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Abstract We present a benchmark comparison of the mass-
less inclusive deep-inelastic-scattering (DIS) structure func-
tions up to O(α3

s ) in perturbative QCD. The comparison is
performed using the codes apfel++ and hoppet within the
framework of the variable-flavour-number scheme and over
a broad kinematic range relevant to the extraction of parton
distribution functions. We provide results for both the sin-
gle structure functions and the reduced cross sections in both
neutral- and charged-current DIS. Look-up tables for future
reference are included, and we also release the code used for
the benchmark.
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1 Introduction

Deep inelastic scattering (DIS) is one of the best theoretically
understood processes in perturbative QCD, cf. Refs. [1,2] for
a review. Most significantly, it offers unique insight into the

a e-mail: valerio.bertone@cea.fr
b e-mail: alexander.karlberg@cern.ch (corresponding author)

proton structure, and to this day legacy DIS data still has a
major impact on fits of parton distribution functions (PDFs)
[3–9].

The inclusive DIS cross sections can be parametrised
in terms of structure functions. These structure functions
are inherently non-perturbative quantities, but they can be
expressed as convolutions between hard perturbative coef-
ficient functions and PDFs, where the latter encompass the
non-perturbative contribution. As of today, the massless DIS
coefficient functions are fully known up to O(α3

s ), allowing
us to compute structure functions up to next-to-next-to-next-
to-leading order (N3LO) accuracy [10–26].1 Very recently
the code yadism [27], which computes DIS structure func-
tions at this order, became available. However, their imple-
mentation was directly compared to apfel++ and therefore
relies implicitly on the benchmark presented here.

In this paper, we present a comparison of the structure
functions obtained using the two publicly available codes
apfel++ [28,29] and hoppet [30].2 The benchmark that we
present here serves two purposes. First, it validates the cor-
rectness of the structure functions as implemented in the two
programs. This is a highly non-trivial check in that, although
the coefficient functions are identical in the two programs,

1 We notice that, by convention, achieving N3LO would in principle
imply computing the anomalous dimensions responsible for the energy
evolution of strong coupling and PDFs to the same relative accuracy as
the coefficient functions. We will address this point below.
2 Technically speaking, the O(α3

s ) structure functions were already
available in thestruct-func-develbranch ofhoppet as they were
used in the proVBFH code [31–34]. However, while performing this
benchmark, some bugs were found in the O(α3

s ) neutral-current struc-
ture functions, and it is therefore fair to say that they have only been
publicly available in hoppet as of the v1.3.0 release, which will be
made public in a forthcoming paper [35], but is already available on the
hoppet GitHub repository. As far as apfel++ is concerned, the O(α3

s )

structure functions are available in the current master branch of the
GitHub repository, as well as in v4.8.0.
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the underlying technologies adopted by the two codes are
not. Secondly, the results presented here provide a reference
for any future numerical implementation of the DIS struc-
ture functions. To make the benchmark as resilient towards
the future as possible, we carry out the benchmark using the
same PDF initial conditions as those used in Ref. [36]. This
avoids complications caused by numerical artefacts related
to pre-computed interpolation grids such as those released
through the LHAPDF interface [37]. Moreover, this guaran-
tees the independence of the benchmark from the availability
of a specific PDF set. The benchmark is carried out both on
the single structure functions and on the reduced cross sec-
tions, which is what is often measured in experiments.

The paper is structured as follows. In Sect. 2, we review the
DIS process and define the structure functions. The numer-
ical setup of the benchmark is presented in Sect. 3. We
finally present the benchmark in Sect. 4 before conclud-
ing in Sect. 5. Appendix A contains some comments on
the large-y behaviour of the non-singlet N3LO coefficient
functions, while Appendix B presents look-up benchmark
tables for all of the structure functions at NLO, NNLO, and
N3LO accuracy for different values of Q and for Bjorken
xB ∈ [10−5 : 0.9].

2 The DIS structure functions

Let us begin by recalling the kinematics of the DIS pro-
cess. This process is the inclusive scattering of a lepton �

with momentum ki off a proton p with momentum P via
the exchange of a virtual electroweak gauge boson V with
momentum q and large (negative) virtuality Q2 = −q2 �
�2

QCD, where �QCD is the typical hadronic scale. Due to the
large virtuality of the vector boson, the proton breaks up leav-
ing in the final state the scattered lepton �′ with momentum
k f = ki − q and a remnant X , with respect to which we are
fully inclusive:

�(ki ) + p(P) → V (q) → �′(k f ) + X. (1)

It is useful to introduce the customary DIS variables xB

(Bjorken’s variable) and y (inelasticity) defined as:

xB = Q2

2P · q , y = P · q
P · ki = Q2

xBs
, (2)

where s = (ki + P)2 is the collision center-of-mass energy
squared.3 In order to describe the interaction between the
proton and the appropriate electroweak current, i.e. the neu-
tral current (NC) mediated by a V = γ /Z boson or the

3 We assume that incoming lepton and proton are both massless, i.e.
k2
i = P2 = 0.

charged current (CC) mediated by aV = W± boson, it is use-
ful to consider the hadronic tensor WV

μν . The spin-averaged
hadronic tensor defines the structure functions F1, F2, and
F3 through [38]:

WV
μν =

(
−gμν + qμqν

q2

)
FV

1 (xB, Q2)

+ P̂μ P̂ν

P · q FV
2 (xB, Q2) − iεμναβ

qαPβ

2P · q FV
3 (xB, Q2),

(3)

where:

P̂μ = Pμ − P · q
q2 qμ . (4)

It is also customary to define the longitudinal structure func-
tion as FV

L = FV
2 − 2xBFV

1 . With the structure functions at
hand, we can write the NC cross section (�± p → �± + X )
as:

dσ±
NC

dxBdQ2 = 2πα2

xBQ4 y+
[
Fγ /Z

2 ∓ y−
y+

xBF
γ /Z
3 − y2

y+
Fγ /Z
L

]
,

(5)

where y± = 1± (1− y)2 and α is the fine structure constant.
Similarly, the CC cross section for �± p → ν�(ν�)+X reads:

dσ±
CC

dxBdQ2 = πα2

8xB sin4 θW

(
1

M2
W + Q2

)2

×
[
y+FW±

2 ∓ y−xBF
W±
3 − y2FW±

L

]
, (6)

where MW is the mass of the W boson and θW is the elec-
troweak mixing angle. Some experiments, such as those at
the HERA collider [7], release the so-called “reduced” cross
sections that are related to the standard cross sections as fol-
lows:

σ±
NC,red =

[
2πα2

xBQ4 y+
]−1 dσ±

NC

dxBdQ2

= Fγ /Z
2 ∓ y−

y+
xBF

γ /Z
3 − y2

y+
Fγ /Z
L ,

σ±
CC,red =

⎡
⎣ πα2

4 sin4 θW xB

(
1

M2
W + Q2

)2
⎤
⎦

−1

dσ±
CC

dxBdQ2 = y+
2

FW±
2 ∓ y−

2
xBF

W±
3 − y2

2
FW±
L . (7)

The QCD collinear factorisation theorem allows us to
express the structure functions as convolutions of the PDFs,
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fa , with the short-distance coefficient functions, Ci
4:

FV
i ≡ FV

i (xB, Q2) = (xB)
∑
a

[
CV
i,a ⊗ fa

]

×
(
xB, Q2, μ2

R, μ2
F

)
, i = (2), (L), 3, (8)

where the index a runs over the gluon (a = g) and all active
quark flavours and anti-flavours (a = q, q) at the scale Q2.5

The Mellin-convolution symbol ⊗ implies one of the follow-
ing equivalent integrals:[

CV
i,a ⊗ fa

] (
xB, Q2, μ2

R, μ2
F

)
= ∫ 1

0 dy
∫ 1

0 dz δ(xB − yz)CV
i,a

×
(
y, αs(μR),

μ2
R

Q2 ,
μ2

F
Q2

)
fa(z, μF)

= ∫ 1
xB

dy
y C

V
i,a

(
y, αs(μR),

μ2
R

Q2 ,
μ2

F
Q2

)
fa

(
xB
y , μF

)

= ∫ 1
xB

dz
z C

V
i,a

(
xB
z , αs(μR),

μ2
R

Q2 ,
μ2

F
Q2

)
fa(z, μF).

(9)

2.1 Renormalisation and factorisation scale dependence

In this section, we derive the explicit dependence of the coef-
ficient functions on the arbitrary renormalisation and factori-
sation scales μR and μF, respectively. The coefficient func-
tionCV

i,a is an explicit function of the strong coupling αs(μR)

that admits the perturbative expansion:

CV
i,a

(
y, αs(μR),

μ2
R

Q2 ,
μ2

F

Q2

)

=
∞∑
n=0

(
αs(μR)

4π

)n

CV,[n]
i,a

(
y,

μ2
R

Q2 ,
μ2

F

Q2

)
. (10)

Under the assumption αs(μR) 
 1, the sum on the r.h.s.
can be truncated to order k to obtain a NkLO approximation

4 Note that, according to the usual definitions, the overall factor xB on
the r.h.s. of Eq. (8) only applies to FV

2 and FV
L , while it is not present

for FV
3 . This is the meaning of the parentheses around xB itself and the

indices i = (2), (L).
5 Specifically, if the mass mq of the quark flavour q is such that
m2

q < Q2, this flavour contributes to the cross section, otherwise it
does not. In practice, down, up, and strange quarks always contribute
in that their masses are always far below the typical hard scale Q2

where factorisation applies. For this reason they are called light quarks.
Conversely, charm, bottom, and possibly top quarks get activated at the
respective mass scales, therefore they are referred to as heavy quarks.
This is a possible implementation of the so-called decoupling theo-
rem [39] that goes under the name of variable-flavour-number scheme
(VFNS) [40]. According to this theorem, for m2

q 
 Q2 the quark
flavour q must drop from the calculation. The zero-mass VFNS (ZM-
VFNS) enforces this constraint already when m2

q < Q2, which effec-

tively amounts to neglecting positive powers of the ratio m2
q/Q

2.

of the structure functions.6 CV
i,a also depends on the ratios

μ2
R/Q2 and μ2

F/Q2. Despite that the scales μR and μF are
in principle arbitrary, in a fixed-order calculation where the
series in Eq. (10) includes a finite number of terms, the pres-
ence of logarithms of these ratios requires these scales to
be of order Q = √

Q2. In this way, the ratios μ2
R/Q2 and

μ2
F/Q2 are both of order one and do not compromise the

convergence of the perturbative series. Variations of μR and
μF around Q by a modest factor, typically of two, are often
used as a proxy to estimate the possible impact of unknown
higher-order corrections. This is due to the fact that any vari-
ation of μR and μF is compensated order by order in αs by
the evolution of strong coupling and PDFs, that in turn obey
their own renormalisation group equations (RGEs):

d ln αs (μR)

d ln μ2
R

= β(αs(μ
2
R)) = −∑∞

n=0

(
αs (μR)

4π

)n+1
βn,

d fa(x,μF)

d ln μ2
F

= ∑
b[Pab ⊗ fb](x, μF)

= ∑
b
∑∞

n=0

(
αs (μF)

4π

)n+1 [P [n]
ab ⊗ fb](x, μF).

(11)

The RGEs for PDFs are usually referred to as DGLAP equa-
tions [42–45] and the kernels Pab are called splitting func-
tions. Given the appropriate set of boundary conditions, the
solutions of these RGEs determine the evolution (or running)
of both αs and fa to any scale. Similarly to the DIS coefficient
functions, the β-function and the splitting functions Pab are
expandable in powers of αs .

When computing a DIS structure function at NkLO accu-
racy, it is customary to truncate also the perturbative expan-
sions in Eq. (11) at the same relative order k. However,
this is mostly a conventional procedure that is not strictly
mandatory for a correct counting of the perturbative accu-
racy. Strictly speaking, the truncation of the expansion in
Eq. (10) is responsible for the fixed-order accuracy, while
the truncation of the expansions Eq. (11) defines the loga-
rithmic accuracy. The fixed-order accuracy counts how many
corrections proportional to an integer non-negative power of
αs are included exactly in the coefficient functions. In the
DIS case, the O(α0

s ) contribution gives leading-order (LO)
accuracy, the inclusion of the O(αs) corrections gives next-
to-leading-order (NLO) accuracy, and so on. The logarith-
mic accuracy instead counts the number of all-order towers
of logarithms of the kind αm

s Ln , with L = ln
(
μR,F/Q0

)
and

Q0 the boundary-condition scale, that are being resummed by

6 If i = L , i.e. in the case of the longitudinal structure function, the con-
tribution k = 0 to the series on the r.h.s. of Eq. (10) is identically zero.
Therefore, in the case of FV

L , strict NkLO accuracy requires truncating
that series at n = k + 1. This is a consequence of the Callan–Gross
relation [41], FV

2 = 2xBFV
1 , valid in the parton model for spin-1/2 par-

ticles, that implies that FV
L = 0 at O(α0

s ). However, one may take the
viewpoint according to which FV

L is part of the inclusive cross section,
thus justifying a truncation at n = k.
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means of the evolution of αs and PDFs.7 Leading-logarithmic
(LL) accuracy is achieved summing all αn

s L
n terms, next-to-

leading-logarithmic (NLL) accuracy requires summing all
αn+1
s Ln terms, and so on. It is worth noting that the distinc-

tion between fixed-order and logarithmic counting is effec-
tive only when αs L ∼ 1, i.e. when L is large enough to com-
pensate for the assumed smallness of αs . This holds when
μR,F � Q0 (or μR,F 
 Q0), which is often the case in
phenomenological applications.

Although fixed-order and logarithmic accuracies have two
different origins, they are not entirely unrelated. Indeed,
loosely speaking, the summation of logarithms also con-
tributes to the fixed-order counting; for instance the term
αs L , which belongs to the LL tower, can also be regarded as
a NLO contribution to the DIS structure functions. Therefore,
NLO accuracy must come with at least LL resummation. In
general, NkLO accuracy for the DIS coefficient functions
requires a minimal resummation accuracy of Nk−1LL. How-
ever, it is not incorrect to match NkLO coefficient functions
to NkLL αs and PDF resummation: this is what conventional
NkLO accuracy for structure functions prescribes.

In the following, we will adopt the “conventional” count-
ing for the computation of the DIS structure functions up
to NNLO, i.e. we will match NkLO coefficient functions to
NkLL resummation, with k = 0, 1, 2. At N3LO, we will
instead use the “minimal” prescription and match N3LO
coefficient functions to NNLL resummation. The reason for
this choice is that, as of today, splitting functions are fully
known only up to O(α3

s ) [17,18,25,46–55]. Accompanied
by the O(α3

s ) corrections to the β-function in Eq. (11) [56–
60] and the mass threshold corrections to both the running
coupling and the parton distributions [61–63], this allows
us to achieve plain NNLL resummation. While the O(α4

s )

corrections to the β-function are known [64,65], this is not
the case for the splitting functions, which prevents attaining
exact N3LL resummation, in spite of the recent significant
progress made in determining them at this order [66–75]. In
contrast, all mass threshold corrections to the running cou-
pling [61] and the parton distributions are known at this order
[76–86].

It is also worth mentioning that, in order to compute the
single ingredients of the factorisation formula for the struc-
ture functions on the r.h.s. of Eq. (8), it is necessary to spec-
ify a renormalisation/factorisation scheme. While the depen-
dence on the scheme cancels out order by order in αs , it deter-
mines the specific form of the coefficient functions and of the
anomalous dimensions (β-function and splitting functions).
Throughout this work, we will use the modified minimal-
subtraction (MS) scheme.

7 Note that the boundary scale Q0 can, and often is, different for αs
and PDFs.

The evolution equations in Eq. (11) allow us to determine
the dependence on μR and μF of the perturbative coefficients
CV,[n]
i,a in Eq. (10). Indeed, provided that μR,F � Q, one can

perturbatively solve the RGEs in Eq. (11) to evolve αs and
PDFs from the scales μR and μF, respectively, to the scale
Q [15,87,88], obtaining:

αs(Q)

4π
= αs(μR)

4π
+

(
αs(μR)

4π

)2

LRβ0

+
(

αs(μR)

4π

)3

(L2
Rβ2

0 + LRβ1) + O(α4
s ), (12)

and:

fa(x, Q) = fa(x, μF) − LF

{(
αs (μR)

4π

)
P [0]
ab

+
(

αs (μR)
4π

)2
[
P [1]
ab − 1

2 LF P
[0]
ac ⊗ P [0]

cb

−
(
LF
2 − LR

)
β0P

[0]
ab

]

+
(

αs (μR)
4π

)3
[
P [2]
ab − 1

2 LF

(
P [0]
ac ⊗ P [1]

cb

+P [1]
ac ⊗ P [0]

cb

)
+ 1

6 L
2
F P

[0]
ac ⊗ P [0]

cd ⊗ P [0]
db

+
(
LF
2 − LR

)
β0

(
LF P

[0]
ac ⊗ P [0]

cb − 2P [1]
ab

)
+ (

L2
R − LF LR + 1

3 L
2
F

)
β2

0 P
[0]
ab

−
(
LF
2 − LR

)
β1P

[0]
ab

]}
⊗ fb(x, μF) + O(α4

s ),

(13)

where a summation over repeated indices is understood and
we introduced the shorthand notation:

LR = ln

(
μ2

R

Q2

)
, LF = ln

(
μ2

F

Q2

)
. (14)

With these equalities at hand, one can solve iteratively order
by order in αs the following equality:

∑
a

[
CV
i,a ⊗ fa

] (
xB, Q2, μ2

R, μ2
F

)

=
∑
a

[
CV
i,a ⊗ fa

] (
xB, Q2, Q2, Q2

)
, (15)
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which immediately implies:

CV,[0]
i,a

(
y,

μ2
R

Q2 ,
μ2

F
Q2

)
= cV,[0]

i,a (y),

CV,[1]
i,a

(
y,

μ2
R

Q2 ,
μ2

F
Q2

)
= cV,[1]

i,a (y) − LF

[
cV,[0]
i,b ⊗ P [0]

ba

]
(y),

CV,[2]
i,a

(
y,

μ2
R

Q2 ,
μ2

F
Q2

)
= cV,[2]

i,a (y) + LRβ0c
V,[1]
i,a (y)

−LF

[
cV,[1]
i,b ⊗ P [0]

ba

]
(y)

+LFc
V,[0]
i,b ⊗

[(
LF
2 − LR

)
β0P

[0]
ba

+ 1
2 LF P

[0]
bc ⊗ P [0]

ca − P [1]
ba

]
(y),

CV,[3]
i,a

(
y,

μ2
R

Q2 ,
μ2

F
Q2

)
= cV,[3]

i,a (y) + 2LRβ0c
V,[2]
i,a (y)

−LF

[
cV,[2]
i,b ⊗ P [0]

ba

]
(y)

+ (
L2
Rβ2

0 + LRβ1
)
cV,[1]
i,a (y)

+LFc
V,[1]
i,b ⊗

[(
LF
2 − 2LR

)
β0P

[0]
ba

+ LF
2 P [0]

bc ⊗ P [0]
ca − P [1]

ba

]
(y)

+LFc
V,[0]
i,b ⊗

[
− β2

0 P
[0]
ba

(
L2
F

3

−LF LR + L2
R

)

−
(
LF
2 − LR

)
β0(LF P

[0]
bc

⊗P [0]
ca − 2P [1]

ba )

− L2
F

6 P [0]
bc ⊗ P [0]

cd ⊗ P [0]
da

+ LF
2 (P [0]

bc ⊗ P [1]
ca

+P [1]
bc ⊗ P [0]

ca ) − P [2]
ba

]
(y), (16)

where we have defined:

cV,[n]
i,a (y) = CV,[n]

i,a (y, 1, 1) . (17)

Equation (16) allows us to compute the structure functions
up to N3LO accuracy for any choice of renormalisation and
factorisation scales in the vicinity of Q.

2.2 Characteristics of the structure functions

We now move to characterising the structure functions. In the
NC case, structure functions have the following structure:

Fγ /Z
i = xB

∑
a Ba

[
C+
i,NS ⊗ f +

a + Ci,PS ⊗ fPS + Ci,g ⊗ fg

]
,

i = 2, L ,

Fγ /Z
3 = ∑

a Da

[
C−

3,NS ⊗ f −
a + C3,PV ⊗ fPV

]
,

(18)

where we have defined the following combinations of quark
PDFs:

f ±
a = fa ± fā, fPS =

∑
a

f +
a , fPV =

∑
a

f −
a . (19)

Table 1 Electric, vector, and axial couplings for up-type, down-type,
charged leptons, and neutrinos

f e f V f A f

d, s, b − 1
3 − 1

2 + 2
3 sin2 θW − 1

2

u, c, t + 2
3 + 1

2 − 4
3 sin2 θW + 1

2

e, μ, τ −1 − 1
2 + 2 sin2 θW − 1

2

νe, νμ, ντ 0 + 1
2 + 1

2

Importantly, in the decomposition in Eq. (18) the coefficient
functions are independent of the flavour index a. Conversely,
the electroweak charges Ba and Da do depend on the flavour
index as follows:

Ba = e2
a − 2eaV�Va PZ + (V 2

� + A2
�)(V

2
a + A2

a)P
2
Z ,

Da = −2ea A�Aa PZ + 4V�A�Va Aa P2
Z ,

(20)

where:

PZ = 1

4 sin2 θW cos2 θW

(
Q2

Q2 + M2
Z

)
, (21)

and � is the lepton off which the proton scatters. The electric,
vector, and axial charges for quarks and leptons are given in
the Table 1.

We now move to the CC structure functions whose fac-
torised expression reads:

FW±
i = 1

2 xB

[
∓C−

i,NS ⊗ δ fPV + (Ci,NS + Ci,PS) ⊗ fPS

+Ci,g ⊗ fg
]
, i = 2, L ,

FW±
3 = 1

2

[
±C+

3,NS ⊗ δ fPS + C3,PV ⊗ fPV

]
,

(22)

where we have defined the additional quark-PDF combina-
tions:

δ fPS =
∑

a∈u-type

f +
a −

∑
a∈d−type

f +
a ,

δ fPV =
∑

a∈u-type

f −
a −

∑
a∈d−type

f −
a . (23)

We notice that the expressions in Eq. (22) have been obtained
under the assumption of a CKM matrix equal to the 3 ×
3 unity,8 which we will also use in the numerical results
presented below. The corresponding expressions for a generic
CKM matrix are considerably more complicated and we do
not present them here.

8 In fact, relying on unitarity, Eq. (22) is exactly true for any CKM
matrix if n f = 6.
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Fig. 1 The structure functions F1 (top row), F2 (middle row), and
F3 (bottom row) for NC (left column), positive CC (middle column),
and negative CC (right column) at N3LO as functions of xB spanning

between 10−5 and 0.9 and for various values of the energy Q. The lower
panels show the ratio between apfel++ and hoppet

3 Numerical setup

For our benchmark, rather than relying on a set of tabulated
PDFs as for example delivered by LHAPDF [37], we decided
to use a set of realistic initial-scale conditions having a sim-
ple analytic form and to carry out the evolution ourselves.
Besides the obvious advantage of having full numerical con-
trol on our results, we believe that this choice will allow for
easier comparison to our benchmark results. To this purpose,
we selected as initial conditions for the evolution the param-
eterisation of Sect. 1.3 of Ref. [36]. Specifically, we chose
Q0 = √

2 GeV as an initial scale with αs(Q0) = 0.35. At
the initial scale Q0, only gluon and up, down, and strange
quark PDFs are present while charm, bottom, and top quark
PDFs are assumed to be identically zero and have their pro-
duction thresholds at mc = (

√
2 + ε) GeV,9 mb = 4.5 GeV,

and mt = 175 GeV, respectively. At the initial scale Q0, the

9 The presence of the infinitesimal parameter ε inmc is meant to ensure
that Q0 < mc such that the initial conditions for both PDFs and αs are
given with n f = 3 active flavours. In practice, we take ε = 10−9.

PDFs are given by:

xuv(x, Q0) = 5.107200 x0.8(1 − x)3 , (24a)

xdv(x, Q0) = 3.064320 x0.8(1 − x)4 , (24b)

xd̄(x, Q0) = 0.1939875 x−0.1(1 − x)6 , (24c)

xū(x, Q0) = xd̄(x, Q0)(1 − x) , (24d)

xs(x, Q0) = xs̄(x, Q0) = 0.2 (xd̄(x, Q0) + xū(x, Q0)) ,

(24e)

xg(x, Q0) = 1.7 x−0.1(1 − x)5 , (24f)

where the valence distributions are defined as uv ≡ u−ū and
dv ≡ d−d̄ . We carry out the evolution in the variable-flavour-
number scheme, that is by including quark-mass thresholds
in both coupling and the PDF evolutions. The resulting set
of evolved PDFs both from apfel++ and hoppet are in per-
fect agreement with the tables in Ref. [36] at all perturbative
orders.

Starting from NNLO accuracy, both splitting functions
and coefficient functions become analytically very convo-
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Fig. 2 The reduced cross sections σ+
NC,red (top left), σ−

NC,red (top

right), σ+
CC,red (bottom left) and σ−

NC,red (bottom right) at N3LO as

functions of xB spanning between 10−5 and 0.9 and for various val-

ues of the energy Q. The centre-of-mass energy is set to
√
s =

320 GeV. The lower panels show the ratio between apfel++ and
hoppet

Fig. 3 The structure function FNC
2 plotted as a function of xB in the range [10−5 : 0.9] at Q = 2 GeV (left) and Q = 10 GeV (right). Each plot

displays the curves at LO, NLO, NNLO, and N3LO with the lower panel showing the ratio to N3LO

luted and it is customary to resort to the parameterisations
provided by Moch, Vermaseren and Vogt [14–24]. These
parameterisations are expected to agree with their exact
counterparts at the level of 10−4 relative accuracy. In this
benchmark, we thus employ exact splitting and coefficient
functions up to NLO, while we use the parameterisations

beyond,10 For the PDF mass threshold corrections we use the
exact expressions at all orders. In Appendix A, we comment
on the differences between exact and parametrised coefficient
functions.

Finally, we point out that the NC structure functions also
depend on the weak mixing angle (see Sect. 2.2). In this

10 We notice that the exact expressions are available at all orders in
hoppet as discussed in Appendix A.
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Fig. 4 Relative scale variations on FNC
2 as functions of xB for Q =

2 GeV (left) and Q = 10 GeV (right). The red (blue) bands correspond
to variations of μR (μF) by a factor of 2 up and down around Q. Vari-

ations are shown for NLO (upper panels), NNLO (central panels), and
N3LO (lower panels)

benchmark, we employ the leading-order relation sin2 θW =
1 − M2

W
M2

Z
to compute it, using MW = 80.377 GeV and

MZ = 91.1876 GeV for the mass values of W and Z bosons,
respectively.

4 Benchmark results

In this section, we present the results of the benchmark
between apfel++ and hoppet. Here, we will assess the level
of agreement between the two codes at N3LO accuracy by
means of a set of plots. The excellent agreement found at this
order (see below) immediately implies that the agreement at
lower orders is at least as good. In this section, we also take
the chance to discuss the impact of scale variations on DIS
structure functions at the available perturbative orders, as
well as the degree of perturbative convergence moving from
LO to N3LO. In Appendix B, instead, we provide look-up
tables with predictions at all available perturbative orders
over a broad kinematic range and for all of the DIS structure
functions. We point out that apfel++ and hoppet are in exact
agreement within the digits shown in those tables. Therefore,
they can be used as a reference for future numerical imple-
mentations of the DIS structure functions. We also release
the code used to produce them (see Appendix B for details).

In Fig. 1, we show all structure functions both in the NC
and in the CC channels at N3LO over a wide kinematic range
in xB and Q. Here, we set μR = μF = Q. While the upper
panel of each plot displays the absolute values of the structure
functions, the lower panel shows the ratio between apfel++

and hoppet. It is evident that the agreement between the
two codes is excellent all across the board. Specifically, we
observe that the relative accuracy is well below 10−5 every-
where, except for FW−

3 at around xB ∼ 3 · 10−3 − 10−2.
However, this slight degradation in relative accuracy is due
to the fact that FW−

3 changes sign in that region.

As discussed in Sect. 2, it is also relevant to consider the
DIS reduced cross sections defined in Eq. (7). As a matter
of fact, the HERA collider has delivered measurements for
these observables [7] that are currently being employed in
most of the modern PDF determinations [4–6]. In Fig. 2, we
show N3LO predictions for NC (top row) and CC (bottom
row) reduced cross sections relevant to e+ p (left column) and
e− p (right column) collisions. The centre-of-mass energy is
set to

√
s = 320 GeV, close to that of the latest runs of

HERA. A broad kinematic range in xB and Q is covered and
again we set μR = μF = Q. We notice that the curves,
presented as functions of xB for different values of Q, are
limited in xB by the physical requirement on the inelasticity
y ≤ 1 (see Eq. (2)). As above, the lower panel of each plot
shows the ratio between predictions obtained with apfel++

and hoppet. As expected from the results presented in Fig. 1,
the two codes agree well within 10−5 relative accuracy over
the full kinematic range also for the reduced cross sections.

Having at our disposal four consecutive perturbative
orders, it is interesting to study how well the QCD pertur-
bative series converges in the case of inclusive DIS structure
functions. In Fig. 3, we display FNC

2 as a function of xB at
Q = 2 GeV (left) and Q = 10 GeV (right) computed with
μR = μF = Q. Each plot shows this structure function
for all perturbative orders between LO and N3LO, with the
lower panel giving the ratio to N3LO. The pattern is some-
what the expected one. At Q = 2 GeV, due to the relatively
large value of αs , the convergence is slower with differences
between NNLO and N3LO that can exceed 10%, particularly
at small and large values of xB. At Q = 10 GeV, instead, the
convergence is much faster with NNLO and N3LO very close
to each other everywhere, except for very large values of xB.

The perturbative convergence can also be studied by look-
ing at how renormalisation and factorisation scale variations
behave. In Sect. 2, we provided all relevant expressions to
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perform these variations up to N3LO accuracy. We point out
that we have checked that apfel++ and hoppet agree within
the same level of accuracy discussed above also when scales
are varied. In Fig. 4, we show the effect of varying the renor-
malisation scale μR (red bands) and the factorisation scale
μF (blue bands) by a factor of 2 up and down with respect
to Q relative to the central-scale choice μR = μF = Q. The
left plot has been obtained with Q = 2 GeV while the right
plot with Q = 10 GeV. In each of them the top panel shows
variations at NLO, the central panel at NNLO, and the bot-
tom panel at N3LO. We did not include the LO panel because
at this order inclusive DIS structure functions are indepen-
dent of μR while μF gives rise to very large bands.11 As
expected, scale-variation bands shrink significantly moving
from NLO to N3LO at both scales. However, the reduction is
much more pronounced at Q = 10 GeV than at Q = 2 GeV,
as a consequence of the decrease in αs value.

5 Conclusion

As N3LO PDFs start to emerge, see e.g. Refs. [89,90], it will
become increasingly important to have reliable N3LO pre-
dictions for inclusive DIS cross sections available. Indeed,
DIS measurements are and will likely remain one of the main
sources of experimental information that enter modern deter-
minations of PDFs. Moreover DIS is one of the very few
processes for which N3LO corrections to the partonic cross
sections, albeit only in the quark massless limit, are exactly
known.

In this paper, we have benchmarked the implementation
of the massless DIS structure functions to N3LO accuracy
by comparing the predictions provided by two widely used
codes: apfel++ [28,29] and hoppet [30]. In this benchmark,
we considered both NC and CC structure functions relevant
to the computation of DIS cross sections respectively char-
acterised by the exchange of a neutral (γ /Z ) and a charged
(W±) virtual vector boson. The numerical setup closely fol-
lows that of Ref. [36]. Specifically, we used a realistic set
of initial-scale PDFs that were evolved to the relevant scales
before convoluting them with the appropriate DIS coefficient
functions. This workflow was independently implemented in
both apfel++ and hoppet before comparing the respective

11 We notice that the bands shown in Fig. 4 represent the area enclosed
between the curves obtained with μR,F/Q = 1/2 and μR,F/Q = 2.
It often happens that scale variations are not monotonic, such that the
central-scale curve μR,F/Q = 1 falls outside the bands. In order to
give a more reliable estimate of the perturbative uncertainty related to
missing higher-order corrections, one should perform a scan between
μR,F/Q = 1/2 and μR,F/Q = 2 and quote the envelope as an uncer-
tainty. However, here we do not mean to provide a realistic estimate of
the scale uncertainties but we only want to study the perturbative conver-
gence. Therefore, we limit to consider μR,F/Q = 1/2 and μR,F/Q = 2
only.

predictions. On top of the single structure functions, we also
compared reduced cross sections as those delivered by the
HERA experiments [7].

We found a relative agreement betweenapfel++ andhop-
pet at the 10−5 level or better over a very wide kinematic
range in Q ∈ [2 : 100] GeV and xB ∈ [10−5 : 0.9] for
all structure functions and reduced cross sections. Addition-
ally, we also investigated the perturbative convergence by
comparing predictions for FNC

2 at all available perturbative
orders, i.e. from LO to N3LO, and by estimating the effect of
renormalisation and factorisation scale variations. We found
the expected pattern according to which FNC

2 exhibits a good
perturbative convergence, especially for large values of Q.
apfel++ and hoppet were benchmarked also against scale
variations.

The benchmark carried out in this paper, thanks to its
high accuracy level, provides a solid reference for any future
implementation of the DIS coefficient functions up to N3LO
perturbative accuracy. In order to make our results fully
reproducible and facilitate the comparison to future imple-
mentations, we made the code used for this benchmark avail-
able at:

https://github.com/alexanderkarlberg/
n3lo-structure-function-benchmarks,

where we also provide a short documentation and the suite
of Matplotlib scripts that we used to produce the plots
shown in this paper.
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Appendix A: Comments on the y → 1 behaviour of the
coefficient functions

In the course of this benchmark, we have encountered some
minor differences between the exact N3LO coefficient func-
tions and the parameterisations used here and given in Refs.
[19–21,23]. The differences arise for y � 0.9 in the regu-
lar part of the non-singlet coefficient functions,12 Although
the difference is phenomenologically negligible, it does have
a small impact in precision studies like the benchmark pre-
sented here. The largest relative difference is found in the
c(3)

2,q coefficient function, on which we focus our attention.
In general, a DIS coefficient function C receives three

different contributions:

• The singular piece [Csing(y)]+, which is a combination

of terms of the kind
[

lni (1−y)
1−y

]
+. The +-prescription is

defined as:

∫ 1

0
dy[Csing(y)]+ f (y) =

∫ 1

0
dy Csing(y)[ f (y)

− f (1)], (A.1)

and has the effect of regularising the otherwise non-
integrable singularities at y = 1.

• The regular piece Creg(y), which in general can be very
complicated but in the y → 1 limit develops integrable
singular terms of the kind lni (1 − y).

• The local piece Clocδ(1 − y), where Cloc is a numerical
constant.

Although the singular piece [Csing(y)]+ dominates the
coefficient function for y → 1, this is not the case when
it is convoluted with a parton distribution as in Eq. (8), since
the +-prescription effectively generates a factor of 1 − y. In
the limit y → 1, this can be seen schematically as follows:

C ⊗ f =
∫ 1

xB

dy

y

{
Creg(y)

+ [
Csing(y)

]
+ + Clocδ(1 − y)

}
f

(
xB

y

)

�
∫ 1

xB

dy
{
Creg(y) f (xB) + (1 − y)Csing(y)

× [
f (xB) + xB f ′(xB)

] + . . .
}

, (A.2)

where in the second line we have expanded f (xB/y)/y
around y = 1 and neglected the local piece as well as the
additional terms proportional to lni+1(1 − xB)δ(1 − y) gen-
erated by the +-prescription. Therefore, in order to achieve

12 Specifically, in the routines CLNP3A C2NP3A, and C3NM3A of
xclns3p.f, xc2ns3p.f, and xc3ns3p.f, respectively.

accurate results when parameterising C , it is necessary to
correctly account for the large-y behaviour of Creg.

The solid green curve on the l.h.s. of Fig. 5 shows the
ratio between the regular part of the parametrisation for c(3)

2,q
given in Eq. (4.11) of Ref. [20] and its exact counterpart as
a function of 1 − y. As can be seen, the ratio increases as
1 − y approaches zero and, in the range shown on the plot,
it reaches 8%.

In order to investigate this difference, we considered the
large-y limit of the regular part of allO(α3

s ) non-singlet coef-
ficient functions, which in this region admit the following
expansion:

c(3)
k,q,reg(y) �

5∑
i=1

L(k)
i lni (1 − y) , (A.3)

with k = 2, 3, L . The coefficients Li can be found in Refs.
[20,23]. Since these coefficients are non-trivial to derive, we
recomputed them finding two minor typos in the expressions
for c(3)

L ,q,reg reported in Ref. [20]. Specifically, for the coeffi-

cients of c(3)
2,q,reg we find:

L(2)
5 = −8C 3

F , (A.4)

L(2)
4 = 220

9
CAC

2
F + 92C 3

F − 40

9
C 2
F nf , (A.5)

L(2)
3 = −484

27
C 2

ACF − CAC
2
F

[
10976

27
− 64 ζ2

]

−C 3
F [38 − 32 ζ2]

+176

27
CACF nf + 1832

27
C 2
F nf − 16

27
CF n 2

f , (A.6)

L(2)
2 = C 2

ACF

[
11408

27
− 266

3
ζ2 − 32 ζ3

]

+CAC
2
F

[
11501

9
− 292 ζ2 − 160 ζ3

]

−C 3
F

[
1199

3
+ 688 ζ2 + 48 ζ3

]

−CACF nf

[
3694

27
− 64

3
ζ2

]

−C 2
F nf

[
2006

9
− 16

3
ζ2

]
+ 296

27
CF n 2

f , (A.7)

L(2)
1 = −C 2

ACF

[
215866

81
− 824ζ2 − 1696

3
ζ3 + 304

5
ζ 2

2

]

+CAC
2
F

[
126559

162
+ 872ζ2 + 792ζ3 − 1916

5
ζ 2

2

]

+C 3
F

[
157

6
+ 1268

3
ζ2 − 272 ζ3 + 488ζ 2

2

]

+CACF nf

[
64580

81
− 1292

9
ζ2 − 304

3
ζ3

]
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Fig. 5 Left: the regular O(α3
s ) coefficient function c(3)

2,q,reg as a func-
tion of 1− y plotted as a ratio to the exact expression. In green we show
the parametrisation of Ref. [20]. The dashed lines show the large-y

expansion including progressively more terms. Right: the same plot but
now showing 1 minus the ratio on a log-scale to highlight the relative
agreement

−C 2
F nf

[
4445

81
+ 208ζ2 − 208

3
ζ3

]

−CF n 2
f

[
4432

81
− 32

9
ζ2

]
, (A.8)

which agree with the results of Ref. [23]. Similarly, for the
coefficients of c(3)

3,q,reg we have:

L(3)
5 = −8C 3

F , (A.9)

L(3)
4 = 220

9
CAC

2
F + 84C 3

F − 40

9
C 2
F nf , (A.10)

L(3)
3 = −484

27
C 2

ACF

−CAC
2
F

[
9056

27
− 32 ζ2

]
− C 3

F [110 − 96 ζ2]

+176

27
CACF nf + 1640

27
C 2
F nf − 16

27
CF n 2

f , (A.11)

L(3)
2 = C 2

ACF

[
7580

27
− 98

3
ζ2

]

+CAC
2
F

[
12031

9
− 372 ζ2 − 240 ζ3

]

−C 3
F

[
1097

3
+ 656 ζ2 + 16 ζ3

]

−CACF nf

[
2734

27
− 16

3
ζ2

]

−C 2
F nf

[
2098

9
− 112

3
ζ2

]
+ 248

27
CF n 2

f , (A.12)

L(3)
1 = −C 2

ACF

[
138598

81
− 4408

9
ζ2 − 272 ζ3 + 176

5
ζ 2

2

]

−CAC
2
F

[
69833

162
− 12568

9
ζ2 − 1904

3
ζ3 + 764

5
ζ 2

2

]

+C 3
F

[
1741

6
+ 1220

3
ζ2 + 480 ζ3 − 376

5
ζ 2

2

]

+CACF nf

[
45260

81
− 108 ζ2 − 16 ζ3

]

+C 2
F nf

[
9763

81
− 2224

9
ζ2 − 112

3
ζ3

]

−CF n 2
f

[
3520

81
− 32

9
ζ2

]
, (A.13)

which agree with the results in Ref. [23]. Finally, for the
coefficients of c(3)

L ,q,reg we find:

L(L)
4 = 8C 3

F , (A.14)

L(L)
3 = CAC

2
F

[
−640

9
+ 32ζ2

]

+C 3
F

[
72 − 64ζ2

]
+64

9
C2
Fnf , (A.15)

L(L)
2 = C 2

ACF

[
1276

9
− 56ζ2 − 32ζ3

]

+CAC
2
F

[
−530

9
+ 80ζ2 + 80ζ3

]

+ C 3
F

[
− 34 − 32ζ2 − 32ζ3

]

+CACFnf

[
−320

9
+ 16ζ2

]

+ C 2
Fnf

[
92

9
− 32ζ2

]
+ 16

9
CFn

2
f , (A.16)

L(L)
1 = C 2

ACF

[
−25756

27
+ 3008

9
ζ2 + 880

3
ζ3 − 128

5
ζ 2

2

]

+ CAC
2
F

[
32732

27
− 4720

9
ζ2

+472

3
ζ3 − 1152

5
ζ 2

2

]
+ C 3

F

[
− 264
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Table 2 NLO stucture functions with NLL evolution at Q = 2 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 4.9966+4 1.5085+0 3.4458−2 9.6690+4 9.6717+4 2.8589+0 2.8595+0 2.1997+4 −2.1814+4

1.0−4 3.5370+3 1.0505+0 1.7875−2 6.8928+3 6.9067+3 2.0028+0 2.0058+0 1.7751+3 −1.6803+3

1.0−3 2.4761+2 7.1563−1 8.7463−3 4.8255+2 4.8939+2 1.3664+0 1.3811+0 1.5419+2 −1.0784+2

1.0−2 1.8294+1 4.9277−1 3.9543−3 3.3637+1 3.6713+1 9.0065−1 9.6775−1 1.7954+1 2.9668+0

1.0−1 1.7795+0 4.0072−1 1.4381−3 2.4287+0 3.5994+0 5.5218−1 8.0596−1 3.1699+0 4.3670+0

3.0−1 5.0019−1 3.1315−1 5.3436−4 4.8044−1 1.0247+0 3.0027−1 6.4138−1 8.7182−1 1.8494+0

5.0−1 1.6809−1 1.7140−1 1.8517−4 1.1350−1 3.5189−1 1.1539−1 3.5888−1 2.2211−1 6.8705−1

7.0−1 3.7649−2 5.3128−2 4.0874−5 1.5406−2 8.0950−2 2.1703−2 1.1424−1 3.0736−2 1.6129−1

9.0−1 1.6475−3 2.9702−3 1.7405−6 2.2898−4 3.6497−3 4.1266−4 6.5798−3 4.5806−4 7.2985−3

+ 16ζ2 − 752ζ3+2816

5
ζ 2

2

]

+CACFnf

[
6640

27
− 320

9
ζ2 − 256

3
ζ3

]

+ C 2
Fnf

[
−4736

27
+ 352

9
ζ2 + 320

3
ζ3

]

−304

27
CFn

2
f , (A.17)

which also agree with the expressions given in Ref. [20],
except for the two terms highlighted in blue.

On the l.h.s. plot of Fig. 5, we also show the large-y expan-
sion of Eqs. (A.4)–(A.8) retaining progressively more terms.
It can be seen that the agreement between the exact coefficient
function and the large-y expansion improves as y increases,
as expected. We conclude that the parameterisation for the
regular part of c(3)

2,q reported in Eq. (4.11) of Ref. [20] does
not fully account for its large-y behaviour, but we also stress
that the phenomenological impact is negligible.

On the r.h.s. of Fig. 5, we also show 1 minus the ratio
to the exact expression to highlight the relative agreement
between the various curves. From this plot, we notice an
apparent degradation of the overall precision of the exact
expression as provided in Ref. [20] as y approaches one (see
the oscillations of the red curve).13 In hoppet, where the
exact expressions have been implemented, this causes some
issues as the numerical convolution requires the evaluation of
the coefficient functions at values of y that in double precision
are indistinguishable from 1. For this reason, we switch to
the large-y expressions close to y = 1.

13 The Fortran implementation of this expression relies on a weight-5
extension of the hplog package [91] for the evaluation of the har-
monic polylogarithms. We have explicitly checked that the decrease in
precision is not due to this evaluation, as it persists also when using the
HPOLY program [92].

As stated above, the difference between using exact and
parametrised coefficient functions is phenomenologically
negligible at the level of the structure functions. Indeed, if
we reproduce the benchmark Tables 5, 6, 7, 8, 9, and 10
using the exact N3LO expressions in hoppet (but keeping
the parametrisations at NNLO), they typically differ from
the tables obtained with the parameterised expressions only
in the last (fifth) digit, and often not at all. Our bench-
mark program, StructureFunctionsJoint.cc, can be modified
to use the exact expressions in hoppet by setting the flag
param_coefs to false. Finally, we provide a Fortran
file, c_ns_reg_large_x.f, with the large-y expressions given
above.

Appendix B: Benchmark tables

In this appendix, we collect benchmark tables for all of the
inclusive DIS structure functions. Results are presented for
both NC and CC channels at NLO, NNLO, and N3LO accu-
racy, for Q = 2, 50, 100 GeV, and at values of xB ranging
from 10−5 to 0.9. Details on the numerical setup can be found
in Sect. 3. The numbers reported in Tables 2, 3, 4, 5, 6, 7,
8, 9, and 10 agree between apfel++ and hoppet within the
digits shown. The code that produces the tables can be found
in StructureFunctionsJoint.cc.
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Table 3 NLO stucture functions with NLL evolution at Q = 50 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 6.5169+5 1.5831+1 3.9508+1 1.0443+6 1.0444+6 2.5233+1 2.5235+1 2.2026+4 −2.1598+4

1.0−4 3.0094+4 7.1530+0 1.8274+1 4.8785+4 4.8812+4 1.1524+1 1.1529+1 1.8058+3 −1.6079+3

1.0−3 1.2782+3 2.9512+0 7.9359+0 2.1053+3 2.1175+3 4.8278+0 4.8529+0 1.6680+2 −8.0951+1

1.0−2 5.0228+1 1.1089+0 3.0514+0 8.2279+1 8.7032+1 1.8084+0 1.9071+0 2.1543+1 1.1369+1

1.0−1 2.1078+0 4.3654−1 7.4300−1 2.6583+0 3.9864+0 5.5087−1 8.2396−1 3.0120+0 4.8797+0

3.0−1 3.3828−1 2.0595−1 1.6781−1 2.8339−1 6.6939−1 1.7236−1 4.0750−1 5.0084−1 1.2251+0

5.0−1 7.2949−2 7.3507−2 3.7503−2 4.1693−2 1.4855−1 4.1970−2 1.4969−1 8.0977−2 2.9141−1

7.0−1 9.7862−3 1.3749−2 4.9771−3 3.3390−3 2.0488−2 4.6882−3 2.8785−2 6.6487−3 4.0859−2

9.0−1 1.7778−4 3.2027−4 8.8431−5 2.0508−5 3.8298−4 3.6939−5 6.8993−4 4.1020−5 7.6590−4

Table 4 NLO stucture functions with NLL evolution at Q = 100 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 9.9729+5 2.3646+1 1.0594+2 1.3337+6 1.3338+6 3.1492+1 3.1494+1 2.1969+4 −2.1494+4

1.0−4 4.3984+4 1.0220+1 4.8352+1 5.9496+4 5.9526+4 1.3756+1 1.3762+1 1.8063+3 −1.5895+3

1.0−3 1.7689+3 4.0031+0 2.0642+1 2.4329+3 2.4459+3 5.4752+0 5.5022+0 1.6843+2 −7.6015+1

1.0−2 6.4595+1 1.4056+0 7.7271+0 8.8894+1 9.3889+1 1.9269+0 2.0302+0 2.1948+1 1.2542+1

1.0−1 2.4151+0 4.9778−1 1.7757+0 2.6188+0 3.9463+0 5.3990−1 8.1189−1 2.9482+0 4.8573+0

3.0−1 3.5670−1 2.1677−1 3.7653−1 2.6060−1 6.2364−1 1.5823−1 3.7897−1 4.6037−1 1.1439+0

5.0−1 7.2170−2 7.2656−2 7.9652−2 3.6259−2 1.3130−1 3.6472−2 1.3220−1 7.0406−2 2.5774−1

7.0−1 9.0080−3 1.2651−2 9.9079−3 2.7203−3 1.6996−2 3.8183−3 2.3869−2 5.4157−3 3.3897−2

9.0−1 1.4497−4 2.6113−4 1.5706−4 1.4904−5 2.8369−4 2.6843−5 5.1103−4 2.9810−5 5.6734−4

Table 5 NNLO stucture functions with NNLL evolution at Q = 2 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 5.6571+4 1.4043+0 4.3612−2 1.1411+5 1.1414+5 2.7950+0 2.7957+0 3.9818+4 −3.9585+4

1.0−4 3.3447+3 8.9927−1 1.9576−2 6.8499+3 6.8654+3 1.7990+0 1.8025+0 2.7590+3 −2.6549+3

1.0−3 2.0700+2 5.9521−1 8.8330−3 4.2120+2 4.2824+2 1.1768+0 1.1924+0 1.9262+2 −1.4580+2

1.0−2 1.5677+1 4.4505−1 3.9117−3 2.8989+1 3.2064+1 8.1638−1 8.8502−1 1.8013+1 2.6760+0

1.0−1 1.6533+0 3.9509−1 1.3776−3 2.2079+0 3.3478+0 5.3906−1 7.9276−1 2.9831+0 4.2298+0

3.0−1 4.6909−1 3.0325−1 5.0261−4 4.5052−1 9.6050−1 2.9169−1 6.2044−1 8.2373−1 1.7384+0

5.0−1 1.6450−1 1.7075−1 1.8147−4 1.1385−1 3.4373−1 1.1765−1 3.5687−1 2.2316−1 6.7051−1

7.0−1 4.0922−2 5.8220−2 4.4505−5 1.7516−2 8.7799−2 2.4837−2 1.2493−1 3.4950−2 1.7487−1

9.0−1 2.3255−3 4.1996−3 2.4590−6 3.4231−4 5.1469−3 6.1765−4 9.2950−3 6.8477−4 1.0292−2

123
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Table 6 NNLO stucture functions with NNLL evolution at Q = 50 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 6.7559+5 1.6167+1 5.0329+1 1.0932+6 1.0933+6 2.6001+1 2.6003+1 3.9590+4 −3.9043+4

1.0−4 3.0902+4 7.3197+0 2.0316+1 5.0548+4 5.0577+4 1.1888+1 1.1894+1 2.7462+3 −2.5258+3

1.0−3 1.2898+3 2.9968+0 8.1456+0 2.1383+3 2.1507+3 4.9301+0 4.9561+0 2.0130+2 −1.1319+2

1.0−2 4.9898+1 1.1147+0 3.0465+0 8.1772+1 8.6560+1 1.8178+0 1.9175+0 2.1548+1 1.1298+1

1.0−1 2.0778+0 4.3360−1 7.3305−1 2.6060+0 3.9225+0 5.4467−1 8.1639−1 2.9353+0 4.8481+0

3.0−1 3.3135−1 2.0256−1 1.6414−1 2.7727−1 6.5515−1 1.6938−1 4.0045−1 4.8818−1 1.1999+0

5.0−1 7.1573−2 7.2324−2 3.6771−2 4.1060−2 1.4567−1 4.1442−2 1.4721−1 7.9553−2 2.8569−1

7.0−1 9.7708−3 1.3750−2 4.9694−3 3.3652−3 2.0447−2 4.7319−3 2.8775−2 6.6926−3 4.0769−2

9.0−1 1.9106−4 3.4438−4 9.5055−5 2.2447−5 4.1147−4 4.0449−5 7.4166−4 4.4884−5 8.2286−4

Table 7 NNLO stucture functions with NNLL evolution at Q = 100 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 1.0243+6 2.4063+1 1.3373+2 1.3811+6 1.3811+6 3.2287+1 3.2288+1 3.9344+4 −3.8743+4

1.0−4 4.5046+4 1.0453+1 5.3502+1 6.1384+4 6.1416+4 1.4165+1 1.4171+1 2.7309+3 −2.4909+3

1.0−3 1.7896+3 4.0725+0 2.1155+1 2.4738+3 2.4872+3 5.5951+0 5.6228+0 2.0185+2 −1.0715+2

1.0−2 6.4409+1 1.4149+0 7.7129+0 8.8652+1 9.3680+1 1.9392+0 2.0434+0 2.1920+1 1.2494+1

1.0−1 2.3847+0 4.9442−1 1.7535+0 2.5741+0 3.8905+0 5.3416−1 8.0472−1 2.8772+0 4.8285+0

3.0−1 3.4990−1 2.1333−1 3.6883−1 2.5537−1 6.1133−1 1.5558−1 3.7267−1 4.4933−1 1.1221+0

5.0−1 7.0814−2 7.1454−2 7.8100−2 3.5678−2 1.2877−1 3.5965−2 1.2994−1 6.9107−2 2.5271−1

7.0−1 8.9559−3 1.2595−2 9.8495−3 2.7245−3 1.6889−2 3.8289−3 2.3753−2 5.4174−3 3.3680−2

9.0−1 1.5308−4 2.7587−4 1.6587−4 1.5980−5 2.9948−4 2.8791−5 5.3971−4 3.1950−5 5.9890−4

Table 8 N3LO stucture functions with NNLL evolution at Q = 2 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 5.6188+4 1.7533+0 4.6687−2 1.1326+5 1.1329+5 3.4231+0 3.4238+0 3.9272+4 −3.9021+4

1.0−4 3.1753+3 9.6464−1 1.9339−2 6.5344+3 6.5495+3 1.9167+0 1.9200+0 2.7201+3 −2.6173+3

1.0−3 1.9745+2 5.7885−1 8.6370−3 4.0339+2 4.1034+2 1.1475+0 1.1630+0 1.8960+2 −1.4389+2

1.0−2 1.5183+1 4.2615−1 3.8995−3 2.8075+1 3.1133+1 7.8251−1 8.5121−1 1.7838+1 2.7906+0

1.0−1 1.6106+0 3.9556−1 1.3675−3 2.1325+0 3.2679+0 5.3851−1 7.9410−1 2.9518+0 4.2071+0

3.0−1 4.5288−1 3.0005−1 4.8776−4 4.3219−1 9.2842−1 2.8837−1 6.1415−1 7.9934−1 1.6868+0

5.0−1 1.5979−1 1.6861−1 1.7660−4 1.1169−1 3.3374−1 1.1735−1 3.5225−1 2.1993−1 6.5102−1

7.0−1 4.1966−2 6.0233−2 4.5715−5 1.8563−2 8.9909−2 2.6513−2 1.2908−1 3.7085−2 1.7901−1

9.0−1 2.9251−3 5.2931−3 3.0959−6 4.5450−4 6.4683−3 8.2128−4 1.1705−2 9.0922−4 1.2935−2
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Table 9 N3LO stucture functions with NNLL evolution at Q = 50 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 6.7295+5 1.6195+1 5.0418+1 1.0891+6 1.0891+6 2.6045+1 2.6046+1 3.9566+4 −3.9017+4

1.0−4 3.0787+4 7.3136+0 2.0289+1 5.0369+4 5.0398+4 1.1879+1 1.1885+1 2.7443+3 −2.5242+3

1.0−3 1.2857+3 2.9917+0 8.1378+0 2.1318+3 2.1442+3 4.9222+0 4.9481+0 2.0115+2 −1.1312+2

1.0−2 4.9765+1 1.1135+0 3.0471+0 8.1561+1 8.6349+1 1.8159+0 1.9157+0 2.1544+1 1.1308+1

1.0−1 2.0742+0 4.3359−1 7.3275−1 2.6003+0 3.9165+0 5.4456−1 8.1640−1 2.9335+0 4.8464+0

3.0−1 3.3064−1 2.0237−1 1.6382−1 2.7662−1 6.5380−1 1.6921−1 4.0007−1 4.8720−1 1.1976+0

5.0−1 7.1444−2 7.2266−2 3.6706−2 4.1023−2 1.4540−1 4.1447−2 1.4708−1 7.9485−2 2.8514−1

7.0−1 9.8069−3 1.3811−2 4.9883−3 3.3898−3 2.0519−2 4.7699−3 2.8899−2 6.7416−3 4.0912−2

9.0−1 1.9877−4 3.5839−4 9.8903−5 2.3616−5 4.2800−4 4.2567−5 7.7170−4 4.7221−5 8.5591−4

Table 10 N3LO stucture functions with NNLL evolution at Q = 100 GeV

xB FNC
1 FNC

2 FNC
3 FW+

1 FW+
2 FW+

3 FW−
1 FW−

2 FW−
3

1.0−5 1.0214+6 2.4082+1 1.3387+2 1.3773+6 1.3774+6 3.2310+1 3.2312+1 3.9326+4 −3.8724+4

1.0−4 4.4928+4 1.0446+1 5.3451+1 6.1230+4 6.1261+4 1.4155+1 1.4161+1 2.7296+3 −2.4898+3

1.0−3 1.7855+3 4.0678+0 2.1142+1 2.4685+3 2.4818+3 5.5890+0 5.6166+0 2.0175+2 −1.0710+2

1.0−2 6.4285+1 1.4139+0 7.7140+0 8.8487+1 9.3515+1 1.9379+0 2.0422+0 2.1917+1 1.2502+1

1.0−1 2.3816+0 4.9439−1 1.7529+0 2.5701+0 3.8862+0 5.3407−1 8.0470−1 2.8758+0 4.8272+0

3.0−1 3.4937−1 2.1318−1 3.6831−1 2.5495−1 6.1042−1 1.5547−1 3.7242−1 4.4868−1 1.1205+0

5.0−1 7.0729−2 7.1418−2 7.8006−2 3.5659−2 1.2861−1 3.5971−2 1.2987−1 6.9071−2 2.5238−1

7.0−1 8.9830−3 1.2640−2 9.8798−3 2.7401−3 1.6938−2 3.8528−3 2.3834−2 5.4484−3 3.3776−2

9.0−1 1.5791−4 2.8466−4 1.7112−4 1.6629−5 3.0888−4 2.9968−5 5.5681−4 3.3248−5 6.1771−4
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