature guarantees
the formation of acceptable solutions for both these choices.
Now, we discuss them one by one in the following.

4.1 Model I

Two different f (R,Lm, T ) models have been extensively
discussed along with their cosmological implications by
Haghani and Harko [27]. The major difference between these
models is that one is based on the minimal fluid-geometry
interaction and the other model contains product terms, rep-
resenting non-minimal coupling. We, firstly, consider a min-
imal interaction model as it is much easy to handle the corre-
sponding calculations due to the appearance of linear-order
fluid variables. This model, containing a triplet (β0, β1, β2)
of real-valued parameters, has the form

f (R,Lm, T ) = R + β0 f1(R) + 2β1 f2(Lm) + β2 f3(T ),

(31)

whose linear, and hence, simplified form is written as

f (R,Lm, T ) = R + 2β1Lm + β2T . (32)

4.1.1 Stellar solution for Lm = P

In this case, we adopt the Lagrangian density to be Lm =
P . The above model along with this choice and the field

equations (11)–(13) provide

e−�2

(
�′

2

r
− 1

r2

)
+ 1

r2

= (8π + β1 + β2) ρ + s2

r4 − β2

(
P − ρ

2

)
, (33)

e−�2

(
1

r2 + �′
1

r

)
− 1

r2

= (8π + β1 + β2) P − s2

r4 + β2

(
P − ρ

2

)
, (34)

e−�2

4

[
�′2

1 − �′
2�

′
1 + 2�′′

1 − 2�′
2

r
+ 2�′

1

r

]

= (8π + β1 + β2) P + s2

r4 + β2

(
P − ρ

2

)
. (35)

Since we have three equations in three unknowns (two fluid
parameters and the charge), it is easy enough to calculate their
explicit expressions and then merge them with Eqs. (18) and
(19). This manipulation gives

ρ = b2(
b2b4r2e2b2r2 +1

)2{5β2
2 +7β2β1+8π(7β2+4β1)+2β2

1 +128π2
}

× [
8β2 + b2r

2{b2
4(β2 + β1 + 8π)e4b2r2 − 4(β2 + β1 + 8π)

+ 4b4e
2b2r2

(7β2 + 3β1 + 24π)
}+2b4(5β2+3β1 + 24π)e2b2r2 ]

,

(36)

P = −b2(
b2b4r2e2b2r2 +1

)2{5β2
2 +7β2β1+8π(7β2+4β1)+2β2

1 +128π2
}

× [
b2r

2{b2
4(β2 + β1 + 8π)e4b2r2 − 4(β2 + β1 + 8π)

− 4b4e
2b2r2

(3β2 + β1 + 8π)
} + 2

{
(β1 + 8π)b4e

2b2r2

− 2(3β2 + 2β1 + 16π)
}]

, (37)

s = b2r3
(
b4e2b2r2 − 2

)
√

2
(
b2b4r2e2b2r2 + 1

) . (38)

4.1.2 Stellar solution for Lm = −ρ

The field equations are now calculated for the other choice as
Lm = −ρ. When we join this with Eqs. (11)–(13) and (32),
this results in

e−�2

(
�′

2

r
− 1

r2

)
+ 1

r2

= (8π + β1 + β2) ρ + s2

r4 − β2

2
(3P + ρ) , (39)

e−�2

(
1

r2 + �′
1

r

)
− 1

r2

= (8π + β1 + β2) P − s2

r4 + β2

2
(3P + ρ) , (40)
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e−�2

4

[
�′2

1 − �′
2�

′
1 + 2�′′

1 − 2�′
2

r
+ 2�′

1

r

]

= (8π + β1 + β2) P + s2

r4 + β2

2
(3P + ρ) . (41)

The isotropic fluid parameters can explicitly be obtained by
using only Eqs. (39) and (40). Using them with components
(18) and (19) leads to

ρ = b2

2
(
b2b4r2e2b2r2 +1

)2{2β2
2 +3β2β1+8π

(
3β2+2β1

)+β2
1 +64π2

}
× [

b2r
2{b2

4(β2 + β1 + 8π)e4b2r2 − 4(β2 + β1 + 8π)

+ 12b4e
2b2r2 × (3β2 + β1 + 8π)

}
+ 6

{
2β2 + b4(2β2 + β1 + 8π)e2b2r2 }]

, (42)

P = −b2

2
(
β2 + β1 + 8π

)(
2β2 + β1 + 8π

)(
b2b4r2e2b2r2 + 1

)2

× [
b2r

2{b2
4(β2 + β1 + 8π)e4b2r2 − 4(β2 + β1 + 8π)

− 4b4e
2b2r2

(β1 − β2 + 8π)
} + 2

{
b4(2β2 + β1 + 8π)e2b2r2

− 2(β2 + 2β1 + 16π)
}]

. (43)

When we solve Eqs. (40) and (41), the value of the charge is
found to be the same that is already provided in (38).

We now perform a graphical check to explore the phys-
ical relevancy of the obtained minimally coupled solutions.
For this, we plot several physical properties (that have been
discussed earlier) which are basically the requirements to be
fulfilled. Since there are two parameters involved in the con-
sidered modified model along with charge, we adopt their
numerical values or ranges to analyze the impact on the stel-
lar models as β2 = 0.1, 0.8, S = 0.3 and β1 ∈ [0.1, 2].
The question arises here is why we choose these particular
values of the model parameters? Haghani and Harko [27]
performed a comprehensive analysis in the context of model
I and built some cosmological solutions, i.e., radiation dom-
inated and dust universe. They used different combinations
of parametric values such as both positive, both negative or
alternative choices, etc. From this, they deduced that the non-
negative values of both these parameters provide a best fit
with the observational data. So, we initially choose both val-
ues and observe that only positive values of β2 yield promis-
ing results. For instance, its negative choices produce nega-
tive radial pressure near the spherical junction, which is in
contrast with the requirement of physically existing compact
stellar structures.

We confirm the behavior of potentials (18) and (19), and
found them in agreement with the needed criterion. However,
we do not add their plots here. Further, the exploration of the
fluid sector (such as isotropic pressure and energy density
in this case) is also performed through plotting the corre-
sponding variables in Figs. 1 and 2. We notice their required
behavior everywhere from the center of a compact star to

its boundary surface. From these plotting, we also observe
that when the parameters β1 and β2 increase, both the fluid
parameters gain less values. This implies that the higher, the
values of these parameters, the less dense, the interiors are.
The isotropic pressure needs to be null at the spherical inter-
face which is also ensured for each case.

There exist two approaches to calculate the interior mass
of any self-gravitating fluid distribution, one in terms of
the geometry and other in the form of matter. The former
approach is failed to analyze how the modified theory affects
the interior mass, therefore, we are left with the later choice
(28). We plot this in Fig. 3 and find it to be a rising function of
r . When the parameters β1 and β2 take smaller values, we get
the structures with higher mass. Two other factors are also
shown in the same Figure, indicating themselves consistent
with the required behavior. Figures 4 and 5 admit the positive
behavior of energy bounds, naming the developed models as
physically viable structures. Finally, both the causality and
thermodynamic variations are observed in Figs. 6 and 7, indi-
cating the stability of the obtained modified stellar solutions.

4.2 Model II

This subsection discusses the dynamics of a spherically sym-
metric interior by adopting a strong non-minimal model of
f (R,Lm, T ) gravity that is given in the following

f (R,Lm, T ) = R + δ0 f1(R) + δ1 f2(Lm, T ), (44)

where the two terms δ0 and δ1 symbolize arbitrary constants.
We adopt a particular form of the functionals f1 and f2 that
make the above model as

f (R,Lm, T ) = R + δ1LmT . (45)

4.2.1 Stellar solution for Lm = P

Here, we follow the same pattern again as we already discuss
in the previous subsection. The equations of motion for the
considered geometry are explored for the matter Lagrangian
as Lm = P . Putting this choice with the model (45) in the
field equations (11)–(13) and performing some manipulation
leads to

e−�2

(
�′

2

r
− 1

r2

)
+ 1

r2

=
{

8π + δ1

2

(
5P − ρ

)}
ρ + δ1P

2 + s2

r4 , (46)

e−�2

(
1

r2 + �′
1

r

)
− 1

r2

=
{

8π + δ1

2

(
5P − ρ

)}
P − δ1P

2 − s2

r4 , (47)
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Fig. 1 Energy density and pressure for model I with Lm = P

e−�2

4

[
�′2

1 − �′
2�

′
1 + 2�′′

1 − 2�′
2

r
+ 2�′

1

r

]

=
{

8π + δ1

2

(
5P − ρ

)}
P − δ1P

2 + s2

r4 . (48)

Solving last two equations provides the same value of charge
as defined in Eq. (38). Further, the isotropic system can be
completely characterized by the first two equations, however,
it is not possible to find ρ and P explicitly due to the appear-
ance of second-order fluid terms. To resolve this issue, we

consider a barotropic equation of state represented by

P = δ2ρ, (49)

where δ2 ∈ (0, 1). After using this equation of state in (46)
and (47), we express ρ and P as

ρ = r2

δ1r2
(
2δ2

2 + 5δ2 − 1
)(
b2b4r2e2b2r2 + 1

)

× [{
b2

2r
2(b2

4e
4b2r2(

δ1
(
2δ2

2 + 5δ2 − 1
) + 64π2r2)
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Fig. 2 Energy density and pressure for model I with Lm = −ρ

− 4δ1
(
2δ2

2 + 5δ2 − 1
) + 12δ1b4

(
2δ2

2 + 5δ2 − 1
)
e2b2r2)

+ 2b4b2e
2b2r2(

3δ1
(
2δ2

2 + 5δ2 − 1
) + 64π2r2) + 64π2} 1

2

− 8πb2b4r
2e2b2r2 − 8π

]
, (50)

P =
√

δ2r2

δ1r2
(
3δ2 − 1

)(
b2b4r2e2b2r2 + 1

)

× [{
b2

2r
2(4δ1(3δ2 − 1) + 4δ1b4(3δ2 − 1)e2b2r2

+ b2
4e

4b2r2(
δ1 − 3δ1δ2 + 64π2r2δ2

)) + b2
(
2b4e

2b2r2

× (
δ1 − 3δ1δ2 + 64π2r2δ2

) + 8δ1(3δ2 − 1)
) + 64π2δ2

} 1
2

− √
δ2

(
8πb2b4r

2e2b2r2 + 8π
)]

, (51)

where Eqs. (18) and (19) are also used.
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Fig. 3 Physical factors for model I with Lm = P (left) and −ρ (right)

4.2.2 Stellar solution for Lm = −ρ

Another choice of the matter Lagrangian as Lm = −ρ is
considered that makes Eqs. (11)–(13) when combined with
the model (45) as

e−�2

(
�′

2

r
− 1

r2

)
+ 1

r2

=
{

8π + 3δ1

2

(
P − ρ

)}
ρ + δ1ρ

2 + s2

r4 , (52)

e−�2

(
1

r2 + �′
1

r

)
− 1

r2

=
{

8π + 3δ1

2

(
P − ρ

)}
ρ − δ1ρ

2 − s2

r4 , (53)

e−�2

4

[
�′2

1 − �′
2�

′
1 + 2�′′

1 − 2�′
2

r
+ 2�′

1

r

]

=
{

8π + 3δ1

2

(
P − ρ

)}
ρ − δ1ρ

2 + s2

r4 . (54)
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Fig. 4 Energy conditions for model I with Lm = P
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Fig. 5 Energy conditions for model I with Lm = −ρ
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Fig. 6 Stability analysis for model I with Lm = P

Simultaneous use of Eqs. (18), (19), (49), (52) and (53)
results in the following expressions of ρ and P as

ρ = r2

δ1r2
(
3δ2 − 1

)(
b2b4r2e2b2r2 + 1

)
× [{

b2
2r

2(4δ1(1 − 3δ2) + 12δ1b4(3δ2 − 1)e2b2r2

+ b2
4e

4b2r2(
3δ1δ2 − δ1 + 64π2r2))

+ 2b4b2e
2b2r2(

9δ1δ2 − 3δ1 + 64π2r2) + 64π2} 1
2

− 8πb2b4r
2e2b2r2 − 8π

]
, (55)

P = δ2r2

δ1r2
(
3δ2

2 − 3δ2 − 2
)(
b2b4r2e2b2r2 + 1

)
× [{

b2
(
8δ1

(
3δ2

2 − 3δ2 − 2
) + 2b4e

2b2r2

× (
δ1

(
3δ2 − 3δ2

2 + 2
) + 64π2r2δ2

2

))
+ b2

2r
2(4δ1

(
3δ2

2 − 3δ2 − 2
) + b2

4e
4b2r2

× (
δ1

(
3δ2 − 3δ2

2 + 2
) + 64π2r2δ2

2

)
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Fig. 7 Stability analysis for model I with Lm = −ρ

+ 4δ1b4
(
3δ2

2 − 3δ2 − 2
)
e2b2r2) + 64π2δ2

2

} 1
2

− δ2
(
8πb2b4r

2e2b2r2 + 8π
)]

. (56)

As the graphical exploration for the solution correspond-
ing to model II is concerned, we choose the parametric values
as δ1 ∈ [0.1, 2] and δ2 = 0.01, 0.95. It has been observed that
only positive values of δ1 produce the accelerating solution,
but the parameter δ2 could either be positive or negative [27].
However, when we plot physical properties corresponding to
our developed solution for its negative choices, the results are

not so well behaved. Hence, we are left with positive values
of both parameters.

The value of the exterior charge remains same as consid-
ered for model I. The same properties (already plotted for
the first model) are again explored for this model to check its
physical significance in the framework of astronomical struc-
tures. Figures 8 and 9 exhibit the profiles of the fluid sector
for the above described parametric values, and we observe
their acceptable nature. We find that this model produces
less dense systems in comparison with the first model for all
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Fig. 8 Energy density and pressure for model II with Lm = P

parametric choices. The factors which are plotted in Fig. 3 for
model I are again checked for the current scenario and we
obtain almost the same results. Therefore, we exclude their
graphs from this paper. Further, our model II is also phys-
ically viable and this is ensured by the observations which
we make in Figs. 10 and 11. Lastly, Figs. 12 and 13 present
the variations in the sound speed and adiabatic index w.r.t.
r, δ1 and δ2. It is found that the developed solution only for
Lm = P is stable, however, the model corresponding to the

other choice of the Lagrangian density does not fulfill the
required criteria.

5 Concluding remarks

this paper discusses multiple isotropic compact models
which are coupled with the electromagnetic field in the
framework of f (R,Lm, T ) gravitational theory. For this pur-
pose, we started off with the consideration of a static geom-
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Fig. 9 Energy density and pressure for model II with Lm = −ρ

etry admitting spherical symmetry and induced an electric
charge through the addition of its corresponding Lagrangian
in the modified action defined in Eq. (1). We have then imple-
mented the least-action principle on this action and derived
the field equations possessing Lagrangian densities of both
the fluid and electromagnetic field. It was observed that there
are three independent components of equations of motion in
the presence of five unknowns, indicated the extra degrees of
freedom and thus made it impossible to find a unique solu-
tion. This only led to the assumption of some constraints

to deal with such issue. In this regard, we have adopted the
Karmarkar condition and a particular gtt component form,
resulted in computation of the grr potential such that the
ansatz becomes as follows

δ1(r) = 2b2r
2 + ln b3,

δ2(r) = ln
(
1 + b2b4r

2e2b2r2)
.

There are actually three constants (b1, b2, b3) in the above
ansatz and the constant b4 has been expressed in terms of
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Fig. 10 Energy conditions for model II with Lm = P
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Fig. 11 Energy conditions for model II with Lm = −ρ
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Fig. 12 Stability analysis for model II with Lm = P

this triplet as b4 = 16b1b2b3. Therefore, we only needed
three conditions which have been provided by the matching
conditions at the interface, i.e., � : r = R in terms of gtt , grr
and gtt,r components. The calculated values of this quartet
have been provided in Tables 1 and 2 for five distinct compact
objects from which we observed the impact of charge on these
constants.

We adopted two different (one minimal and one non-
minimal) models in this modified context, each of them
has been discussed with two different choices of the fluid

Lagrangian. The model I contains two parameters which are
taken as β1 ∈ [0.1, 2] and β2 = 0.1, 0.8. Further, the model
II possesses one parameter δ1 taken as same as β1 along with
an equation of state parameter such as δ2 = 0.05, 0.95. The
fluid doublet has been observed acceptable because it ful-
fills the required behavior of the energy density and pressure
(Figs. 1, 2, 8 and 9). We also explored the mass function and
reached at the result that the model II possesses less massive
interior as compared to the first model for chosen parame-
ters. A necessary condition to be fulfilled is the validity of
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Fig. 13 Stability analysis for model II with Lm = −ρ

the energy conditions which has been observed in Figs. 4,
5, 10 and 11, hence, our resulting solutions are physically
viable. Finally, the stability check has been employed through
two different techniques. We have found that the minimal
f (R,Lm, T ) theory yields promising results in the context
of astrophysical structures for both Lm = P and −ρ. How-
ever, the non-minimal modified model provides stable results
only for former choice of the Lagrangian density (Figs. 6, 7,
12 and 13). It must be stressed here that disappearing the
model parameters reduces all these outcomes in GR.
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