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Abstract This work presents analytical black hole solu-
tions for a coupled Einstein–Born–Infeld–Scalar gravity sys-
tem in AdS spacetime with two different non-minimal cou-
pling functions f (z). For both solutions, we establish the
regularity of the scalar field and curvature scalars outside
the horizon. For one of the considered coupling cases, ther-
modynamic analysis in the canonical ensemble reveals sta-
bility across all temperatures, while the other case exhibits
the Hawking/Page phase transition between the stable large
phase of the black hole and thermal-AdS. We investigate the
effect of the scalar hair parameter and black hole charge on
the phase transition temperature and observe that the critical
values of the scalar hair and the charge parameters constrain
the feasibility of Hawking/Page phase transition.

1 Introduction

The general theory of relativity has equipped us with a set of
differential equations to describe the evolution of spacetime,
and black holes, as solutions to those differential equations,
have captured the attention of physicists for over a century.
The discovery of black holes was a significant milestone in
our understanding of the universe. However, the mysteries
that these objects posed were a challenge to our understand-
ing of physics. The laws of classical physics could no longer
explain the behaviour of matter under such extreme condi-
tions, which led people to look for new ways to understand
black holes. The thermodynamics of black holes emerged as a
fascinating subject that straddles both the classical and quan-
tum aspects of gravity. The second law of thermodynamics
necessitates that black holes have entropy [1]. The study of
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black hole thermodynamics led to the realization that black
holes behave like thermodynamic systems. They have tem-
perature, emit radiation, and obey laws that are strikingly
similar to the laws of thermodynamics [1–3]. This realiza-
tion opened up a new avenue to understand black holes and
their behaviour.

Black hole thermodynamics expands into diverse spaces
beyond flat spacetime, encompassing anti-de Sitter (AdS)
and de sitter (dS) spaces. Within AdS spacetime, black
holes exhibit notable thermodynamic stability, differing from
asymptotically flat space. Additionally, they showcase intri-
cate phase behaviours, including transitions like Hawk-
ing/Page phenomena (where transition occurs from stable
large black hole to thermal-AdS) or van der Waals transi-
tions (where transition occurs from small black hole to large
black hole) [4–9].

There has been growing interest in investigating simpler,
lower-dimensional gravitational systems in recent years. The
(2 + 1)-dimensional BTZ solutions studied extensively over
the past three decades are a useful model for understand-
ing black hole physics. It is described by topological field
theory, which has a holographic correspondence with a two-
dimensional CFT on its boundary [10–14]. This makes BTZ
black holes ideal for testing gauge/gravity duality princi-
ples [15]. Their entropy can be computed using conformal
boundary conserved charges and symmetric algebra, offering
insights into quantum gravity [16]. Additionally, the (2+1)-
dimensional Chern–Simons gravity construction provides a
grasp of the relation of gravity to gauge field theories [17,18].
BTZ black holes exhibit properties, such as the lack of curva-
ture singularity and local equivalence to pure AdS3, distinct
from their higher dimensional counterparts, making them
more interesting to study. Also, thermodynamic and holo-
graphic interpretations make lower-dimensional models cru-
cial in gravitational theories [19].
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In Maxwell’s electrodynamics, the field due to a point
charge is given by Coulomb’s law, which implies that the
electric field tends to be infinite at the position of the par-
ticle. This leads to an infinite Lagrangian and self-energy
for the point particle. In the 1930s, Max Born and Leopold
Infeld introduced the Born–Infeld model [20] to address the
divergence of the self-energy of an electron in classical elec-
trodynamics. To eliminate this infinity, an upper bound is
imposed on the electric field, thus limiting the self-energy of
the point charge [21]. This was a significant departure from
the traditional understanding and brought a new perspective
to the field of electrodynamics. The Born–Infeld Lagrangian
is given by

L = 1

2α

(
1 −

√
1 + αF2

)
, (1.1)

where F2 = FμνFμν , Fμν is the electromagnetic field ten-
sor, and α is the non-linearity parameter. The maximal pos-
sible value of the electric field in this theory is 1/2α, and
the self-energy of point charges is finite. The theory reduces
to Maxwell electrodynamics under the limit α → 0. The
nonlinear nature of this electrodynamics, which effectively
eliminates the electric field singularity, led Deser and Gib-
bons to develop a Born–Infeld gravity theory using metric
formulation [22]. Subsequently, Vollick brought in the Pala-
tini approach [23] to Born–Infeld gravity and explored its
various facets. In [24,25], an interesting new method for
coupling matter into this theory was introduced. It is worth-
while to note that the Born–Infeld action, when scalar fields
are present, emerges as an effective action that controls the
dynamics of vector fields on D-branes [26,27].

Considering a scalar field is intriguing due to its role in the
low-energy limit of string theory, where it appears as a mass-
less scalar field. This has sparked research into scalar gravity
systems from various angles [28–30]. The scalar field signif-
icantly influences the causal structure and thermodynamic
characteristics of charged black holes and alters spacetime
geometry. With one or two Liouville-type scalar potentials,
black hole solutions exhibit non-asymptotically flat or (anti)-
de Sitter behaviours [28–30]. The coupling of a scalar field
with other gauge fields can lead to significant changes in the
resulting solutions [31–33]. Scalar fields also play a crucial
role in forming black holes with unconventional asymptotes,
such as charged Lifshitz black holes with an arbitrary dynam-
ical exponent, requiring at least two scalar fields [34].

Building upon Martinez and Henneaux’s seminal work,
various solutions for hairy black holes with self-interacting
real scalar fields in three spacetime dimensions have been
explored [35,36]. This research has enhanced our under-
standing of the interaction between black hole geometries
and scalar fields in (2 + 1) dimensions, with implications
for applications in holography. These scalar-gravity mod-
els are crucial for holography and offer valuable insights

into two-dimensional condensed matter systems under strong
couplings. The analytical solvability of (2 + 1)-dimensional
gravity models containing scalar field has also piqued interest
[37–58]. However, not all geometries constructed in (2 + 1)

dimensions exhibit desired physical characteristics. In most
of the scenarios, the scalar field turns out to be logarithmic
radial dependent, rendering the model unsuitable. Also, at
the boundary, the geometry does not approach AdS space-
time [47,51].

The scalar-gravity systems in three dimensions are also
ideal for studying the no-hair theorem due to their ease of
analysis [59]. The no-hair theorem states that all station-
ary black hole solutions can be completely characterized by
only three independent parameters: mass, electric charge, and
angular momentum [60]. However, it is essential to recog-
nize that the applicability of the no-hair theorem is limited
by its assumptions. Although the uniqueness of certain solu-
tions has been rigorously proven in the domain of (3+1)-
dimensional electrovacuum black holes, many intriguing
models like Einstein–Yang–Mills theory exist where black
holes can exhibit hairs [61,62]. These hairy black holes chal-
lenge the strict no-hair condition and demonstrate that pres-
ence of additional fields can indeed influence black hole prop-
erties; see, for instance [63–69]. Therefore, it is interesting
as well as desirable to look for analytic solutions for black
holes using the Einstein–Born–Infeld-Scalar gravity system
in (2 + 1) dimensions. This has been done before in a few
gravity systems; see, for instance, [70,71]. However, some of
these solutions contain drawbacks, as the scalar field depends
logarithmically on the radial coordinate and, therefore, are
undesirable.

The presence of scalar hair can also significantly impact
three-dimensional black holes’ thermodynamic phase tran-
sition profile. In the case of four and higher dimensions,
the multivaluedness of the entropy profile leads to different
phases reflected in the temperature diagram. Like in the case
of the Hawking/Page phase transition, the transition occurs
between a stable black hole and thermal-AdS, but in the case
of the van der Waals transitions or liquid/gas type phase tran-
sition, the transition happens between small and large black
holes. On the contrary, the BTZ black hole shows a sin-
gle entropy branch; hence, there are no phase transitions in
either charged or uncharged cases. However, in recent stud-
ies, it was found that some three-dimensional hairy black hole
solutions, constructed from the potential reconstruction tech-
nique, also undergo those phase transitions when nontrivial
primary scalar hair is present [72,73].

When scalar and gauge fields are included in Einstein’s
gravity, it often leads to surprising and fascinating outcomes
in the black hole geometry and their thermodynamics. There-
fore, it is worthwhile to construct and investigate analytic
solutions to the Einstein–Born–Infeld-Scalar gravity system
in three dimensions with a regular scalar field profile and
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arbitrary coupling function and explore how the presence of
a regular scalar field affects the geometrical and thermody-
namical properties of black holes.

This work uses Born–Infeld electrodynamics to introduce
analytical solutions for charged hairy black holes in (2 + 1)

dimensions. Our focus is primarily on the Einstein–Born–
Infeld-Scalar gravity system, where there is a coupling func-
tion f (z) between the scalar and gauge field. We have used
the potential reconstruction method [74–85] in order to solve
the Einstein–Born–Infeld-Scalar field equations. We have
chosen a coupling function f (z) = e−A(z)

√
1 + α2q4z4

and two different forms of the form factor are chosen to
ensure a thorough analysis. We have considered (i) A(z) =
− log(1 + a2z2), and (ii) A(z) = −a2z2. Here, the parameter
a is associated with the strength of the scale hair. The con-
sidered form factors have been recently extensively studied
for higher-dimensional hairy black holes in various contexts.
Hence, we find it interesting to investigate the effects of the
coupling functions on the geometry and the thermodynamics
of (2 + 1)-dimensional black holes.

The structure of the paper is as follows: in Sect. 2, we dis-
cuss the (2 + 1)-dimensional Einstein–Born–Infeld-Scalar
gravity model and present the exact solutions. Section 3 and
4 are devoted to examining the geometry and thermodynam-
ics of the hairy black hole solutions with the form factors
A(z) = − log(1 + a2z2) and A(z) = −a2z2 and the cou-
pling f (z) = e−A(z)

√
1 + α2q4z4, respectively. Finally, in

Sect. 5, we conclude and summarise our findings.

2 Black hole solution

Let us start with the three-dimensional Einstein–Born–
Infeld-Scalar action,

S = − 1

16πG3

∫
d3x

√−g
[
R − 1

2
gμν∂μφ∂νφ

−V (φ) + f (φ)

2α

(
1 −

√
1 + αF2

)]
. (2.1)

Here, R is the Ricci scalar, φ is the scalar field, V (φ) is the
potential of the scalar field, the coupling function between
the gauge and the scalar field is represented by f (φ), F2

is basically FμνFμν , where Fμν denotes the Faraday tensor.
We can represent Fμν in terms of the four-potential Bμ, i.e.,
Fμν= ∂μBν −∂νBμ. Here, α is a parameter that regulates the
non-linearity of the Born–Infeld electrodynamics. Note that,

as α → 0, the term L(F) = 1
2α

(
1 − √

1 + αF2
)

reduces to

the standard Maxwell electrodynamics which has the form,
L(F) = − 1

4 FμνFμν .
Equation (2.1), when varied with respect to the metric,

gauge field, and scalar field, gives the Einstein, Born–Infeld,

and scalar field equations, respectively. These are as follows:

Rμν = −1

2
gμνV (z) + 1

2
∂μφ∂νφ

−1

4
gμν∂αφ∂αφ

+ f (z)

2

[ FμαFα
ν√

1 + αF2

+gμν

2α

(
1 −

√
1 + αF2

) ]
, (2.2)

∂μ

[√−g f (z)Fμν

√
1 + αF2

]
= 0, (2.3)

∂μ[√−g∂μφ] − √−g
[∂V (z)

∂φ

− 1

2α

∂ f (z)

∂φ(
1 −

√
1 + αF2

) ]
= 0. (2.4)

Note that for rest of this work, for simplicity and consis-
tency, we will use V (z) and f (z) to represent V (φ) and f (φ),
respectively. In order to obtain the (2+1)−dimensional hairy
charged black hole solutions which are static and spherically
(S1) symmetric, we consider the following ansätze for the
metric, scalar field solution, and gauge field solution:

ds2 = e2A(z)L2

z2

×
[
−g(z)dt2 + dz2

g(z)
+ dθ2

]
,

φ = φ(z), BM = Bt (z)δ
t
M . (2.5)

Here, A(z) represents the scale factor, which plays an impor-
tant role in describing the geometry and the thermodynamics
of the black hole solution. L denotes the length scale of AdS
spacetime, which is set to unity for the ease of use, and g(z)
is the blackening function. The coordinate z is the inverse
of radial coordinate (z = 1/r ), which varies from z = 0
(which represents the AdS boundary) to z = zh (which rep-
resents the inverse of black hole horizon radius zh = 1/rh)
or to z = ∞ in the case of thermal-AdS solution (which is
basically a horizon-less geometry).

In the geometry specified by Eq. (2.5), there is only
one non-zero component of Faraday’s tensor, which is
Ftz=−B ′

t (z). So we can write F2 = 2F2
t zg

tt gzz =
2B ′2

t (z)gtt gzz . Now using Eq. (2.3), we get

Ftz = −B ′
t (z) = − qe2A(z)

z
√
e2A(z) f (z)2 + 2αq2z2

, (2.6)

where q is an integration constant related to the charge of the
black hole. Similarly, three Einstein equations of motion can
be obtained by substituting Eq. (2.5) into Eq. (2.2), which
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read as follows:

t t ≡ g′(z)
(

1

2
A′(z) − 1

2z

)

+g(z)

(
A′′(z) + 1

z2 + φ′(z)2

4

)

+e2A(z)V (z)

2z2 + f (z)

2

×
[ z2B ′

t (z)
2e−2A(z)

√
1 + αF2

− 1

2α

e2A(z)

z2

×
(

1 −
√

1 + αF2
) ]

= 0, (2.7)

zz ≡ g′(z)
(
A′(z)

2
− 1

2z

)

+g(z)

(
A′(z)2 − 2A′(z)

z
+ 1

z2 − φ′(z)2

4

)

+e2A(z)V (z)

2z2 + f (z)

2

×
[ z2e−2A(z)B ′

t (z)
2

√
1 + αF2

− 1

2α

e2A(z)

z2

(
1 −

√
1 + αF2

) ]
= 0, (2.8)

θθ ≡ g′′(z) + g′(z)
(

2A′(z) − 2

z

)

+g(z)

(
2A′′(z) + 2

z2 + φ′(z)2

2

)

+e2A(z)V (z)

z2

− f (z)

2

[ 1

α

e2A(z)

z2

×
(

1 −
√

1 + αF2
) ]

= 0. (2.9)

In order to make them simpler to analyze, the above three
Einstein equations can be further rearranged into the follow-
ing equations,

g′′(z) + g′(z)
(
A′(z) − 1

z

)

− q2eA(z)

√
f (z)2e2A(z) + 2αq2z2

= 0, (2.10)

A′′(z) − A′(z)
(
A′(z) − 2

z

)
+ φ′(z)2

2
= 0, (2.11)

g′′(z) + g′(z)
(

2A′(z) − 2

z

)

+g(z)

(
2A′′(z) + 2

z2 + φ′(z)2

2

)

+e2A(z)V (z)

z2

− f (z)

2

[ 1

α

e2A(z)

z2(
1 −

√
1 + αF2

) ]
= 0. (2.12)

Similarly, using Eq. (2.4), the scalar field equation of motion
is given by,

φ′′(z) + φ′(z)
(
A′(z) + g′(z)

g(z)
− 1

z

)

− e2A(z)

z2g(z)

[∂V (z)

∂φ

− 1

2α

∂ f (z)

∂φ

×
(

1 −
√

1 + αF2
) ]

= 0. (2.13)

Using Bianchi identity, we can check that, Eq. (2.13) can be
derived from Eqs. (2.10)–(2.12). Therefore, there are only
four independent equations. Now, we impose the following
boundary conditions to solve these equations:

g(0) = 1 and g(zh) = 0,

A(0) = 0. (2.14)

These conditions ensure that, at the boundary of the space-
time, i.e., at z = 0, our chosen metric reduces to the usual AdS
metric. We further demand that the blackening function g(z)
vanishes at the black hole horizon zh . It is also crucial that
the scalar field vanishes at the boundary, i.e., φ(0) = 0, and
remains real and finite in the spacetime in addition to these
boundary criteria.

Using Eq. (2.6) and applying the boundary conditions dis-
cussed above, we obtain the gauge field solution:

Bt (z) = q
∫ zh

z
dξ

e2A(ξ)

ξ
√

2αq2ξ2 + e2A(ξ) f (ξ)2
. (2.15)

Similarly, using Eq. (2.10), the solution for g(z) is found out
to be

g(z) = C1 +
∫ z

0
dξ e−A(ξ)ξ

[
C2 + K(ξ)

]
, (2.16)

with

K(ξ) =
∫

dξ
q2e2A(ξ)

ξ
√
e2A(ξ) f 2(ξ) + 2αq2ξ2

, (2.17)

where C1 and C2 are the integration constants given by,

C1 = 1, C2 = −1 + ∫ zh
0 dξ e−A(ξ)ξK(ξ)∫ zh
0 dξ e−A(ξ)ξ

. (2.18)
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Likewise, by solving Eq. (2.11), the expression of scalar field
φ is found to be

φ(z) =
∫

dz

√−4A′(z)
z

+ 2A′(z)2 − 2A′′(z) + C3,

(2.19)

where the integration constant C3 can be obtained by recall-
ing the condition that φ vanishes at the asymptotic boundary,
i.e., φ|z=0 → 0. Finally, the expression for the potential V (z)
can be written from Eq. (2.12) as follows:

V (z) = g(z)
(
−2z2e−2A(z)A′′(z)

−1

2
z2e−2A(z)φ′(z)2 − 2e−2A(z)

)

+ f (z)

2α

(
1 −

√
1 + αF2

)

+2ze−2A(z) (
1 − zA′(z)

)
g′(z) − z2e−2A(z)g′′(z).

(2.20)

Thus, we see that the (2 + 1)-dimensional Einstein–Born–
Infeld-scalar gravity system can be analytically solved and
obtained solutions for the gauge field, blackening function,
and scalar field in terms of the form factor A(z) and the cou-
pling function f (z). Therefore, a family of closed-form ana-
lytic solutions can be easily obtained by selecting different
forms of A(z) and f (z). Usually, in the gauge/gravity duality
context, the forms of A(z) and f (z) are chosen to facilitate
the study of the dual boundary field theory. For example,
for the study of holographic QCD, the chosen forms of A(z)
and f (z) must result in dual boundary field theory showing
authentic QCD features, e.g., confinement/deconfinement
phase transition [86–88], confinement in the quark sector,
linear Regge trajectory for the excited meson mass spectrum,
etc.

However, without too much concern for the dual boundary
field theory, we can adopt a more liberal and phenomenolog-
ical approach and study different forms of A(z) and f (z) to
discuss in detail the effects of scalar hair and to formulate a
qualitative argument about the thermodynamics and stability
of the hairy charged black holes in three dimensions with
Born–Infeld electrodynamics. Here, we employ this strat-
egy. In particular, we choose two different configurations of
the form factor: (i) A(z) = − log(1 + a2z2), and (ii) A(z)
= −a2z2, and similarly choose a coupling function of type
f (z) = e−A(z)

√
1 + α2q4z4. These are chosen such as to

make the computation of solutions of various geometric and
thermodynamic quantities feasible. In particular, the various
integrals appearing in Eqs. (2.15–2.20) can be straightfor-
wardly evaluated for these choices of f (z) and A(z). Also,
these forms of the scale factors A(z) = − log(1+a2z2) have
been studied extensively in the literature [72]. Particularly,
the form of A(z) = −a2z2 has also been widely studied

in the holographic QCD literature; for instance, see [74,78].
Here, the parametera regulates the strength of the scalar field.
As a result, the scalar field back-reaction drops to zero as the
parameter a vanishes. Therefore, in the absence of scalar hair
and gauge field, i.e., a → 0, q → 0, our model simplifies to
the standard BTZ black hole solution.

Our choice of aforementioned type of f (z) and A(z) can
also be justified with following arguments:

• They guarantee that at the boundary z → 0, the con-
structed hairy solutions asymptote to AdS. We have

V (z)|z→0 = − 2

L2 + m2φ2

2
+ . . . ,

V (z)|z→0 = 2
 + m2φ2

2
+ . . . , (2.21)

where the three-dimensional negative cosmological con-
stant is 
 = −1/L2, as is required. In the same way,
the Ricci scalar R asymptotically approaches −6/L2.
Together with the fact that g(z)|z→0 = 1, this guarantees
that the constructed solutions asymptote to AdS at the
boundary. Furthermore, m2 ≥ −1, the Breitenlohner–
Freedman constraint [89] for stability in AdS space, is
likewise satisfied by the mass of the scalar fieldm2 = −1.

• Moreover, the obtained hairy solutions satisfy the Gubser
criterion [90] to have a well-defined dual boundary field
theory.

• It is also vital that the selected forms of f (z) and
A(z) ensure that the null energy condition is always
respected everywhere outside the horizon. This condi-
tion is expressed as

TMNN MN N � 0, (2.22)

where the null vector N M satisfies the condition gMN

N MN N = 0 and TMN is the energy–momentum tensor
of the matter fields. The null vector N M can be taken as

N M = 1√
g(z)

N t

+ cos β
√
g(z)N z + sin βN θ , (2.23)

for an arbitrary parameter β. Then, the null energy con-
dition becomes,

TMNN MN N

= z2e−2A(z) f (z) sin2 βB ′
t (z)

2

2
√

1 + αF2

+1

2
g(z) cos2 βφ′(z)2 � 0. (2.24)

which is always satisfied everywhere outside the horizon.
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Fig. 1 The radial profile of the blackening function for varying a keep-
ing zh = 3.0, α = 0.5, and q = 0.3 fixed

Let us now note the expressions of various thermodynamic
observables of the obtained analytic black hole solutions.
The expressions of the Hawking temperature and entropy
are given by

T = zhe−A(zh)

4π

×
[

− K(zh) + 1 + ∫ zh
0 dξ e−A(ξ)ξK(ξ)∫ zh
0 dξ e−A(ξ)ξ

]
,

SBH = A
4G3

= LeA(zh)

4G3zh
,

(2.25)

where A = LeA(zh)/zh is the area of the event horizon.
The charge of the black hole can be obtained by measuring

the flux of the electric field at the boundary, and it is given
by

Q = 1

16πG3

∫
f (z)Fμνuμnν

√
1 + αF2

dθ, (2.26)

where uμ and nν are the unit space-like and time-like
normals to the constant radial surface, respectively,

uμ = 1√−gtt
δ
μ
t

= z

LeA(z)
√
g(z)

δ
μ
t ,

nν = 1√
gzz

δν
z = z

√
g(z)

LeA(z)
δν
z ,

(2.27)

and dθ represents the integration across the one-dimensional
boundary space. The actual value of the electric charge of the
black hole, which is a function of the parameter q, is obtained
using Eq. (2.6)

Q = q

16πG3
. (2.28)

Fig. 2 The radial profile of the blackening function for varying α keep-
ing zh = 3.0, a = 0.3, and q = 0.2 fixed

Fig. 3 The nature of Rμνρσ Rμνρσ for varying a keeping zh = 3.0,
α = 0.5, and q = 0.3 fixed

Also, another solution to the gravity equations exists that
does not exhibit the horizon, called the thermal-AdS.1 The
thermal-AdS solution corresponds to g(z) = 1, and one may
derive it from the black hole solution in the limit zh → ∞.
Depending on the nature of A(z), thermal-AdS can exhibit
a non-trivial structure in bulk; however, due to the imposed
boundary conditions (2.14), and similar to the case of a black
hole, it too always asymptotes to AdS at the boundary. In the
further sections of this work, we focus on the possibility
of phase transition between the phases of the black hole and

1 Here, this horizonless solution is referred to as thermal-AdS, for which
the presence of non-vanishing energy–momentum tensor results in vary-
ing curvature throughout space-time.
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thermal-AdS which is also known as the Hawking/Page phase
transition.

3 Solution of the hairy black hole with form factor
A(z) = − log(1+ a2z2)

In this section, we look into the geometry and thermodynam-
ics of the black hole solution with the coupling and form fac-
tor f (z) = e−A(z)

√
1 + α2q4z4 and A(z) = − log(1+a2z2),

respectively. Using Eq. (2.19), we obtain the scalar field solu-

tion as follows:

φ(z) = 2
√

3 sinh−1(az). (3.1)

Using Eq. (2.6), we obtain

Ftz = − q(
a2z2 + 1

)2 (
αq2z3 + z

) . (3.2)

From there, the gauge field solution comes out to be

Bt (z) = q

2

⎛
⎜⎜⎝

α2q4 log

(
αq2z2+1
αq2z2

h+1

)

(
a2 − αq2

)2

+ a4 (z − zh) (zh + z)(
a2z2 + 1

) (
a2z2

h + 1
) (
a2 − αq2

)
)

+ q (log (zh) − log(z)

+
(
a4 − 2a2αq2

)
log

(
a2z2+1
a2z2

h+1

)

2
(
a2 − αq2

)2

⎞
⎟⎟⎠ .

(3.3)

When a → 0, i.e. the scalar field vanishes, and the gauge
field reduces to

Bt (z)
∣∣
a→0

= q

2

(
log

(
αq2z2 + 1

αq2z2
h + 1

)

−2 log

(
z

zh

))
. (3.4)

Now, with the help of Eq. (2.10), the expression for the black-
ening function can be obtained as

g(z) = 1 +
q2

(
a2z2

(
a2 − αq2

) + 2z2
(
a2z2 + 2

)
log(z)

(
a2 − αq2

)2
)

8
(
a2 − αq2

)2

−q2
((

αq2z2 + 1
) (

αq2
(
a2z2 + 2

) − a2
)

log
(
αq2z2 + 1

))

8
(
a2 − αq2

)2

− z2
(
a2z2 + 2

)
q2 log(zh)

4
− z2

(
a2z2 + 2

)
q2a2

8
(
a2 − αq2

) (
a2zh2 + 2

)

+ z2
(
a2z2 + 2

)
q2

(
αq2zh2 + 1

) (
αq2

(
a2zh2 + 2

) − a2
)

log
(
αq2zh2 + 1

)

8zh2
(
a2 − αq2

)2 (
a2zh2 + 2

)

− z2
(
a2z2 + 2

)

zh2
(
a2zh2 + 2

) − q2
(
a2z2 + 1

)2 (
a2 − 2αq2

)
log

(
a2z2 + 1

)

8
(
a2 − αq2

)2

+ z2
(
a2z2 + 2

)
q2

(
a2zh2 + 1

)2 (
a2 − 2αq2

)
log

(
a2zh2 + 1

)

8zh2
(
a2 − αq2

)2 (
a2zh2 + 2

) . (3.5)

Note that in the absence of scalar hair, the above equa-
tion simplifies to that of the standard charged non-hairy BTZ

Fig. 4 The nature of Rμνρσ Rμνρσ for varying α keeping zh = 3.0,
a = 0.3, and q = 0.2 fixed
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Fig. 5 The radial nature of the scalar field and its potential for varying a keeping zh = 3.0, α = 0.5, and q = 0.3 fixed

black hole coupled with Born–Infeld type of gauge field
[91,92], i.e.,

g(z)
∣∣
a→0 =

(
2αq2z2 log

(
z
zh

)
− (

αq2z2 + 1
)

log
(
αq2z2 + 1

))

4α

+
(
z2
h − z2

)

z2
h

+ z2
(
αq2zh2 + 1

)
log

(
αq2zh2 + 1

)

4αzh2 .

(3.6)

We now present our results for the geometrical features
of this hairy black hole solution. Our results are presented
in Figs. 1, 2, 3, 4 and 5. Here, we have fixed the value of
zh = 3 while presenting our results throughout this work.
Figure 1 shows the radial profile of the blackening function
g(z) for various values of the scalar hair parameter a keeping
α = 0.5 and q = 0.3. Similarly, in Fig. 2, we have plotted
the nature of g(z) as a function of z for different values of
the Born–Infeld non-linearity parameter α when a = 0.3
and q = 0.2. Note that, at z = zh , a change in the sign of
g(z) is observed, thereby confirming the presence of the hori-
zon. This assertion holds validity irrespective of the value
assigned to a. We also observe that there is no significant
dependence of g(z) on α. The Figs. 3 and 4 display the radial
profiles of the Kretschmann scalar Rμνρσ Rμνρσ for various
values of a and α. We observe that the curvatures scalar, like

the Kretschmann scalar and the Ricci scalar, remain finite
throughout spacetime. The curvature singularity, concealed
by the event horizon, exists only where the Kretschmann
scalar diverges at z = ∞ or r = 0. Therefore, we can con-
clude that, when compared with the non-hairy charged BTZ
black hole, the addition of hairiness to the charged black hole
does not affect the number of singularities present.

The scalar field profile is observed to be finite and real at
all points at the horizon and beyond and goes to zero only
at the asymptotic boundary. This indicates the existence of a
stable hairy black hole solution exhibiting Born–Infeld elec-
trodynamics in a three-dimensional space. Similarly, we can
obtain the expression of the potential V (z), the radial pro-
file of which is displayed in Fig. 5. The potential in the area
outside the horizon is also regular and finite. The potential
approaches V (z = 0) = −2/L2 at the boundary for all val-
ues ofa,α, andq. From the plot, it is obvious that the potential
is bounded from above. This satisfies the Gubser criterion to
establish a well-defined boundary field theory [90]. How-
ever, the Gubser criterion is not respected for larger values
of q � 1.5. So, in this work, we will restrict ourselves only
to small values of the charge parameter to avoid violating the
criterion.

Now, let us move on to the thermodynamic analysis of this
black hole solution. Using Eq. (2.25), the expression of the
black hole temperature comes out to be:

T =
a2zh

((
2αq4 − a2q2

)
log

(
a2z2

h+1

αq2z2
h+1

)
+ (

a2 − αq2
) (

8a2 − (8α + 1)q2
))

8π
(
a2z2

h + 2
) (
a2 − αq2

)2

+ 1

π zh
(
a2z2

h + 2
) +

(
2αq4 − a2q2

)
log

(
a2z2

h+1

αq2z2
h+1

)

8π zh
(
a2z2

h + 2
) (
a2 − αq2

)2 . (3.7)
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Fig. 6 The nature of black hole temperature, T, plotted against the
inverse horizon radius zh for varying a keeping q = 0 fixed

Fig. 7 The nature of black hole temperature, T , plotted against the
inverse horizon radius zh for varying q keeping a = 0.3 and α = 0.5
fixed

In the absence of a scalar field, the above temperature
expression smoothly reduces to that of Born–Infeld BTZ
solution, i.e.,

T
∣∣
a→0 = 1

2π zh
− log

(
αq2z2

h + 1
)

8παzh
. (3.8)

In Fig. 6, the Hawking temperature of the black hole is plot-
ted against the inverse horizon radius zh = 1/rh for small
sequential values of a with q = 0 fixed. As a result, for
uncharged hairy black holes, the Born–Infeld parameter α

does not play any role. We observe that, for all values of a,
only one black hole phase exists, which is thermodynami-
cally stable at all temperatures. Thus, no phase transition is
observed for this black hole solution. Also, note that the tem-

Fig. 8 Free energy difference �F plotted against the black hole tem-
perature T for varying a keeping q = 0 fixed

Fig. 9 Free energy difference �F plotted against the black hole tem-
perature T for varying q keeping a = 0.3 and α = 0.5 fixed

perature of this black hole phase decreases with an increase
in inverse horizon radius zh , resulting in a positive value for
the specific heat. Consequently, in this case, the thermody-
namics of the hairy solution resembles the thermodynamic
properties of the uncharged BTZ black hole.

In Fig. 7, the temperature profile is plotted against the zh
for different values of q keeping a = 0.3 and α = 0.5 fixed.
In this case as well, we observe that only one thermodynam-
ically stable phase exists at all temperatures for all values of
q.

Examining their free energy patterns is necessary to delve
deeper into the global thermodynamic stability of the afore-
mentioned hairy black hole phases. In canonical ensemble,
the Helmholtz free energy F , in its differential form, is asso-
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Fig. 10 The nature of black hole temperature, T , plotted against the
inverse horizon radius zh for varying α keeping a = 0.3 and q = 0.2
fixed

Fig. 11 Free energy difference �F plotted against the black hole tem-
perature T for varying α keeping a = 0.3 and q = 0.2 fixed

ciated with the black hole entropy as follows:

dF = −SBH dT . (3.9)

Using the above equation, we can calculate the difference
of the free energy between the black hole and thermal-AdS
phases, the expression for which is given as follows2:

�F = −
∫

SBHdT = −
∫ zh

z
=∞
SBH

× dT

dzh
dzh . (3.10)

2 For the computation of free energy difference between black hole
phases, the inverse horizon radius (zh ) for the thermal-AdS is considered
to be at infinity.

Fig. 12 The radial profile of the blackening function for varying a
keeping zh = 3.0, α = 0.5, and q = 0.3 fixed

Fig. 13 The radial profile of the blackening function for varying α

keeping zh = 3.0, a = 0.3, and q = 0.2 fixed

In Fig. 8, the Helmholtz free energy profile of the hairy
black hole phase against its Hawking temperature is shown
for various values of a. The colour scheme used here is the
same as in Fig. 6. Similarly, in Fig. 9, we show plot the free
energy against T for different values q (when a = 0.3 and
α = 0.5).

Similar to the previous cases, in Fig. 10, the temperature
profile is shown for different values of Born–Infeld parameter
α witha = 0.3 andq = 0.2 fixed. Here, as well, it is observed
that only one thermodynamically stable phase is favourable at
all temperatures for all values of α with no strong dependence
of temperature on the strength of α. In Fig. 11, the free energy
is plotted for different values α (when a = 0.3 and q = 0.2).
We find that the free energy does not change its sign for all
finite values of a, q, and α, confirming the existence of only

123



Eur. Phys. J. C           (2024) 84:792 Page 11 of 18   792 

a single stable black hole phase. The phase of a stable black
hole reaches an extremal state at a certain horizon radius,
denoted as zexth . We can verify that the free energy of this
stable phase is always lower than that of thermal-AdS. This
observation is strikingly similar to the characteristics of a
charged BTZ black hole. In the case of a non-hairy charged
BTZ black hole (with Born–Infeld potential), the extremal
horizon radius can be determined from Eq. (3.8), and it occurs

when zexth =
√
e4α−1√

αq
. However, for a hairy black hole, the

value of zexth escalates with an increase in a.

4 Solution of the hairy black hole with form factor
A(z) = −a2z2

In this section, we investigate the geometry and thermody-
namics of black hole solution with the coupling function and
the form factor given by f (z) = e−A(z)

√
α2q4z4 + 1 and

A(z) = −a2z2, respectively. Thus, from the Eq. (2.19), the
scalar field solution is obtained as follows:

φ(z) = az
√

2a2z2 + 3

+
3
(

log(3) − 2 log
(√

2a2z2 + 3 − √
2az

))

2
√

2
.

(4.1)

Note that the scalar field vanishes as a → 0. For this
particular coupling as well, it is observed that the scalar field
maintains its regularity, finiteness, and stability in all regions
beyond the horizon. Using Eq. (2.6), the expression for the
gauge field can be found as,

Bt (z) = q

2

(
e

2a2

αq2

(
Ei

(
2a2

(
−z2 − 1

q2α

))

−Ei

(
2a2

(
−zh

2 − 1

q2α

))))

+q

2

(
Ei

(
−2a2zh

2
)

− Ei
(
−2a2z2

))
. (4.2)

When the hairy parameter a vanishes, the gauge field reduces
to Born–Infeld potential,

Bt (z)
∣∣
a→0 = −q

2
log

(
1 + z2 − zh2

zh2
(
αq2z2 + 1

)
)

. (4.3)

Now, in a similar fashion, we can obtain the blackening func-
tion g(z) using Eq. (2.10) as follows:

g(z) = 1 +
q2

⎛
⎝ea

2z2 Ei
(−2a2z2

)−Ei
(−a2z2

)−log(2)−e
a2

αq2 Ei
(
− a2

q2α

)⎞
⎠

4a2

+
q2e

a2

αq2

⎛
⎝Ei

(
a2

(
−z2− 1

q2α

))
−e

a2
(

1
αq2 +z2

)

Ei
(

2a2
(
−z2− 1

q2α

))⎞
⎠

4a2

−
(−1+ea

2z2 )q2

⎛
⎝ea

2zh
2

Ei
(−2a2zh2

)−Ei
(−a2zh2

)−e
a2

αq2 Ei
(
− a2

αq2

)⎞
⎠

4a2(ea
2zh

2 −1)

−
(−1+ea

2z2 )q2e
a2

αq2

⎛
⎝e

a2

αq2 Ei
(
− 2a2

q2α

)
+Ei

(
a2

(
−zh2− 1

q2α

))⎞
⎠

4a2(ea
2zh

2 −1)

+ (−1+ea
2z2 )q2e

a2

αq2 e
a2

(
1

αq2 +zh
2
)

Ei
(

2a2
(
−zh2− 1

q2α

))

4a2(ea
2zh

2 −1)

+ q2e
2a2

αq2 Ei
(
− 2a2

q2α

)

4a2 + (−1+ea
2z2 )

(
q2 log(2)−4a2

)

4a2(ea
2zh

2 −1)
. (4.4)

Here, Ei denotes the exponential integral function. Note
that, as the hairy parameter and, subsequently, the scalar field
is turned off, this expression reduces to the expression of the
standard charged BTZ black hole with Born–Infeld potential
as follows:

g(z)
∣∣
a→0 =

(
2αq2z2 log

(
z
zh

)
− (

αq2z2 + 1
)

log
(
αq2z2 + 1

))

4α

+
(
zh2 − z2

)

zh2 + z2
(
αq2zh2 + 1

)
log

(
αq2zh2 + 1

)

4αzh2 .

(4.5)
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Fig. 14 The nature of Rμνρσ Rμνρσ for varying a keeping zh = 3.0,
α = 0.5, and q = 0.3 fixed

We can similarly calculate the expression for V (z) using
Eq. (2.20).

In Figs. 12 and 13, the radial profile of g(z) is plotted
against the inverse horizon radius zh for the different values
of the hairy parameter a and the BI non-linearity parameter
α, respectively. We have taken zh = 3. At z = zh , a change
in the sign of g(z) is observed, confirming the presence of
the horizon for all values of a and α. Figures 14 and 15 show
the radial profiles of the Kretschmann scalar Rμνρσ Rμνρσ

for different values of a and α, respectively. We can observe
from the profile of the Kretschmann scalar that the geometry
remains regular everywhere outside of the horizon except at
z = ∞ or r = 0. The Ricci scalar is also found to be regular
and finite throughout the spacetime outside of the horizon.
Also, note that no extra curvature singularities arise due to the

introduction of the hairiness to the black hole compared to
those present in the case of a non-hairy charged BTZ black
hole. But unlike the non-hairy uncharged BTZ case, the

Fig. 15 The nature of Rμνρσ Rμνρσ for varying α keeping zh = 3.0,
a = 0.3, and q = 0.2 fixed

uncharged hairy black hole in our model possesses a curva-
ture singularity. Also, while the intensity of the singularity is
directly proportional to the strength of the scalar field param-
eter a, no such strong dependence is observed on the value
of α.

From Fig. 16, we can observe that the scalar field is a
function of z and a. It is finite and real everywhere except at
the centre of the black hole and vanishes only at the asymp-
totic boundary. This suggests the presence of a well-behaved
hairy black hole solution in three dimensions. Moreover, the
potential approaches a constant upper limit,V (z)|z→0 = 2
,
at the AdS boundary. The radial profile of the potential for
different values of hair parameter a is shown in Fig. 16.

Now, we can move on to discuss the thermodynamics of
this black hole solution. Using Eq. (2.25), the temperature of
the black hole is found to be:

T =
zhq2ea

2z2
h e

a2

αq2

(
e

a2

αq2
(

Ei
(
− 2a2

q2α

)
− Ei

(
2a2

(
−z2

h − 1
q2α

)))
+ Ei

(
a2

(
−z2

h − 1
q2α

)))

8π
(
ea

2z2
h − 1

)

+
zhea

2z2
h

(
4a2 + q2

(
Ei

(−2a2z2
h

) − Ei
(−a2z2

h

) − log(2) − e
a2

αq2 Ei
(
− a2

q2α

)))

8π
(
ea

2z2
h − 1

) .

(4.6)

When the hairy parameter vanishes, the above expression
for temperature simplifies to the typical BTZ-like tempera-
ture expression with Born–Infeld potential, i.e.,
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Fig. 16 The radial nature of the scalar field and its potential for varying a keeping zh = 3.0, α = 0.5, and q = 0.3 fixed

T
∣∣
a→0 = 1

2π zh
− log

(
1 + αq2z2

h

)

8παzh
, (4.7)

and in the limit (a → 0, q → 0), it smoothly reduces to the
temperature expression for the standard BTZ solution,

T
∣∣
a→0,q→0 = 1

2π zh
. (4.8)

In this case, as well, it is interesting to observe that for par-
ticular values of the charge parameter q, the temperature of
the black hole vanishes as opposed to the case of uncharged
black holes. Such black holes with vanishing temperatures
are known as ‘extremal’ black holes.

In Fig. 17, the Hawking temperature of the black hole
against the inverse horizon radius zh is plotted for differ-
ent values of the hairy parameter a. Here, we have fixed
q = 0. When a = 0, the black hole has only one stable
branch corresponding to the non-hairy charged BTZ black
hole. It is interesting to note that for all non-vanishing val-
ues of a, above some critical temperature, there exist two
black hole phases: a ‘small black hole phase’ (unstable) with
negative specific heat and a ‘large black hole phase’ (stable)
with positive specific heat. The stable and unstable phases in
all figures are denoted by A© and B©, respectively. With the
increase in inverse horizon radius zh , the temperature for the
large (stable) black hole phase decreases while it increases for
the small (unstable) black hole phase. It is apparent that both
phases of the black hole can exist only above a certain temper-
ature for all non-zero a. Thus, below this minimum tempera-
ture (Tmin), no large or small black hole phases occur, and the
thermal-AdS remains the only viable phase. This evinces the
possibility of phase transition between the small/large phases
of the black hole to the thermal-AdS. As we will see shortly,

Fig. 17 The nature of black hole temperature T plotted against the
inverse horizon radius zh for varying a keeping q = 0 and α = 0.5
fixed

there is indeed a Hawking/Page phase transition between the
large black hole and thermal-AdS phases.

Let us now look into the thermodynamics of the charged
hairy black hole by switching on the parameter q. In Fig. 18,
temperature is plotted against the zh for different values of q
keeping a = 0.3 and α = 0.5 fixed. In this scenario too, there
exist two black hole phases (small and large) above some crit-
ical temperature, and as discussed in the previous case, the
black hole can again undergo the Hawking/Page phase transi-
tion between a stable large black hole phase and the thermal-
AdS phase. It is important to note that, for some value q,
the black hole becomes extremal at a certain horizon radius,
denoted as zexth with only one stable phase and no possibility
of transition. In this case also, for a non-hairy charged BTZ
black hole with Born–Infeld potential, the extremal horizon
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Fig. 18 The nature of black hole temperature T plotted against the
inverse horizon radius zh for varying q keeping a = 0.3 and α = 0.5
fixed

Fig. 19 Free energy difference �F plotted against the black hole tem-
perature T for varying a keeping q = 0 and α = 0.5 fixed

radius can be determined from Eq. (4.7), which is found to

be equal to zexth =
√
e4α−1√

αq
. However, for a hairy black hole,

the value of zexth escalates with an increase in a.
The above mentioned possibility of phase transition can

be corroborated by studying the free energy as a function of
Hawking temperature T . Figure 19 illustrates the nature of
free energy difference with respect to the temperature of a
black hole for different values of a, with q = 0 fixed, follow-
ing equivalent colour scheme as in Fig. 17. The presence of
two black hole phases and the Hawking/Page type of phase
transition, for finite a, can be verified by looking at the mul-
tivaluedness and the change of sign of �F plotted against
T . For all non-vanishing values of a, there exists a minimum
temperature Tmin below which no black hole phase exists.

Fig. 20 Free energy difference �F plotted against the black hole tem-
perature T for varying q keeping a = 0.3 and α = 0.5 fixed

Fig. 21 The nature of black hole temperature, T , plotted against the
inverse horizon radius zh for varying α keeping a = 0.3 and q = 0.2
fixed

For temperature greater than Tmin , two black hole phases are
observed: a small black hole phase and a large black hole
phase. Since the free energy of the large black hole phase is
always smaller than that of the small black hole phase, it is
more stable and, hence, thermodynamically favoured. Sim-
ilarly, the free energy of the large black hole phase can be
larger or smaller than the thermal-AdS phase, suggesting a
phase transition between them. We define the temperature of
Hawking/Page phase transition THP to be the temperature
at which the free energies of the large black hole phase and
the thermal-AdS become equal, i.e., �F = 0. This THP is
slightly above the Tmin . It should be noted that the phase tran-
sition, in this case, is possible owing to the hairiness of our
black hole solution, which can be contrasted with the lack of
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Fig. 22 Free energy difference �F plotted against the black hole tem-
perature T for varying α keeping a = 0.3 and q = 0.2 fixed

Fig. 23 The Hawking/Page phase transition temperature THP is plot-
ted against a for different values of q when α=0.5

any phase transitions in the case of a non-hairy charged BTZ
black hole.

Figure 20 illustrates the profile of free energy difference
�F against the Hawking temperature T for various values
of q, with a = 0.3 and α = 0.5, following equivalent colour
scheme as in Fig. 18. For all considered values of q, again,
Hawking/Page phase transition is observed above a certain
critical temperature THP .

We can similarly analyze the dependence of temperature
and free energy of the black hole on the Born–Infeld non-
linearity parameter α. In Figs. 21 and 22, Hawking tempera-
ture and the free energy are plotted for different values of α

keeping a = 0.3 and q = 0.2 fixed, respectively. Similar to

Fig. 24 The Hawking/Page phase transition temperature THP is plot-
ted against q for various values of a with α=0.5

previous cases, here also for all considered values of α, two
black hole phases are observed above Tmin , with a possibil-
ity of phase transition between the large hairy black hole and
thermal-AdS. Interestingly, we find that for a fixed a and q,
the Hawking/Page phase transition temperature increases as
α increases, suggesting for higher values of α, the black hole
will exist at relatively higher temperatures.

Let us now study the dependence of the transition temper-
ature THP on a and q. Figure 23 depicts that, for all values
of q, the value of THP is directly proportional to a. Note that
the slope of THP versus a is constant for q = 0, whereas this
is not the case for q 	= 0. Also, Fig. 24 depicts the monoton-
ically decreasing nature of THP with the increase in q for all
values of a. Thus, we can conclude that, for hairy black holes,
the Hawking/Page phase transition is more pronounced when
the value of q is small and the value of a is relatively large.
Therefore, for each q (a), a minimum (maximum) value of
a (q) exists, denoted by ac (qc), below (above) which phase
transition is forbidden.

The derived hairy black holes must be locally stable as
well. This local stability is indicative of how a system at
equilibrium reacts to minor fluctuations in thermodynamic
variables. In canonical ensemble, the condition for the stabil-
ity of a black hole branch is the positivity of the specific heat
at a constant charge Cq = T (∂SBH/∂T )|q . It is clear from
Fig. 18 that the slope of SBH − T plane is always positive in
the thermodynamically preferred hairy black hole phase A©.
As a result, the positive value of Cq in phase A© signifies the
local stability of the large hairy black holes. Conversely, for
the thermodynamically less favoured hairy black hole phase
B©, Cq is negative.
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5 Conclusions

This work showcased an alternate class of analytical solu-
tions for (2 + 1)-dimensional charged black holes with a
scalar hair in Einstein–Born–Infeld-Scalar theory where the
coupling function f (z) and the form factor A(z) determine
the nature of solutions. In this study, we primarily focused on
an interesting coupling of type f (z) = e−A(z)

√
1 + α2q4z4

with two form factors: A(z) = − log(1 + a2z2) and A(z) =
−a2z2. The introduction of the scalar field is observed to
enrich the thermodynamics of this system. The parameter a
controlled the intensity of the scalar field, and both the solu-
tions smoothly reduced to the standard BTZ-like solution
with Born–Infeld-like gauge field in the limit a → 0. Simi-
larly, another parameter, α, associated with the Born–Infeld
gauge field, seemed to have minimal effects on the black
hole geometry and thermodynamics. The geometric analysis
of both solutions presents us with the following key points:

• The curvature scalars like the Kretschmann scalar and
Ricci scalar are found to be always finite and regular out-
side the horizon, and no additional singularity is observed
due to the introduction of the scalar hair.

• The scalar field is real and regular outside the horizon
and vanishes at the asymptotic AdS boundary.

• The scalar field potential takes a usual constant value
equal to the cosmological constant with a negative sign
at the asymptotic boundary. It is also bounded from above
by its UV boundary value between the horizon and the
spacetime boundary. This satisfies the Gubser criterion
for a well-defined boundary theory [90].

We then analysed the thermodynamic properties of the
obtained black holes in a fixed charge ensemble, and we
found some interesting results. For the first metric, only a
single black hole phase appeared, which remained thermo-
dynamically stable and favoured at all temperatures. For the
second and more intriguing case of A(z) = −a2z2, with cou-
pling same as in the first case, we observed Hawking/Page
phase transition between the large stable black hole solution
and the thermal-AdS phase. We found that, for a particular
value of q, above a critical value of the hairy parameter ac,
the black hole can undergo Hawking/Page phase transition.
However, below ac, no such transitions occurred. Similarly,
for a fixed value of the hairy parameter a, a critical value
of the charge parameter qc exists above which no Hawk-
ing/Page phase transition occurred. Subsequently, we anal-
ysed the transition temperature THP as a function of a and
q and found that THP increases monotonically with a and
decreases with q. It is also confirmed that the thermodynam-
ically favoured hairy black hole phase always has positive
specific heat.

There are numerous potential avenues for expanding upon
this research. We believe that if the rotation parameter can be
included, it will be interesting to analyse the thermodynamic
structure of the rotating charged hairy black hole. Further-
more, studying the behaviour of hairy black holes under var-
ious perturbations can give deeper insights into these hairy
black holes’ dynamical stability. Preliminary investigations
suggest that these hairy black holes exhibit dynamic stability
when subjected to scalar field perturbations. We are currently
conducting further research in these areas.
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