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Abstract We explore Noether symmetries of Horndeski
gravity, extending the classification of general scalar–tensor
theories. Starting from the minimally coupled scalar field
and the first-generation scalar–tensor gravity, the discussion
is generalised to kinetic gravity braiding and Horndeski grav-
ity. We highlight the main findings by focusing on the non-
minimally coupled Gauss–Bonnet term and the extended cus-
cuton model. Finally, we discuss how the presence of mat-
ter can influence Noether symmetries. It turns out that the
selected Horndeski functions are unchanged with respect to
the vacuum case.

1 Introduction

The interest in understanding the fundamental nature of grav-
ity has always been one of the main pursuits in Physics.
Although General Relativity (GR) has passed several astro-
physical and cosmological observational tests, and the �-
Cold Dark Matter (�-CDM) model is considered the current
standard model of cosmology, our understanding of gravity
exhibits numerous significant limitations in both cosmology
and quantum theory. The observed astrophysical and cos-
mological anomalies are addressed to the presence of the
so-called dark fluids, and they constitute the major part of
the total energy-matter content of the Universe [1,2]. In par-
ticular, dark energy is responsible for the late-time cosmic
accelerated expansion, while dark matter is, for instance,
associated with the flatness of galaxy rotation curves. In the
�-CDM model, dark energy is well described by a constant
� (i.e., the cosmological constant). However, this constant
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is manually plugged into GR equations without a solid the-
oretical explanation. Moreover, its observed magnitude is
extremely small compared to the zero-point energy obtained
from the quantum field theory. Therefore, the presence of
several shortcomings prevents GR from being considered a
complete theory, able to describe all the gravitational phe-
nomena comprehensively.

The current depicted scenario represents one of the rea-
sons compelling the scientific community to explore novel
approaches, based on the idea that GR should be modified
or extended, to guarantee an exhaustive theory of gravitation
[3]. Based on this mindset, a huge plethora of alternative
theories aim to overthrow GR from its status as The The-
ory of Gravity [4–6]. Furthermore, scientific advancements,
within the development of new technologies for gravitational
experiments, enable increasingly sensitive and stringent tests,
probing gravity across different scales and energetic regimes,
allowing us to discriminate among theories that would oth-
erwise be observationally degenerate [7–10].

One of the largest classes of extended theories of grav-
ity is characterised by an additional scalar field. The crucial
role of scalar fields in cosmology is widely recognised. Their
versatility allows them to address various missing puzzles in
our comprehension of the Universe’s evolution at different
eras: from early-time issues, attempting to solve the classical
initial cosmic singularity and describing the inflation mecha-
nism, to late-time cosmology, providing a dynamical descrip-
tion of the dark energy. The most famous and traditional for-
mulations belong to the k-essence model, the scalar–tensor
theories, as well as the Brans–Dicke theory, and the f (R)

gravity [11], which admits a scalar–tensor formulation.
Over time, the research of a more general theory has pro-

duced newer and more complex formulations, giving birth
to theories like kinetic gravity braiding [12,13], Horndeski
gravity [14–16] and beyond [17–21], yielding different novel
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contributions to the field equations. In particular, the men-
tioned theories share the same characteristic: an additional
propagating scalar degree of freedom associated with the
scalar field, avoiding Ostrogradsky instability. This is pre-
cisely the criterion used in searching for more general and
general theories with an additional scalar field. Neverthe-
less, more recent theories exhibit field equations with higher-
order time derivatives, which are non-linearly depending on
second-order time derivatives. Horndeski’s theory is the most
general scalar–tensor theory of gravity with second-order
field equations avoiding Ostrogradsky instability.

It is well known that GR field equations depend linearly
on second-order partial derivatives irrespective of the cho-
sen background. This can be seen as a preferred theoret-
ical framework for the equations of the dynamical field.
However, if one wants to preserve this property, the final
scalar–tensor theorywould be strongly constrained to a well-
known subclass of Horndeski gravity, often called reduced
or viable Horndeski. Precisely, the adjective viable refers to
the remarkable characteristic of the theory of having tensor
perturbations propagating at the speed of light on dynamic
backgrounds,1 in a covariant way [22–25]. This physical con-
straint significantly increased the interest for these modern
scalar–tensor theories. Another aspect that makes these the-
ories worthy of a deeper investigation is that viable Horn-
deski represents the smallest class among all the generalised
scalar–tensor theories containing models propagating only
two tensor degrees of freedom.2 They are known in the liter-
ature as the cuscuton [27–29] and, in general, the extended
cuscuton model [30–32].

Additionally, moving through a different theoretical frame-
work, it has been shown that viable Horndeski is the only
theory carrying a general relativistic Newtonian fluid inter-
pretation,3 while a more complex effective fluid is associated
with more elaborate models [33,34]. A recent formalism with
intriguing applications to Horndeski gravity is known as the
first-order thermodynamics of modified gravity, the so-called
first-order thermodynamics of modified gravity [35–40]. Its
goal is the construction of a unified framework for the land-
scape of gravity theories, including GR and its generalisa-
tions.

1 This concerns the observational constraints placed on Horndeski grav-
ity by the multi-messenger event GW170817/GRB170817A [7,8].
2 Up to (invertible) disformal transformations, or generalised disfor-
mal transformations, which do not increase the number of degrees of
freedom of the theory [26].
3 The used terminology refers to the traditional fluid dynamics and
continuum mechanics. Linear constitutive relations characterise New-
tonian fluids, while non-Newtonian fluids have more complex rheo-
logical behaviour. Newtonian fluid modelling provides a foundational
comprehension of fluids behaviour, and they are used as references for
comparing and understanding the behaviour of non-Newtonian fluids.

Another paramount aspect is the issue of the local well-
posedness of the field equations for Horndeski gravity and
beyond, which remains an open problem (beyond the scope of
this paper). It has been shown that, in the vacuum, only viable
Horndeski admits a generalised harmonic gauge condition
for which the theory is strongly hyperbolic when linearised
around a generic weak-field background,4 [41,42].

For all the outlined reasons, the importance of deeply
studying such a theory is evident, as it represents a criti-
cal step in the mathematical and physical understanding of
more elaborate formulations.

The presence of so many free unknown functions appear-
ing in the Horndeski action makes it challenging to grasp the
physical meaning of the theory, as well as to establish a clas-
sification for all the possible subclasses. Moreover, these free
functions are usually set ad hoc to face different problems,
making it even more challenging to orient oneself among the
infinite possibilities.

The goal of this paper is to classify the Horndeski mod-
els according to the Noether Symmetry Approach [43,44],
extending previous works of the literature. On one side,
the existence of symmetries allows us to solve exactly the
dynamics; on the other, the Noether charge can always be
related to some observable quantity. Unlike precedent works
[45,46], a Lagrange multiplier will be used to keep the braid-
ing function general and, at the same time, deal with point-
like Lagrangian depending at most on the time first derivative
of the configuration space.5

Since the presence (or absence) of Horndeski functions
influences the result of the Noether Symmetry Approach in
selecting the Lagrangian functional form, a brief review of all
the scalar–tensor subclasses included in Horndeski gravity is
provided. It allows us to appreciate the hierarchical struc-
ture of the scalar–tensor theories and the relation with the
infinitesimal generators of the symmetries. For consistency,
the modern Horndeski gravity nomenclature is used through-
out the entire work: G2 for the k-essence contribution, G3 for
the kinetic braiding term, G4 and G5 for the non-minimally

4 Only in the absence of the kinetic gravity braiding term, the gen-
eralised harmonic gauge condition for the linearised theory arise by
linearising a generalised harmonic gauge condition for the non-linear
theory. There are ways to avoid this issue (i.e. considering spherical
symmetric spacetime), but we want to address this argument to empha-
sise the actual importance of studying simpler theories and analysing
them in different frameworks and points of view. Lastly, it is worth
highlighting that only in the vacuum this class can be seen as equivalent
to a general k-essence model (since the non-minimal coupling function
can be removed only by performing a conformal transformation and
not by a scalar field redefinition). However, the equivalence between
the Jordan and Einstein frame remains open to debate.
5 The use of Lagrange multiplier in finding Noether symmetries is
present in different modified theories of gravity, for instance, f (R)

gravity [47], f (G) gravity [48,49], and non-local gravity [50].
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coupling functions of the Ricci scalar and the Einstein tensor,
respectively.

It is worth highlighting that this approach reverses the
usual application of the Noether theorem (see also Refs. [51–
53]). The Noether Symmetry Approach constitutes a crite-
rion to select the functional forms of the arbitrary Horndeski
functions, by assuming the invariance under Noether point
symmetries. Usually, the Noether theorem is used to obtain
integrals of motion corresponding to transformations leav-
ing the action invariant. An exhaustive and general discus-
sion is presented in Ref. [44]. This method provided several
exact solutions of the gravitational field equations, describ-
ing the time evolution of a spatially flat Friedman–Lemaître–
Robertson–Walker (FLRW) universe for the scalar–tensor
and Gauss–Bonnet theory.
Throughout this work, the following conventions are adopted:
gμν = diag(−1, a2, a2, a2), being a = a(t) the scale fac-
tor, the over-dot represents the (total) time derivative, the
scalar field and the kinetic term are denoted by φ = φ(t) and
X = 1

2 φ̇2, respectively, and 8πG = c = h̄ = 1 (reduced
Planck units).

In Sect. 2, the Noether Symmetry Approach is sum-
marised and applied to the k-essence model. In Sect. 3, we
review the Noether classification of scalar–tensor theories
with the traditional non-minimally coupled scalar field to
the Ricci scalar. In Sect. 4, we present the Noether Symmetry
Approach specifically for kinetic braiding gravity (constitut-
ing our first achievement in generalising the Noether analy-
sis) and generalised in Sect. 5 to Horndeski gravity. In Sect. 6,
particular modified theories of gravity, Gauss–Bonnet grav-
ity and the extended cuscuton model, are analysed in this
framework. The form of Lagrangians is chosen to guarantee
the existence of a Noether symmetry. Next, in Sect. 7, we dis-
cuss the classification of Noether symmetries in the presence
of matter. The final discussion is presented in Sect. 8.

2 k-essence model

Let us start this section by considering the case of a canonical
kinetic term,

S =
∫

d4x
√−g

(
R − 1

2
∇aφ∇aφ − V (φ)

)
. (2.1)

Evaluating the above action for the spatially flat FLRW uni-

verse, for which the Ricci scalar is R = 6
(
ȧ2

a2 + ä
a

)
, the

point-like Lagrangian turns out to be

L = 6aȧ2 + 6a2ä + 1

2
a3φ̇2 − a3V

= −6aȧ2 + 1

2
a3φ̇2 − a3V , (2.2)

by performing an integration by parts to eliminate the second
derivative of the scale factor.6

The infinitesimal generator of the Noether symmetry is
written as follows

χ = ξ(t, a, φ)∂t + ηa(t, a, φ)∂a + ηφ(t, a, φ)∂φ, (2.3)

then the first prolongation corresponds to

χ [1] = χ + (
η̇a − ȧ ξ̇

)
∂ȧ + (

η̇φ − φ̇ ξ̇
)
∂φ̇. (2.4)

The existence of a Noether symmetry for the point-like
Lagrangian (2.2) is ensured by the following identity:

χ [1]L + ξ̇L = ζ̇ (t, a, φ), (2.5)

where ζ̇ is a generic function corresponding to the gauge
freedom of the symmetry, and it can be safely set to zero
(i.e., ζ = cost), without losing generality. Then, using the
Hamiltonian constraint corresponding to the first Friedmann
equation,

L − ∂L
∂ ȧ

ȧ − ∂L
∂φ̇

φ̇ = 0, (2.6)

the associated conserved quantity reads as follows,

J = ζ − ηa
∂L
∂ ȧ

− ηφ

∂L
∂φ̇

. (2.7)

Thus, the identity Eq. (2.5) becomes a set of equations
for the functions ξ , ηa , ηφ , and V , by setting to zero the
coefficients obtained by factorising all the time-derivative
terms, i.e., φ̇ ȧ, φ̇2 ȧ, φ̇ ȧ2, φ̇i , ȧi , with i = 1, 2, 3. This
yields the following configurations:

ξ(t) = ξ1t + ξ2, ηa(a, φ) = a

3
ξ1 + ca(φ)√

a
,

ηφ(a, φ) = ξ0 − 8
ca(φ)

a3/2 , (2.8)

with

( I ) :

⎧⎪⎪⎨
⎪⎪⎩

ca(φ) = 0

ξ0 �= 0 �= ξ1

V (φ) = V0 exp
(
− 2ξ1

ξ0
φ
)

( II ) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ca(φ) = c1 exp
(√

3
4 φ

)
+ c2 exp

(
−

√
3

4 φ
)

V (φ) = V0 exp
(
− 2ξ1

ξ0
φ
)

{
c1 = 0 �= ξ1

ξ0 = 4√
3
ξ1

∨
{
c2 = 0 �= ξ1

ξ0 = − 4√
3
ξ1

(2.9)

6 The integration by parts is not necessary, in general. This step is
equivalent to considering a second prolongation of the infinitesimal
generator of the Noether symmetry. However, while here the integration
is sufficient to rewrite the point-like Lagrangian in a first-order canonical
form (i.e., depending only on the first derivatives), it is not the case of
kinetic gravity braiding and Horndeski gravity.
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or, in the case of internal symmetries,7

( III ) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ca(φ) = c1 exp
(√

3
4 φ

)
+ c2 exp

(
−

√
3

4 φ
)

V (φ) = V0 exp
(
−

√
3

2 φ
) [

c2 − c1 exp
(√

3
2 φ

)]2

ξ0 = 0 = ξ1

(2.10)

where, ξ0,1,2, c1,2, and V0 are arbitrary constants.
It is possible to verify that a phantom scalar field (i.e., in

the case of a negative sign in front of the kinetic term) admits
a Noether point symmetry only in correspondence with the
first set of parameters.

In the case of a general (unknown) kinetic dependence
(like the k-essence model),

S =
∫

d4x
√−g [R + G2(φ, X)], (2.11)

where, using the modern Horndeski gravity notation, G2 is
a generic function of the scalar field and the kinetic term,
X = − 1

2∇aφ∇aφ. In this case, the kinetic term can be
treated as a new additional variable, and its definition must be
included in the theory by using a Lagrange multiplier. Adding
a Lagrange multiplier does not change the field equations,
and it is perfectly equivalent to considering the definition of
X from the beginning.

To apply the Noether Symmetry Approach it is necessary
to write down the point-like Lagrangian of the theory in a
canonical way and to split the identity guaranteeing the exis-
tence of the symmetry (2.5) in a set of equations, by collecting
all the time-derivative terms. The using of the Lagrange mul-
tiplier makes the process easier. The discussion is analogous
to the one made for other theories of gravity [47–49]. Thus,
the point-like Lagrangian reads

L = −6aȧ2 + a3G2(φ, X) + a3λ

(
X − 1

2
φ̇2
)

. (2.12)

The variation with respect to X gives λ = −∂XG2(φ, X).
Therefore, the previous Lagrangian can be rewritten as fol-
lows

L = −6aȧ2 + a3G2(φ, X)

−a3∂XG2(φ, X)

(
X − 1

2
φ̇2
)

.

(2.13)

7 Notice that, in general, internal symmetries correspond to ξ(t) = 0.
However, at the level of the Noether identity (2.5), there is no difference
between a vanishing and a constant ξ . This is because the Lagrangian
does not explicitly depend on the time coordinate. Then, χ does not
have the ξ component, and χ [1] depends only on ξ̇ . Therefore, both
ξ = 0 and ξ̇ = 0 correspond to internal symmetries. Moreover, in
cosmology, due to the energy constraint (2.6), ξ is not present in the
expression of the conserved scalar current associated with the Noether
symmetry (2.7).

The infinitesimal generator of the Noether symmetry is pro-
vided by

χ = ξ(t, a, φ, X)∂t + ηa(t, a, φ, X)∂a + ηφ(t, a, φ, X)∂φ

+ηX (t, a, φ, X)∂X , (2.14)

and, the first prolongation corresponds to

χ [1] = χ + (
η̇a − ȧ ξ̇

)
∂ȧ + (

η̇φ − φ̇ ξ̇
)
∂φ̇

+(η̇X − Ẋ ξ̇
)
∂Ẋ . (2.15)

Following the same procedure described above, setting
to zero the coefficients obtained by factorising all the time-
derivative terms, the Noether Symmetry Approach yields the
following configurations:

ξ(t) = ξ1t + ξ2, ηa(a) = a

3
ξ1, ηφ = ηφ(φ),

ηX (φ, X) = 2X (∂φηφ − ξ1), (2.16)

( I ) :

⎧⎪⎪⎨
⎪⎪⎩

ξ1 �= 0

ηφ(φ) = ξ1φ + ξ0

G2(φ, X) = g2(X)

ξ1φ + ξ0

(2.17)

( II ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 �= 0

ηφ(φ) �= ξ1φ + ξ0

G2(φ, X) = exp

(
−
∫ φ

1

2ξ1

ηφ(ϕ)
dϕ

)

×g2

(
X exp

(∫ φ

1

2
(
ξ1 − ∂ϕηφ(ϕ)

)
ηφ(ϕ)

dϕ

))(2.18)

or, in the case of internal symmetries,

( III ) :

⎧⎪⎨
⎪⎩

ξ1 = 0

G2(φ, X) = g2

(
X

η2
φ(φ)

)
(2.19)

where, ξ0,1,2 are constants, and g2 is an arbitrary function
of X times a factorised scalar field dependence (eventually
constant). Notice that g2 can be a linear function of its vari-
able, a posteriori. However, compared to the analysis done
on the linear dependence from the beginning (2.2), the above
results are over-constraining the theory.

The above characterisations can be rewritten so that
the kinetic dependence is fully factorised from the pure
scalar field one, G2(φ, X) = h(φ) g2(X), by redefining
the scalar field. Then, one obtain ηφ(φ) = ξ1φ + ξ0 or
ηφ(φ) = ξ0. However, imposing a factorised form of G2

with a general φ-component of the infinitesimal genera-
tor, one obtain g2(X) = c0 Xcφ , h(φ) = (

ξ1 − ∂φηφ

)−1,
where ηφ is implicitly defined by a differential equation,
2
(
ξ1 − ∂φηφ

) [
(cφ − 1)ξ1 − cφ∂φηφ

] − ηφ∂2
φηφ = 0, with

cφ �= 1 being a constant. For instance, the last equation is

satisfied for ηφ =
(
cφ−1
cφ

)
ξ1φ + ξ0.
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3 Traditional non-minimally coupled scalar field

The action of the first-generation scalar–tensor theory is

S =
∫

d4x
√−g

[
G4(φ)R − ω(φ)

2
∇aφ∇aφ − V (φ)

]
,

(3.1)

where, the non-minimal coupling G4 is an arbitrary function
of φ. The corresponding to the following point-like action is

L = 6aȧ2G4(φ) + 6a2ä G4(φ) + a3 ω(φ)

2
φ̇2 − a3

V (φ) = −6aȧ2G4(φ) − 6a2ȧφ̇ ∂φG4(φ)

+ a3 ω(φ)

2
φ̇2 − a3V (φ). (3.2)

As done in the previous section, the configurations
obtained turn out to be:

ξ(t) = ξ1t + ξ2, ηa(a, φ) = −a

3

(
ξ1 + ∂φV (φ)

V (φ)
ηφ(a, φ)

)
,

ηφ = ηφ(a, φ) (3.3)

( I ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (φ) = V0 G4(φ)

ω(φ) = ω0

(
∂φG4(φ)

)2

G4(φ)

ηφ(a, φ) = G4(φ)

∂φG4(φ)[
3ξ1

(
2 ln(a) + (ω0 + 4) ln(G4(φ))

)
+ ξ0

]

ξ1 = 0 ∨ ω0 = −8

3
∨ ω0 = −3

(3.4)

( II ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V (φ) = V0 G4(φ) 3/2

ω(φ) = ω0

(
∂φG4(φ)

)2

G4(φ)

ηφ(φ) = −4 ξ1
G4(φ)

∂φG4(φ)

ξ1 �= 0

(3.5)

( III ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (φ) = V0 G4(φ) γ , γ �= 1, 3
2

ω(φ) = ω0

(
∂φG4(φ)

)2

G4(φ)

ηφ(a, φ) = 2ξ1

(1 − γ )

G4(φ)

∂φG4(φ)
+ ξ0

G4(φ)α

∂φG4(φ)
aβ

α = 2γ 2 + 3(γ − 1)ω0

2(3 − 2γ )2 , β = 3(1 − γ )

3 − 2γ
γ

ξ0 = 0 ∨ ω0 = −3 ∨ ω0 = 4

3
γ (γ − 3)

(3.6)

where, ξ0,1,2, α, β, γ , ω0, and V0 are arbitrary constants.

Let us now consider a more general scalar–tensor theory,

S =
∫

d4x
√−g [G4(φ)R + G2(φ, X)]. (3.7)

where the non-minimal coupling function G4 is assumed to
be not constant.

As done in the previous section, excluding the linear case,
the kinetic term can be treated as an additional variable, by
including a Lagrange multiplier. After solving the Lagrange
multiplier, λ = −∂XG2(φ, X), the point-like Lagrangian
reads as

L = −6aȧ2G4(φ) − 6a2ȧφ̇ ∂φG4(φ) + a3G2(φ, X)

−a3∂XG2(φ, X)

(
X − 1

2
φ̇2
)

, (3.8)

corresponding to the following classification,

ξ(t) = ξ1 t + ξ2, ηa(a) = a

3
(ξ1 − φ0),

ηφ(φ) = φ0
G4(φ)

∂φG4(φ)
,

ηX (φ, X) = 2X
(
∂φηφ − ξ1

)
(3.9)

with

( I ) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ1 �= 0

ηφ(φ) = ξ1φ + ξ0

G4(φ) = cφ (ξ1φ + ξ0)
φ0/ξ1

G2(φ, X) = g2(X)(ξ1φ + ξ0)
φ0
ξ1

−2

(3.10)

( II ) :

⎧⎪⎪⎨
⎪⎪⎩

ηφ(φ) �= ξ1φ + ξ0

G2(φ, X) = G4(φ)
1− 2ξ1

φ0 g2

⎛
⎝X

∂φG4(φ)2

G4(φ)
2− 2ξ1

φ0

⎞
⎠

(3.11)

where, ξ0,1,2, cφ , and φ0 are constants, and g2 is an arbi-
trary function of X times a factorised scalar field dependence
(eventually constant). Notice that g2 can be, in general, a
linear function of its variable but the above results are over-
constraining the theory compared to the analysis done on the
linear dependence from the beginning.

The latter system can also be rewritten in terms of ηφ , in
the following way

( II ) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηφ(φ) �= ξ1φ + ξ0

G4(φ) = c0
∫ φ

1 exp

(∫ ϕ2

1

φ0 − ∂ϕ1ηφ(ϕ1)

ηφ(ϕ1)
dϕ1

)
dϕ2

G2(φ, X) = exp

(
−
∫ φ

1

2ξ1

ηφ(ϕ)
dϕ

)
g2

(
X exp

(∫ φ

1

2
(
ξ1 − ∂ϕηφ(ϕ)

)
ηφ(ϕ)

dϕ

)) (3.12)
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Unlike the result obtained for the k-essence model, ηφ

is fully determined by the non-minimal coupling function.
Moreover, the presence of the non-constant G4 implies the
absence of the pure shift-symmetry with respect to the scalar
field. It is replaced by a generalised shift-symmetry corre-
sponding to ηφ = ξ0, ξ(t) = ξ1 t+ξ2, ηa = a(ξ1−φ0)/3, and

G4(φ) = exp
(

φ0
ξ0

φ
)

. Allowing G4 to be constant, the shit-

symmetry is obtained in correspondence with φ0 = 0 and
ξ1 = 0. Notice that, using the parameterisation (3.10), the
case of the minimally-coupled scalar field (2.17) is obtained
by setting φ0 = 0. Indeed, as it will be clear in the next sec-
tions, φ0 is always associated with the φ dependence of the
non-minimal coupling function G4.

When, for the former case, the factorisation of φ and X
dependence is imposed, G2(φ, X) = h(φ)g2(X), irrespec-
tively of ηφ (i.e., assuming ηφ �= ξ1φ + ξ0 and ηφ �= ξ0), it
yields

G2(φ, X) = c0
(
∂φG4(φ)

)2cφ G4(φ)
2(cφ−1)ξ1

φ0
+1−2cφ Xcφ ,

(3.13)

where cφ �= 1, since we are excluding the linear case.

4 Kinetic gravity braiding

Let us turn on the braiding term G3(φ, X) inside the action,
proportional to �φ = ∇a∇aφ,

S =
∫

d4x
√−g [R + G2(φ, X) − G3(φ, X)�φ]. (4.1)

The nomenclature kinetic braiding refers to the fact that
the function G3 must depend on the kinetic term to contribute
in a non-trivial way compared to the k-essence part. There-
fore, we are focusing on the case of ∂XG3 �= 0. Indeed, if
G3 = G3(φ) the action (4.1) can be recast into the k-essence
model by integrating by parts:G3(φ)�φ = −2X∂φG3(φ) ⊆
G2(φ, X), up to a total divergence.

In the past, this term yielded only a partial classifica-
tion according to the Noether symmetries by making some
assumptions on X dependence of G3 [46]. This lies in the
presence of the D’Alambertian of the scalar field. Indeed,
substituting �φ = − (

φ̈ + 3 ȧ
a φ̇
)
, the point-like Lagrangian

associated with the braiding term is

L3 = a3 G3(φ, X)

(
φ̈ + 3

ȧ

a
φ̇

)
. (4.2)

The term a3 G3(φ, X)φ̈ cannot be transformed in a first-
order Lagrangian by integrating by parts in general. How-
ever, the Noether symmetries analysis of this theory can be
performed by taking into account the second prolongation of
the infinitesimal generator, χ [2] = χ [1]+(η̈φ−φ̇ ξ̈−2φ̈ ξ̇ )∂φ̈ ,
and implementing the Noether identity (2.5). The only way
to recast the Lagrangian in a canonical form is by consider-
ing X as a new independent variable of our point-like action
(adding its definition by using a Lagrange multiplier), using
the first prolongation of the infinitesimal generator. Other-
wise, one should use the generalised Euler–Lagrange equa-
tions for Lagrangian depending up to the second derivative
in time, ∂L

∂φ
− d

dt
∂L
∂φ̇

+ d2

dt2
∂L
∂φ̈

= 0. We will adopt the former
approach, i.e., the Lagrange multiplier, as done in the pre-
vious section. This simplifies the resolution of the Noether
identity, allowing us to use the relation φ̈ = Ẋ/φ̇.

After solving the Lagrange multiplier λ =
(

3ȧ
aφ̇

− Ẋ
2X φ̇

)

G3 − φ̇
a ∂XG3 + ∂φG3 − ∂XG2, the point-like Lagrangian

turns into

L = −6aȧ2 + a3G2(φ, X) − a3∂XG2(φ, X)

+ a3 G3(φ, X)

(
Ẋ

φ̇
+ 3

ȧ

a
φ̇

)

+ a3
(
X − 1

2
φ̇2
)[(

3ȧ

aφ̇
− Ẋ

2X φ̇

)
G3(φ, X)

− φ̇

a
∂XG3(φ, X) + ∂φG3(φ, X) − ∂XG2(φ, X)

]
.

(4.3)

Then, in full generality, one obtains:

ξ(t) = ξ1 t + ξ0, ηa(a) = a

3
ξ1, ηφ = ηφ(φ),

ηX = 2X
(
∂φηφ − ξ1

)
, (4.4)

with the following selected configurations,

( I ) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ1 �= 0

ηφ(φ) = ξ1φ + ξ0

G3(φ, X) = g3(X)

ξ1φ + ξ0

G2(φ, X) = g2(X)

(ξ1φ + ξ0)2

(4.5)
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( II ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηφ(φ) �= ξ1φ + ξ0

G3(φ, X) = exp
(
− ∫ φ

1
∂ϕηφ(ϕ)

ηφ(ϕ)
dϕ
)
g3

(
X exp

(∫ φ

1
2(ξ1−∂ϕηφ(ϕ))

ηφ(ϕ)
dϕ
))

G2(φ, X) = exp
(∫ φ

1 − 2ξ1
ηφ(ϕ)

dϕ
)
g2

(
X exp

(∫ φ

1
2(ξ1−∂ϕηφ(ϕ))

ηφ(ϕ)
dϕ
))

−2X exp
(∫ φ

1
−2∂ϕηφ(ϕ)

ηφ(ϕ)
dϕ
)
g3

(
X exp

(∫ φ

1
2(ξ1−∂ϕηφ(ϕ))

ηφ(ϕ)
dϕ
))

∫ φ

1 exp
(∫ ϕ2

1
∂ϕ1 ηφ(ϕ1)

ηφ(ϕ1)
dϕ1

)
∂2
ϕ2

ηφ(ϕ2)

ηφ(ϕ2)
dϕ2

(4.6)

where ξ0,1,2 are constants, and g2,3 are arbitrary functions
of X times a factorised scalar field dependence (eventually
constant). Notice that, in the case of internal symmetries the
theory is manifestly shift-symmetric, i.e., Gi = Gi (X).

5 Horndeski gravity

The Horndeski action reads as follows,

S =
∫

d4x
√−g (L2 + L3 + L4 + L5) , (5.1)

where,

L2 = G2 (φ, X) ,

L3 = −G3 (φ, X) �φ ,

L4 = G4 (φ, X) R + ∂XG4(φ, X)
[
(�φ)2 − (∇∇φ)2

]
,

L5 = G5 (φ, X)Gab∇a∇bφ − 1

6
∂XG5(φ, X)

×
[
(�φ)3 − 3�φ (∇∇φ)2 + 2 (∇∇φ)3

]
, (5.2)

where (∇∇φ)2 = ∇a∇bφ∇a∇bφ and (∇∇φ)3 = ∇a∇cφ∇a

∇bφ∇c∇bφ.
Unlike the kinetic braiding function, the presence of G4

and G5 does not introduce an explicit dependence on second
derivatives of the scalar field. All the factors having second
derivatives can be integrated by parts yielding a first-order
Lagrangian:

L4 = 6a2ä G4(φ, X) + 6a2ȧφ̇φ̈ ∂XG4(φ, X)

+ 6aȧ2 [φ̇2∂XG4(φ, X) + G4(φ, X)
]

= −6a2ȧφ̇ ∂φG4(φ, X) + 6aȧ2 [φ̇2∂XG4(φ, X) − G4(φ, X)
]
,

(5.3)

L5 = 3aȧ2φ̈
[
φ̇2 ∂XG5(φ, X) + G5(φ, X)

]
+ 6aȧäφ̇ G5(φ, X) + ȧ3φ̇

[
φ̇2 ∂XG5(φ, X) + 3G5(φ, X)

]
= ȧ2φ̇2 [ȧφ̇ ∂XG5(φ, X) − 3a ∂φG5(φ, X)

]
. (5.4)

Then, introducing the Lagrange multiplier, the point-like
Lagrangian reads as follows,

L = −6a2ȧφ̇∂φG4 + 6aȧ2 (2X∂XG4 − G4) + a3G2

+ a3 ẊG3

φ̇
+ 3a2ȧφ̇G3 + 2Xȧ2 (ȧφ̇∂XG5 − 3a∂φG5

)

+ a3
(
X − 1

2
φ̇2
)[

− ∂XG2 + ∂φG3

− 3ȧφ̇∂XG3

a
+
(
6Xȧ − a Ẋ

)
G3

2aX φ̇

+ 6ȧφ̇∂φXG4

a
− 6ȧ2∂XG4

a2 − 12Xȧ2∂2
XG4

a2 − 2ȧ3φ̇∂XG5

a3

− 2Xȧ3φ̇∂2
XG5

a3 + 6ȧ2∂φG5

a2 + 6Xȧ2∂φXG5

a2

]
. (5.5)

From the Noether Symmetry Approach, one obtains the
following configurations:

ξ(t) = ξ1 t + ξ2, ηa(a) = a

3
(ξ1 − φ0),

ηφ = ηφ(φ), ηX (φ, X) = 2X
(
∂φηφ − ξ1

)
(5.6)

with,

( I ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 �= 0

ηφ(φ) = ξ1φ + ξ0

G5(φ, X) = α φ + g5(X) (ξ1φ + ξ0)
φ0
ξ1

+1

G4(φ, X) = αX + β
√

2X + g4(X) (ξ1φ + ξ0)
φ0/ξ1

G3(φ, X) = g3(X) (ξ1φ + ξ0)
φ0
ξ1

−1

G2(φ, X) = g2(X) (ξ1φ + ξ0)
φ0
ξ1

−2

(5.7)
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( II ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηφ(φ) �= ξ1φ + ξ0

G5(φ, X) = α φ + exp
(∫ φ

1
4ξ1+φ0−3∂ϕηφ(ϕ)

ηφ(ϕ)
dϕ
)

× ∫ X
1 g5

(
Z exp

(
− ∫ φ

1 − 2(ξ1−∂ϕηφ(ϕ))
ηφ(ϕ)

dϕ
))

dZ

G4(φ, X) = αX + β
√

2X + ∫ φ

1 exp
(∫ ϕ2

1
φ0−∂ϕ1ηφ(ϕ1)

ηφ(ϕ1)
dϕ1

)

×g4

(
X exp

(∫ ϕ2
1

2
(
ξ1−∂ϕ1ηφ(ϕ1)

)
ηφ(ϕ1)

dϕ1

))
dϕ2

G3(φ, X) = exp
(∫ φ

1
φ0−∂ϕηφ(ϕ)

ηφ(ϕ)
dϕ
)
g3

(
X exp

(∫ φ

1
2(ξ1−∂ϕηφ(ϕ))

ηφ(ϕ)
dϕ
))

G2(φ, X) = exp
(∫ φ

1 − 2ξ1
ηφ(ϕ)

dϕ
)
g2

(
X exp

(∫ φ

1
2(ξ1−∂ϕηφ(ϕ))

ηφ(ϕ)
dϕ
))

−2X exp
(∫ φ

1
−2∂ϕηφ(ϕ)

ηφ(ϕ)
dϕ
)
g3

(
X exp

(∫ φ

1
2(ξ1−∂ϕηφ(ϕ))

ηφ(ϕ)
dϕ
))

× ∫ φ

1 exp
(∫ ϕ2

1
∂ϕ1ηφ(ϕ1)

ηφ(ϕ1)
dϕ1

)
∂2
ϕ2

ηφ(ϕ2)

ηφ(ϕ2)
dϕ2

(5.8)

where, ξ0,1,2, α, β, and φ0 are constants, and g2,3,4,5 are arbi-
trary functions of X times a factorised scalar field dependence
(eventually constant).

The constants α and β can be set to zero. Indeed, it is
straightforward to notice that L4 vanishes in the case of
G4(φ, X) = β

√
2X . This represents a spurious solution of

the Noether approach. Moreover, it is well-known that in the
case of G5 = G5(φ), one can reabsorb the G5 dependence
by redefining G2,3,4 as follows,

G2 → G2 − 2X2∂3
φG5, G3 → G3 − 3X∂2

φG5,

G4 → G4 − X∂φG5, (5.9)

because it turns out that

L5 = G5Gab∇a∇bφ � −∂φG5Gab∇aφ∇bφ

= −∂φG5Rab∇aφ∇bφ − X∂φG5R

= ∂φG5(∇a�φ − ∇b∇a∇bφ)∇aφ − X∂φG5R

� −∂2
φG5(−2X�φ − ∇a∇bφ∇aφ∇bφ)

−∂φG5

[
�φ2 − (∇a∇bφ)2

]
− X∂φG5R

� 3X ∂2
φG5 �φ − 2X2∂3

φG5

−∂φG5

[
�φ2 − (∇a∇bφ)2

]
− X∂φG5R , (5.10)

where�means equality up to a total divergence. In particular,
from Eq. (5.9), it is possible to notice that, G5 = αφ is
equivalent to G4 = −αX . For this reason, it is possible to

set α = 0 in Eqs. (5.7) and (5.8), without losing generality.
Equivalently, one can verify that L4 + L5 = 0 if G4 = α X
and G5 = α φ.

The Noether symmetries classification of viable Horn-
deski gravity, ∂XG4 = 0 and G5 = 0, can be obtained by
considering g4 → const and g5 → 0. Then, in the case of
external symmetries (5.7) the parameter φ0 is associated with
the presence of a non-minimal coupling G4 = G4(φ), while,
in the case of external symmetry, φ0 represents the breaking
parameter of the shift-symmetry.

From the performed analysis of Noether symmetries, it
is possible to notice that, in the more general scalar–tensor
theories, the selected models can be written such that the φ

and X dependence is factorised:

Gi (φ, X) = hi (φ) gi (X){
hi (φ) = ∂

(6−i)
φ (ξ1φ + ξ0)

2+φ0/ξ1 , if ξ1 �= 0

hi (φ) = exp
(

φ0
ξ0

φ
)

, if ξ1 = 0
(5.11)

In particular, for the symmetries having ξ1 �= 0, the scalar
field can be redefined so that ηφ = ξ1φ + ξ0; then, it turns
out that h(φ) = (ξ1φ + ξ0)

2+φ0/ξ1 . In the case of internal
symmetries, which are characterised by ξ1 = 0, the scalar
field can be redefined so that ηφ = ξ0; then, it turns out that

h(φ) = exp
(

φ0
ξ0

φ
)

. Finally, notice that the shift-symmetric

class is characterised by Gi = Gi (X), corresponding to
ξ1 = 0 = φ0. Less general subclasses can be obtained from
the above system by manually setting the functions gi to 1
and/or φ0 = 0, except for the linear minimally coupled scalar

123
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field and the first-generation scalar–tensor theory, which are
characterised by a more complex substructure.

6 Particular cases

The Noether Symmetry Approach almost fully determines
the φ dependence, while the gi (X) functions are uncon-
strained. Then, each possible set {gi }i=2,3,4,5 corresponds
to a particular model contained in Horndeski gravity. There-
fore, models admitting Noether symmetries are characterised
by the X dependence of the gi functions. Once the model has
been selected, i.e., the X dependence, the request of a Noether
symmetry sets the remaining free functions of φ. To clarify
this point, let us discuss the cases of two different theories
assuming the existence of a Noether symmetry.

6.1 Non-minimal coupling to the Gauss–Bonnet term

The Gauss–Bonnet topological invariant is a combination of
second-order curvature invariants defined as

G = R2 − 4RμνR
μν + Rμνρσ R

μνρσ . (6.1)

The corresponding action is a topological term, which can be
written as a total derivative (i.e., a boundary term), represent-
ing the four-dimensional case of the Chern–Gauss–Bonnet
theorem [54]. It states that the Euler characteristic of an
oriented closed even-dimensional Riemannian manifold is
equal to the integral of a certain polynomial of its curvature
[55–57]. Due to its topological nature, the Gauss–Bonnet
invariant is often considered a tool to reduce the dynamics.
However, to make its contribution not trivial in four dimen-
sions, it is usually either coupled to a dynamical scalar field or
included in the Einstein–Hilbert action8 as a generic function
f (G). Thus, as the scalar curvature is predominant at local

scales, the Gauss–Bonnet correction might provide correc-
tions at cosmological scales. Let us take into account the
former case,

8 One of the concerns about the presence of G into the gravitational
action is the impossibility of imposing gravitational waves travelling at
the speed of light in a covariant way. This represents another open issue
in modified theories of gravity. However, this topic is beyond the scope
of this article.

SG =
∫

d4x
√−g h(φ)G. (6.2)

In this regard, it is well-known that Horndeski’s theory can
reproduce the non-minimal coupling to the Gauss–Bonnet
term, since it represents the most general theory in four
dimensions of φ, gab, and their derivatives, giving the second-
order field equations [21]. The corresponding Horndeski con-
tributions are as follows:

G5(φ, X) = − 4 ∂φh(φ) ln X , (6.3)

G4(φ, X) = 4 ∂2
φh(φ) X (2 − ln X) , (6.4)

G3(φ, X) = 4 ∂3
φh(φ) X (7 − 3 ln X) , (6.5)

G2(φ, X) = 8 ∂4
φh(φ) X2 (3 − ln X) . (6.6)

The easiest way to prove this is by directly comparing the
equations yielding from the variation with respect to the met-
ric tensor on the spatially flat FLRW background.

It is straightforward to see that the above set of functions
Gi is compatible with any of the selected Noether symme-
tries; not only is the hierarchical derivative dependence the
same as the first model, but it is also the same as the func-
tion redefinition to absorb G5 = G5(φ). Then, depending
on the Noether symmetry, h(φ) = (ξ1φ + ξ0)

2+φ0/ξ1 or

h(φ) = (ξ1φ + ξ0)
2+φ0/ξ1 or h(φ) = exp

(
φ0
ξ0

φ
)

.

It is possible to analyse the non-minimal coupling to the
Gauss–Bonnet terms in the Noether framework. Consistently
with the Noether symmetries, the three simplest actions that
one can take into account are of the following form

S =
∫

d4x
√−g [ f (φ)R + v(φ) (ω0 X − V0) + h(φ)G],

(6.7)

where,

⎧⎪⎪⎨
⎪⎪⎩

h = ch (ξ1φ + ξ0)
2+φ0/ξ1 , f = c f ∂2

φh, v = cv ∂4
φh, if

{
ξ = ξ1 t, ηa = a

3
(ξ1 − φ0), ηφ = ξ1 φ + ξ0

}

h = ch exp
(

φ0
ξ0

φ
)

, f = c f exp
(

φ0
ξ0

φ
)

, v = cv exp
(

φ0
ξ0

φ
)

, if
{
ξ = 0, ηa = −a

3
φ0, ηφ = ξ0

}

h = ch φ, f = c f , v = cv, if
{
ξ = 0, ηa = 0, ηφ = ξ0

}
(6.8)

The corresponding Horndeski model is

G5(φ, X) = − 4 ∂φh(φ) ln X , (6.9)

G4(φ, X) = f (φ) + 4 ∂2
φh(φ) X (2 − ln X) , (6.10)

G3(φ, X) = 4 ∂3
φh(φ) X (7 − 3 ln X) , (6.11)

G2(φ, X) = v(φ) (ω0 X − V0) + 8 ∂4
φh(φ) X2 (3 − ln X) .

(6.12)

123
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Field equations together with the Hamiltonian constraint (the
first Friedmann equation) read, respectively,

∂L
∂a

− d

dt

∂L
∂ ȧ

= 0 −→ 3X
(

4∂2
φ f + ω0v

)

+ 12H φ̇
(
∂φ f + 4Ḣ∂φh + 4H2∂φh

)

+ 6φ̈
(
∂φ f + 4H2∂φh

)
+ 6H2

(
3 f + 8X∂2

φh
)

+ 12 f Ḣ − 3V0v = 0 , (6.13)
∂L
∂φ

− d

dt

∂L
∂φ̇

= 0 −→ φ̇
[
6Ḣ

(
∂φ f + 4H2∂φh

)

+12H2(∂φ f + 2H2∂φh) − ∂φv (ω0X + V0)
]

− 6ω0HXv − ω0vφ̇φ̈ = 0 , (6.14)
∂L
∂X

− d

dt

∂L
∂ Ẋ

= 0 −→ X = 1

2
φ̇2 , (6.15)

ȧ
∂L
∂ ȧ

+ φ̇
∂L
∂φ̇

+ Ẋ
∂L
∂ Ẋ

− L = 0

−→ φ̇
[
v (ω0X + V0) − 6H2 f

]

− 12HX (∂φ f + 4H2∂φh) = 0 , (6.16)

and, taking into account the above energy constraint, the con-
served scalar current turns out to be

J = ζ − ηa
∂L
∂ ȧ

− ηφ

∂L
∂φ̇

− 2X
(
∂φηφ − ξ1

) ∂L
∂ Ẋ

⇒ φ̇
{

2(ξ1 − φ0)∂φ f + 8H2(ξ1 − φ0)∂φh − ω0ηφv

+ 4X
[
ηφ∂4

φh(ln X − 3) + ∂3
φh

(
4ξ1 + ∂φηφ(3 ln X − 7)

−(2ξ1 + φ0) ln X + 3φ0)]
}

+ 2H
[
3ηφ∂φ f + 2(ξ1 − φ0) f

]+ 8H3ηφ∂φh = �

a3 .

(6.17)

where, � is a constant introduced for practical reasons, by
redefining ζ . Then, it is possible to find exact solutions as
shown in [44,46,48,49].

6.2 Extended cuscuton model

The extended cuscuton model [30,31] is a generalised for-
mulation of the cuscuton field [27–29], which is not dynamic
at the background and perturbation levels. The action of the
model corresponds to the following choice of the Horndeski
functions,

G4(φ) = f4(φ) , (6.18)

G3(φ, X) =
(

1

2
f3(φ) + ∂φ f4,φ

)
ln X , (6.19)

G2(φ, X) = f1(φ) + f2(φ)
√

2X

−
(

2∂φ f3(φ) + 4∂2
φ f4(φ) + 3 f3(φ)2

4 f4(φ)

)
X

+ 2

(
1

2
∂φ f3(φ) + ∂2

φ f4(φ)

)
X ln X . (6.20)

As it is possible to notice for the above equations, the
model has an explicit X dependence, while the φ dependence
is parameterised by the presence of the function fi . However,
imposing the existence of Noether symmetries, our previous
analysis provides a criterion to select them according to the
following scheme:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f4 = c4 (ξ1φ + ξ0)
φ0/ξ0 , f3 = c3 (ξ1φ + ξ0)

φ0
ξ0

−1
,

f1,2 = c1,2 (ξ1φ + ξ0)
φ0
ξ0

−2
if ξ �= 0

fi = ci exp
(

φ0
ξ0

φ
)

, if ξ = 0

(6.21)

where ci are generic constants. Then, one can write down
field equations and the energy condition,

∂L
∂a

− d

dt

∂L
∂ ȧ

= 0 −→ f1 + √
2X f2

− 2X∂φ f3 − 3 f 2
3

4 f4
X − f3φ̈

+ 4H φ̇∂φ f4 + 2(2Ḣ + 3H2) f4 = 0 , (6.22)

∂L
∂φ

− d

dt

∂L
∂φ̇

= 0 −→ φ̇

[
∂φ f1

3
− X

f3
4 f 2

4

(
f3∂φ f4

−2 f4∂φ f3
)− H2 (3 f3 + 2∂φ f4

)− f3 Ḣ

]

+ H

(
3X

f 2
3

2 f4
− √

2X f2

)
+ f 2

3

4 f4
φ̇φ̈ = 0 , (6.23)

∂L
∂X

− d

dt

∂L
∂ Ẋ

= 0 −→ X = 1

2
φ̇2 , (6.24)

ȧ
∂L
∂ ȧ

+ φ̇
∂L
∂φ̇

+ Ẋ
∂L
∂ Ẋ

− L = 0

−→ φ̇

(
f1
3

+ X
f 2
3

4 f4
+ 2H2 f4

)
− 2HX f3 = 0 ,

(6.25)

while the on-shell conserved scalar current is

J = ζ − ηa
∂L
∂ ȧ

− ηφ

∂L
∂φ̇

− 2X
(
∂φηφ − ξ1

) ∂L
∂ Ẋ

⇒ φ̇

[
− 4 f2ηφ√

2X
− 2ηφ(ln X − 2)

(
∂φ f3 + 2∂φ∂φ f4

)

+ 3 f 2
3 ηφ

f4
+ 2 f3 ln X

(
φ0 − ∂φηφ

)

+ 4∂φ f4
(
2ξ1 − ∂φηφ ln X + φ0 ln X − 2φ0

) ]

123



Eur. Phys. J. C           (2024) 84:771 Page 11 of 14   771 

+ 4H [4(ξ1 − φ0) f4 − 3 f3ηφ] = �

a3 , (6.26)

where, � is a constant introduced for practical reasons, by
redefining ζ .

The Noether symmetry allows us to find all general solu-
tions for the extended cuscuton model. In particular, in the
case of the external symmetries, it turns out that, for � = 0,

H =
(

φ̇
c3

4c4
− c2

3c3 − 4c4(ξ1 − φ0)

)
(ξ0 + ξ1φ)−1, (6.27)

with c1 = −6c2
2c4(3c3 − 4c4ξ1 + 4c4φ0)

−2, while, for � �=
0, it yields c1 = c2 = 0, c3 = 4

3c4(ξ1 − φ0), and

H = (ξ1 − φ0)

3(ξ0 + ξ1φ)
φ̇

⇒ a(t) = ca (ξ1 φ + ξ0)
ξ1−φ0

3ξ1 , (6.28)

where ca is a constant depending on the other free parameters.
In the case of internal symmetries, the exact solutions are,

for � = 0,

H = c3

4c4
φ̇ − c2ξ0

3c3ξ0 + 4c4φ0

⇒ a(t) = ca exp

(
c3

4c4
φ − c2ξ0

3c3ξ0 + 4c4φ0
t

)
,

(6.29)

with c1 = −6c4c2
2ξ

2
0 (3c3ξ0 + 4c4φ0)

−2, while, for � �= 0, it
provides c1 = c2 = 0, c3 = −c4

4
3

φ0
ξ0

, and

H = − φ0

3ξ0
φ̇ ⇒ a(t) = ca exp

(
−1

3

φ0

ξ0
φ

)
(6.30)

where ca is a constant depending on the other free parameters.

7 Noether symmetries with matter

So far, we have conducted our analysis neglecting the pres-
ence of the matter. Indeed, the modifications to GR field
equations usually aim to describe a different behaviour of
gravity at early or late cosmic time, or in correspondence
with very high/low-energy scales when the standard matter
contribution can be left out of the treatment. In this frame-
work, modified GR is often used to obtain a dynamical for-
mulation of dark energy, instead of the cosmological con-
stant [10]. However, generally, one has to deal with situations
where the matter content cannot be neglected since it plays
a crucial role. For instance, this is the case of several cosmo-
logical tests on modified theories of gravity, or, in general,
observational cosmology [58–60]. Therefore, it is necessary
to include the matter in this analysis. Let us consider a point-
like Lagrangian accounting also the presence of the matter,

L = L(g) + L(m), (7.1)

where,L(g) represents a general scalar–tensor theory describ-
ing the gravitational part, and L(m) is associated with the
matter. In cosmology, the different species of standard matter
are usually described by linear barotropic equations of state
Pi = wiρi , where Pi and ρi are the isotropic pressure and
the energy density, respectively, wi is the barotropic coef-
ficient, and i labels the different species such as radiation
(w = 1/3), dust (w = 0), etc. However, sometimes more
complex equations of state are also used to consider inter-
actions or to model exotic dark matter (not simply as a dust
fluid). Therefore, there is no univocal way to take into account
the matter content, and its description changes depending on
the cosmic era being considered and the complexity of the
model. The linear barotropic equation of state is the simplest
way to describe the different species that fill the universe.

As shown in the previous sections, the Noether Symme-
try Approach is a powerful tool to obtain functional forms
of L(g) under the caveat that our theory possesses a Noether
symmetry. However, it is an exact mathematical computa-
tion that can be affected by the way L(m) is modelled. An
explicit example is the case of matter content characterised
by a linear barotropic equation of state. It can be included in
the point-like Lagrangian by considering L(m) = ρ0 a−3w,
with ρ0 constant. Including this contribution, it is possible
to verify that symmetries strictly survive in correspondence
with ξ = 0 and w = 0: only internal symmetries admit the
presence of (dust) matter. Therefore, the matter Lagrangian
can strongly constrain the Noether Symmetry Approach. A
possible solution to overcome this problem is to consider an
additional constraint equation that removes the presence of
the matter from the Noether identity, ensuring the existence
of symmetries, and modifying the usual approach (as done in
[47]). However, one could also accept that the matter content
breaks the Noether symmetry, characterising the theory only
in vacuum.

In this section, we propose an alternative treatment that
allows us to keep all the Noether classifications obtained so
far, safely including the presence of matter. It is based on
an additional scalar field ψ describing the matter content,
minimally coupled to gravity: L(m) = L(m)[gab, ψ, ψ̇]. For
simplicity, let us consider the linear case

L(m) = a3
(

1

2
ψ̇2 −U

)
, (7.2)

where U = U (ψ) is a general potential of the scalar field
(whose form is constrained by the existence of Noether sym-
metries).

Using an additional scalar field to effectively describe the
matter content is a reasonable choice. Indeed, in this way, one
has a general effective description, and a simplified parame-
terization can be introduced a posteriori in the cosmolog-
ical analysis. Then, it turns out

∑
i ρi = 1

2 ψ̇2 + U and∑
i Pi = 1

2 ψ̇2 − U , or equivalently, ψ̇2 = ∑
i (ρi + Pi )
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andU = 1
2

∑
i (ρi − Pi ). In doing this, it is possible to verify

that the Noether classification for scalar–tensor theories is
unchanged: the selected functional forms of the action are
the same as in our previous analysis; the only differences are
the symmetries, i.e. the components of the infinitesimal gen-
erators of the symmetries (depending on ψ also, in general).
It represents a formal proof of the validity of the Noether
Symmetry Approach in the presence of matter. Perhaps the
simplest way to demonstrate this is by assuming the func-
tional forms selected by the Noether Symmetry Approach
and verifying the existence of the symmetries given by the
(non-vanishing) infinitesimal generator,

χ = ξ(t, a, φ, ψ)∂t + ηa(t, a, φ, ψ)∂a

+ηφ(t, a, φ, ψ)∂φ + ηψ(t, a, φ, ψ)∂ψ . (7.3)

Then, the above components of the infinitesimal generator
given by the Noether Symmetry Approach for Horndeski
gravity turn out to be

ξ(t) = ξ1t + ξ2, ηa(a, φ) = a

3
(ξ1 − φ0) ,

ηψ(ψ) = 1

2
(φ0 ψ + ξ3), (7.4)

while the potential U must satisfy the following differential
equation,

(φ0 − 2ξ1)U (ψ) − 1

2
(ψ φ0 + ξ3)U

′(ψ) = 0, (7.5)

selecting U = U0 (φ0 ψ + ξ3)
2− 4ξ1

φ0 for φ0 �= 0, or U =
U0 exp

(
− 4ξ1

ξ3
ψ
)

for φ0 = 0, together with the same classi-

fication of Sect. 5. However, Eq. (7.2) represents the simplest
Lagrangian to consider. Alternatively, it is possible to leave
unspecified the Lagrangian L(m) of the matter sector, or con-
sider multiple scalar fields [61]. For instance, a generalisa-
tion of the previous case is given by the following multi-field
Lagrangian,

L(m) = a3

(
1

2

N∑
I=1

ψ̇2
I −U (ψJ )

)
, (7.6)

where the potential U depends in general on the multiple
ψJ = {ψ1, . . . , ψN }. Consequently, one obtains an analo-
gous result of Eq. (7.4) for each matter field,

ξ(t) = ξ1t + ξ2, ηa(a, φ) = a

3
(ξ1 − φ0) ,

ηψI (ψI ) = 1

2
(φ0 ψI + ξ3,I ), (7.7)

while Eq. (7.5) turns into

(φ0 − 2ξ1)U − 1

2

N∑
I=1

(ψI φ0 + ξ3,I )∂IU = 0, (7.8)

corresponding to U = U0 (φ0 ψJ + ξ3,J )
2− 4ξ1

φ0 F(ηψI /ηψJ )

forφ0 �= 0, orU = U0 exp
(
− 4ξ1

ξ3,J
ψJ

)
F(ψI−ψJ ξ3,I /ξ3,J )

for φ0 = 0, where F is a generic (N − 1)−dimensional
function, with I �= J .

Discussing all possible matter Lagrangians goes beyond
the scope of this work. The main result of this section is
that introducing a matter field (or multiple fields) leaves the
Noether symmetries of Horndeski gravity unchanged com-
pared to the vacuum case.

8 Discussion and conclusions

Noether symmetries represent a powerful tool for simplify-
ing and solving dynamical systems. Applying the Noether
Symmetry Approach in cosmology constitutes a method to
select the functional form of effective Lagrangians. In addi-
tion, the presence of a conserved scalar charge associated
with the symmetry reduces the dynamics, helping to find
exact cosmological solutions.

We focused our analysis on Horndeski gravity and its
subclasses, providing a general classification. Reversing the
usual Noether theorem and assuming the invariance under
Noether point symmetries, we selected the functional forms
of Gi , the Horndeski functions. This result is achieved by
using a Lagrange multiplier to treat the kinetic term as a
new variable for the system. The Lagrange multiplier allows
us to keep the braiding function G3 general and turns the
point-like Lagrangian into a Lagrangian of the first order in
time derivatives. This is because the point-like Lagrangian
depends on the second derivative of the scalar field which
cannot be removed by integrating by parts due to the presence
of a (general) braiding term, G3. However, once the braid-
ing function has an explicit X dependence, we can always
transform L3 into a point-like Lagrangian of the first order.
For this reason, the equations of motion are associated with
second-order Euler–Lagrange equations. Then, an equivalent
alternative approach is to consider the second prolongation
of the infinitesimal generator of the Noether symmetry.

From the Eq. (5.11) it is possible to see that the Noether
symmetry almost fully determines the dependence of the
functions on φ, while the X dependence is factorised in
unconstrained gi (X) functions. This means that models
admitting Noether symmetries are determined by the X
dependence of the Gi functions. Once the model has been
selected, i.e., the X dependence is fixed, requiring the exis-
tence of a Noether symmetry sets the φ dependence. To high-
light this aspect, we discussed the case of non-minimal cou-
pling to the Gauss–Bonnet term and the extended cuscuton
model.

The general φ-dependence of the selected Horndeski func-
tions is mainly characterised by two free parameters, ξ1 and
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φ0. The former is associated with transformations of the
coordinate time (i.e., ξ1 �= 0 external symmetry, ξ1 = 0
internal symmetry). The latter is connected with transforma-
tions of the scale factor. However, the analysis of Eqs. (5.7)
and (5.11) provides an additional interpretation of the param-
eter φ0. Restricting to viable subclasses of Horndeski gravity,
G4 = G4(φ) and G5(φ, X) = 0, in the case of external sym-
metries, a non-vanishing φ0 is related with the presence of
a non-minimal coupling G4, while, in the case of internal
symmetry, it represents the breaking parameter of the shift-
symmetry.

Finally, we extended our analysis by taking into account
a point-like Lagrangian describing the matter sector. Since
the Noether Symmetry Approach is an exact mathemati-
cal computation, the classification obtained in the vacuum
can strongly be affected. Indeed, parameterising the matter
Lagrangian as L(m) = ρ0 a−3w describing a single linear
barotropic perfect fluid, the only symmetries surviving for
Horndeski gravity are in correspondence with ξ1 = 0 and
w = 0. Moreover, since there is no unique and general
parameterization of the matter Lagrangian, but it depends
on the particular cosmic era, the Noether symmetries anal-
ysis cannot be done properly. For this reason, we proposed
an alternative treatment of the matter sector. Introducing an
additional homogeneous scalar field ψ describing the mat-
ter, L(m)[gab, ψ, ψ̇], the general classification of the scalar–
tensor theories is preserved, i.e. we obtain the same classifica-
tion as obtained in the vacuum case (5.11). The same result is
achieved by considering a canonical multi-field Lagrangian.

In forthcoming work, we will use the classification of
viable Horndeski to implement cosmological screenings on
these scalar–tensor classes characterised by the Noether sym-
metries and constrain the remaining free parameters.
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