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Abstract General relativity (GR) is a well-tested theory of
gravity in strong and weak field regimes. Many modifications
to this theory were obtained, including different scalar, vec-
tor, and tensor fields to the GR with non-minimal coupling
to gravity. Kalb–Ramond (KR) gravity is also a modified
theory formulated in the presence of a bosonic field. One
astrophysical way to test gravity is by studying the motion
of test particles in the spacetime of black holes (BH). In
this work, we study the circular motion of charged parti-
cles and explore energetic processes around charged BHs in
KR theory. First, we investigated the event horizon radius
and analyzed horizon-no horizon regions in the BH charge
and KR parameter space. Considering the Coulomb interac-
tion, we derive and analyze the effective potential for charged
particles around a charged KR BH. We investigate charged
particles’ angular momentum and energy corresponding to
circular orbits. We also investigate how the KR non-minimal
coupling parameter affects the radius of the innermost sta-
ble circular orbits, the corresponding energy, and the angular
momentum. We also investigated the electric Penrose pro-
cess and charged-particle collisions near the KR BH. The
presence of the nonzero KR parameter results in a decrease
in the energy efficiency of the Penrose process. Also obtained
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is that the KR parameter’s positive (negative) values cause a
decrease (increase) in the center of mass energy of colliding
particles near the BH horizon.

1 Introduction

The theory of gravity, as postulated by Albert Einstein in
1915, posits that the gravitational interaction arises from the
curvature of spacetime caused by the existence of heavy
objects. The theory of general relativity, which is mathe-
matically well defined, has been effectively tested under
both weak [1] and strong field [2–4] conditions. However,
with the resolution of experiments and observations currently
employed to test general relativity [5,6], it is possible to con-
template modifications and alternative theories to advance
the development of gravitational field theory. The Einstein
action is modified by including the KR field [7], which is
represented as a self-interacting second-rank antisymmetric
tensor. The KR modification may be associated with het-
erotic string theory [8] and can be understood as stimulating
closed strings. The Lorentz symmetry may be violated due
to the nonminimal connection between the tensor field and
Ricci scalar [9]. The KR field exhibits various characteristics,
including deriving the third-rank antisymmetric tensor. This
tensor may be understood as a cause of spacetime torsion,
as stated in reference [10]. The KR field has been exten-
sively investigated in gravity and particle physics [11–14].
The strong similarity between the KR field and spacetime
torsion confirms that Einstein’s theory of gravity, coupled
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with the KR field as a source, is comparable to a modified
theory of gravity that includes spacetime torsion.

By the conclusion of the 1960s, it was widely accepted
that BHs were highly compact celestial bodies possessing
a powerful gravitational force surrounded by an imaginary
one-way barrier called the event horizon. This event horizon
permits matter and radiation to enter the BH but prevents
their escape, concealing a singularity. A BH may be fully
characterized by three classical parameters: mass, charge,
and angular momentum. A Schwarzschild BH is character-
ized by the absence of both angular momentum and charge.
Kerr BHs are rotating BHs; if they are also charged, they are
called Kerr-Newman BHs [15]. In the exterior region of a
rotating BH, the reference frame would also rotate, result-
ing in a phenomenon known as frame dragging. The region
is known as the ergosphere of the BH [16]. Roger Penrose
contributed to advancing the understanding of BHs in the
1960s. He demonstrated that BHs would inevitably arise due
to the theory of general relativity [17,18]. In 1969, he pre-
sented an approach to extracting energy from a BH [19]. The
Penrose process occurs inside the ergosphere when a particle
falling from infinity undergoes a division into two separate
particles. One particle would be drawn into the BH, but the
other particle would escape with greater mass energy than it
originally had. As a result, the rotational energy of the BH
would be transferred to the motion of this particle outside the
ergosphere [20]. A BH’s energy extraction process would not
be infinite, but it would slow it down and reduce its mass.

The study of particle dynamics surrounding BHs is very
significant and may be used to examine the physical charac-
teristics of BHs. This area of research has been extensively
researched by several scholars [21–29]. The capture of mass-
less and massive particles by parameterized BHs is stud-
ied in Refs. [30–33]. The orbital and epicyclic frequencies
in axially symmetric and stationary spacetime are consid-
ered in Refs. [34–38]. Analytical and numerical solutions
for the geodesic problem can be achieved. They can trans-
mit crucial information and reveal the abundant creation of
underlying geometric patterns. Hagihara [39] pioneered the
development of an analytical solution for geodesics. Grunau
and Kagramanova [40] investigated the RN spacetime and
examined analytical solutions for test particles that are mag-
netically and electrically charged. Chandrasekhar [41] was
one of the early researchers who studied the paths followed
by objects in the curved spacetime around Schwarzschild,
Reissner–Nordström, and Kerr BHs. Circular geodesics may
also be used to comprehend and investigate the quasinormal
modes of BHs, as discussed by Nollert [42]. The integration
and separation of electrically charged particle motion can be
achieved easily, as has been extensively studied by several
researchers [43–53]. The study examines the collision of par-
ticles inside the ergoregion and the movement of particles in
the braneworld Kerr and Kerr–Newman–Kasuya BHs [54–

57]. Recent research on RN spacetime has shown that the
external magnetic field and electric charge exhibit properties
similar to the magnetic charge of a BH [58–62].

In this study, we use the signature (−,+,+,+) to repre-
sent the spacetime and utilize the geometrized unit system
where GN = c = 1. The Latin indices range from 1 to 3,
whereas the Greek indices go from 0 to 3. In the next part, we
shall review the spacetime geometry of BH. We will exten-
sively analyze the equations of motion for charged particles in
an ionized BH environment and the concept of the innermost
stable circular orbit (ISCO) for charged particles. Section 3
will mostly examine the Penrose process in the KR BH. Sec-
tion 4 will mainly investigate the interaction of electrically
charged particles near the event horizon of the BH. In the
final section, concluding remarks are provided, discussing
all the results and findings obtained.

2 Charged BHs in KR gravity

The action for the theory, which includes gravity non-
minimally coupled to a self-interacting KR field, is given
by [63]

S = 1

2

∫
d4x

√−g
[
R − 2Λ − 1

6
HμνρHμνρ

−V (BμνBμν ± b2) + ξ2B
ρμBν

μRρν

+ξ3B
μνBμν + RLM

]
(1)

where Λ is the cosmological constant, ξ2,3 are the non-
minimal coupling constants between gravity and the KR
field, 8πG = 1. Bμν is a second-rank antisymmetric ten-
sor field Bμν = −Bνμ. Hμνρ ≡ ∂[μBνρ] is field strength.
The field strength is invariant under the gauge invariance
Bμν → Bμν + ∂[μΓν].

The potential V (BμνBμν ± b2) depends on BμνBμν to
maintain the theory invariance under the local Lorentz trans-
formation of the observer. As the cosmological constant
Λ is counted separately, the potential is set to zero at its
minimum. The minimum is determined by the condition
BμνBμν = ±b2, with the sign ± chosen such that b2 is
a positive constant.

Now, we focus on deriving the equation of motion of elec-
trically charged particles around the static-charged BHs. The
charged BH solution with spherically symmetric spacetime
geometry is obtained in Ref. [63] using through spherical
coordinates, (xα = {t, r, θ, φ}) in the following form,

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (2)

where the radial functions f (r) is given by [63],

f (r) = 1

1 − l
− 2M

r
+ Q2

r2(1 − l)2 . (3)
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Fig. 1 Radius of the event and Cauchy horizons of the charged BH in
KR gravity as a function of the BH charge and the KR parameter

Here, M represents the total mass of the BH, whereas
Q represents its electric charge. Classical gravitational mea-
surements undertaken in the Solar System have shown that
the dimensionless parameter l, which represents the Lorentz-
violating impact generated by the non-zero vacuum expecta-
tion value of the KR field, must have a very small value [64].
When l = 0, it will converge to the standard RN-like metric.
One can solve f (r) = 0 to get the boundary of a BH. We
have

rh
1 − l

= M ±
√
M2 − Q2

(1 − l)2 . (4)

The dependencies of horizon radii of the spacetime (2)
from the BH charge and the parameter l are shown in Fig. 1.
The positive (negative) values of l cause the event horizon to
decrease (increase). In addition, the extreme value of the BH
increases and decreases in the negative and positive cases of
the parameter l. One can now test the characteristics of the
extremes in the BH charge and the minimum in the event
horizon radius using the condition f (r) = f ′(r) = 0, and
we have

rmin = 1 − l, Q2
extr = (1 − l)3. (5)

In Fig. 2, we show relationships between extreme BH
charge and the KR parameter. The light-blue shaded area
implies the value of Q and l in which the spacetime (3) has
an event horizon that belongs to a BH. In the values of Q and

Fig. 2 The dependence of extreme values of the BH charge Q from l

l out of the shaded area, the BH turns into an object without
an event horizon.

It also is worth noting that it has been assumed that the
vector and the dilaton fields depend on the radial coordinate
only [65], in the following form:

At (r) = Q

(1 − l)r
. (6)

2.1 Equations of motion of charged particles in ionized BH
environment

Here, we investigate the dynamics of charged particles along
circular orbits around an electrically BH in KR gravity using
the Hamilton–Jacobi equation,

gμν
( ∂S
∂xμ

− q Aμ

)( ∂S
∂xν

− q Aν

)
= −m2. (7)

The action for charged particles at a constant plane (where
θ = const and θ̇ = 0) can be described by the following
separable form,

S = −Et + Lφ + Sr + Sθ , (8)

that allows for separating the variables in the Hamilton-
Jacobi equation. Here, E and L are the energy and angular
momentum of the charged particle at infinity, respectively.
Sr and Sθ are the radial and angular functions. After some
calculations, we obtain the following:

− 1

f (r)
(E − q At )

2 + f (r)

(
∂Sr
∂r

)2

+ 1

r2

(
∂Sθ

∂θ

)2

+ L2

r2 sin2 θ
= −m2. (9)

One can notice that Eq. (6) is fully separable into radial
and angular parts,
(

∂Sθ

∂θ

)2

+ L2

sin2 θ
= K , (10)

f (r)

(
∂Sr
∂r

)2

− 1

f (r)

(
E − q At

)2

+ K

r2 = −m2, (11)
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where K is the Carter separability constant.
In our further calculation, we use the notations,

E = E

m
, L = L

m
, κ = K

m2 . (12)

We now calculate the components of momentum as, pα =
gαβ( ∂S

∂xβ ), and pα = mẋα = m(dxα/dλ), where the affine
parameter isλ. Using all the above considerations, we express
the equation of motion as follows,

ṫ = 1

f (r)

(E − q At
)
, (13)

φ̇ = L
r2 sin2 θ

, (14)

ṙ2 = (E − q At
)2 − f (r)

(
1 + κ

r2

)
, (15)

θ̇2 = 1

r4

(
κ − L2

sin2 θ

)
. (16)

Restricting the particle’s motion to a constant θ plane and
θ̇ = 0, and the Carter constant reads κ = L2/ sin2 θ .

Now, we can rewrite Eq. (9) as

grr ṙ
2 = [E − V+

eff(r)
] [E − V−

eff(r)
]
,

where, the effective potential (Veff ) of the radial motion of
the charged particles reads in the equatorial plane (θ = π/2)
as,

V±
eff = q At ±

√
f (r)

(
1 + L2

r2

)
. (17)

The effective potential consists of two parts: Coulomb and
gravitational interaction. It has symmetry according to the
sign of q, the specific charge of the charged particles. We use
V+

eff as the effective potential throughout the paper unless
otherwise stated.

Figure 3 shows the radial dependence of the effec-
tive potential of positive (top panel) and negative (bottom
panel) charged particles for the dimensionless parameter l
of the charged KR BH and comparison with RN BH and
Schwarzschild BH. For cases with a positively charged par-
ticle, the positive dimensionless parameter l contributes the
maximum effective potential value compared to RN BH and
Schwarzschild BH, and the negative dimensionless parame-
ter l gives the minimum effective potential value, while the
distance where the effective potential takes maximum shifts
towards the BH. A negatively charged particle’s effective
potential value decreases due to negative Coloumb interac-
tion. Also, at l < −0.15, there is no minimum effective
potential.

The orbit circularity of test-charged particles orbiting
around charged black holes in KR can be investigated assum-
ing the conditions Veff = E and V ′

eff = 0, where the prime’
represents the partial derivative with respect to r . Using

Fig. 3 Radial dependence of the effective potential for positive and
negative charges of BH in KR gravity

these conditions, we determine the angular momentum of
a charged particle in circular orbits.

Following the above conditions, we obtain the expression
for the angular momentum for circular motion that satisfies
the conditions

L2± = 1

[2r f (r) − r2 f ′(r)]2

{
2r5 f (r) f ′(r) ± 2qr4 f (r)A′

t

×
√

(qr2A′
t )

2 − 2r [r2 f ′(r) − 2r f (r)]

+ r6
[

2q2 f (r)A′2
t − f ′(r)2

]}
, (18)

the ± sign in Eq. (18) represents the symmetry with the
charge coupling parameter sign qQ. The specific angular
momentum can only be real if the term under the square root
is positive. This eventually implies,

(qr2A′
t )

2 ≥ 2r [r2 f ′(r) − 2r f (r)]. (19)

We study the radial dependence of the specific angular
momentum for differently charged dimensionless parame-
ters of l for KR BH for the motion of positive and nega-
tively charged particles. We also compared the results with
those of the RN BH and Schwarzschild BH. The top panel
of Fig. 4 considers the case for a positively charged parti-
cle. It shows that positive l reduces the minimum in angular
momentum and shifts the orbit where the minimum occurs
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Fig. 4 Radial dependence of specific angular momentum for positive
and negative charges of BH in KR gravity

toward the charged KR BH. It is observed from the compar-
isons that, in the Schwarzschild case, the angular momentum
has a greater value than the KR BH and RN BH. In the case
of negatively charged particle motion (see bottom panel), the
influence of l on the minimum of the angular momentum
behaves similarly to the previous case. However, compared
to other BHs, the Schwarzschild BH has minimal angular
momentum.

The energy of the test particle at circular orbits can be
found using the expression:

E± = q At ±
√

f (r)

(
1 + L2±

r2

)
. (20)

In the bottom panel of Fig. 5, we present the rela-
tion between the angular momentum and energy of the
charged particles corresponding to the circular orbits around
the charged KR BH with a positive charge of the parti-
cle for different values of the dimensionless parameter l. It
is noticed that with an increase in l, the angular momen-
tum of stable circular orbits decreases, and the particle’s
energy, on the contrary, increases. The top panel shows the
radial energy dependence for different parameter values of
l. Increasing the parameter l contributes to an increase in
energy.

Fig. 5 The relationships between the energy E and angular momentum
L (bottom panel) and radial dependence of energy (top panel) of the
charged particles at circular orbits around the KR BH

2.2 Innermost stable circular orbit (ISCO) of charged
particle

We now examine the ISCO of the charged particle around the
chosen charged BHs. It is now well established that, for stable
circular orbits, the following conditions must be obeyed,

Veff = E, ∂r Veff = 0, ∂rr Veff = 0, (21)

here ∂rr refers to the second order derivative w.r.t. r . The
first-order derivative represents the stationary points, and the
last condition corresponds to the minimum of the potential.

Figure 6 shows the dependence of the ISCO radius on the
charge of the KR BH for positively (upper left) and nega-
tively (lower left) charged test particles, as well as in neutral
particles (upper right). The graphs show that the ISCO radius,
in all cases, increases with negative values of the parameter
l and decreases with increasing parameter l (the dependence
is the same for all particles). It is also observed that the min-
imum value in ISCO radius slightly increases (decreases) in
the case of l < 0 (l > 0). Moreover, the maximum in the KR
BH charge is greater than 1 at l < 0. However, it is less than
1 when l > 0. The bottom-right panel shows the dependence
of the ISCO radius on the parameter l for neutral, positively,
and negatively charged particles. This panel shows that the
particle charge makes a small contribution to the values of
the ISCO radius.

123



706 Page 6 of 13 Eur. Phys. J. C (2024) 84 :706

Fig. 6 Dependence of ISCO radius on BH charge Q for different values of dimensionless parameters l and particle charges for KR BH

Figure 7 shows charged particles’ angular momentum and
energy corresponding to their ISCO for various charged par-
ticles and the parameter l.The top left panel shows the depen-
dence of the angular momentum of charged particles in the
ISCO on the parameter l. We see that a negative value of
the particle charge gives a larger value of angular momen-
tum, and an increase in the parameter l reduces the value of
the angular momentum of the ISCO. When considering the
dependence of the angular momentum on the ISCO radius
of a charged particle (top right panel), it can be seen that an
increase in the ISCO radius increases the angular momen-
tum of the particles at the ISCO. Increasing the dimension-
less parameter l increases the energy of the charged particle
in the ISCO (bottom left panel). The relationship between
angular momentum and energy in the ISCO of the charged
particles (bottom right panel) for various values of the par-
ticle charge, for the fixed values of BH charge and l, at l ∈
(-0.3 ÷ 0.3).

3 Electric Penrose process

The electric Penrose process is an intriguing method of
extracting energy from BHs, that expands upon the conven-
tional Penrose process to include BHs that are electrically
charged [66,67]. Within this framework, the process entails
the degradation of particles close to the event horizon of

an electrically charged BH. The Electric Penrose Process
involves fragmenting an entering particle into two separate
pieces inside the BH’s ergosphere. The BH draws one piece
into itself, while the other fragment, carrying more energy
than the initial particle, moves away towards infinity. The
electric charge of the BH facilitates the energy extraction
process by influencing the behavior of the involved particles.
If a BH has a small electric charge, extracting energy from it
may improve greatly compared to a BH that is not charged
[68,69].

Researchers have recently explored this phenomenon in
various scenarios, such as positioning a reflective mirror out-
side the event horizon to capture particles and facilitate multi-
ple interactions. This results in forming a “BH bomb,” which
refers to the possibility of uncontrollable energy extraction
[70]. Furthermore, studies have examined how the electric
charge of a BH affects the effective potential and the inner-
most stable circular orbits (ISCO) of charged particles. These
investigations have shown that even minor electric charges
may replicate the effects of angular momentum [71]. These
findings on the electric Penrose process not only improve
our understanding of BH thermodynamics and astrophysical
jets, but also emphasize the complex relationship between
electric charge and energy dynamics in very intense grav-
itational fields. Researchers have developed several Pen-
rose processes, including magnetic and electric Penrose pro-
cesses, for different BH models [72–74]. This section exam-
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Fig. 7 ISCO parameters as a function of the dimensionless parameter l for charged particles in KR gravity. In all cases, we fix Q = 0.5M

ines the electric Penrose process, which entails the interaction
between charged particles and charged BHs in the context of
KR gravity theory.

3.1 Angular velocity, conservation laws and maximum
energy of ionized particle

Consider a test particle that decays on the equatorial
plane and is characterized by the four-velocity, vα =
vt (1, dr/dt, 0, dφ/dt). Let us define the radial velocity
dr/dt as μ and angular velocity dφ/dt as ζ . By imposing
the normalization condition vαvα = −λ, the expression for
the angular velocity becomes

(vt )2
[

μ2

f (r)
− f (r) + ζ 2r2

]
= −λ, (22)

here λ represents massless (= 0) and massive (= 1) particle.
Now, we will deduce an expression describing the angular
velocity of the decayed particles as seen by a static observer
positioned at an infinite distance. For this, we have

ζ = ± 1

vt r

√
(vt )2

[
f (r) − μ2

f (r)

]
− λ. (23)

The range of potential values for ζ is limited by,

ζ− ≤ ζ ≤ ζ+, ζ± = ±
√

f (r)

r2 , (24)

that corresponds to the Keplerian orbits.
Subsequently, we examine a situation wherein a charged

particle approaches a charged BH from infinity in KR gravity
theory and undergoes breakdown into two charged particles
in the equatorial plane close to the event horizon. We consider
that the conservation rules of energy, momentum, and charge
are satisfied by the decay process.

E1 = E2 + E3, L1 = L2 + L3, q1 = q2 + q3, (25)

m1ṙ1 = m2ṙ2 + m3ṙ3, m1 ≥ m2 + m3, (26)

Using the above equations, we have

m1v
φ
1 = m2v

φ
2 + m3v

φ
3 , (27)

where vφ = ζvt = ζe/r2, ei = (Ei + qi At )/mi for i =
1, 2, 3 denotes the number of particles, The Eq. (27) can be
expressed as follows,

ζ1m1e1 = ζ2m2e2 + ζ3m3e3. (28)

The angular velocity of the i th particle, denoted by ζi =
dφi/dt , is determined by Eq. (23) and is subject to the limi-
tations specified in Eq. (24). The determination of the energy
of a particle [75], such as E3, is possible by solving Eq. (28).
We have

E3 = ζ1 − ζ2

ζ3 − ζ2
(E1 + q1At ) − q3At . (29)

Lastly, to optimize the energy of the escape energy of
the accelerated ionized particle from the BH, we assume that
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particle 1 is neutral (i.e., q1 = 0) and starts from infinity with
an initial energy equal to its mass energy at rest E1 = m1

(E = 1). In this particular scenario, the angular velocity (23)
of the particles may be expressed straightforwardly as [76],

ζ 2
1 = f (r)(1 − f (r))

r2 ,

ζ2 = ζ−,

ζ3 = ζ+. (30)

It is believed that particle 3 departs with more energy than the
first decaying particle. To determine the highest energy value
of particle 3, we optimize the formula (ζ1 − ζ2)/(ζ3 − ζ2).
This is accomplished by adjusting the angular momentum of
components ζi to their highest values. Subsequently, we may
readily determine the utmost energy of particle 3.

ζ1 − ζ2

ζ3 − ζ2
= 1

2
+

√
1 − f (ri )

2
. (31)

Here, ri represents the radius for the ionized particle. Ulti-
mately, we will formulate the equation representing the ion-
ized particle energy in the specified format as [77].

E3 =
[1

2
+

√
1 − f (ri )

2

]
(E1 + q1At ) − q3At . (32)

For q2 = −q3 and q1 = 0 we have

E3 =
(

1

2
+

√
1 − f (ri )

2

)
E1 − q3At , (33)

this simplifies to

E3

E1
=

(
1

2
+

√
1 − f (ri )

2

)
− q3At

E1
. (34)

The energy of the ionized particle is at its maximum when
q3 and Q have the same sign, as the time component of the
electromagnetic four potential is dependent on Q. This corre-
sponds to the anticipated outcome, in which the charged par-
ticle experiences acceleration due to the coulomb repulsion
force operating between the BH and the particle. Determin-
ing the ionized to neutral particle energies ratio is valuable for
assessing the acceleration process’s effectiveness. By formu-
lating the BH mass and speed of light explicitly and replacing
them with q3 = Ze and m1 ≈ Amn , where Z and A denote
the atomic and mass quantities, e represents an elementary
charge, and mn signifies the nucleon mass, we arrive at the
following result:

E3

E1
=

(
1

2
+

√
1 − f (ri )

2

)
− ZeAt

Amnc2 . (35)

We may compute the final equation for E3/E1 by directly
expressing the BH mass and the speed of light in terms of
the time component of the electromagnetic four potential and
metric functions. This equation is intricate and challenging
to solve.

Consequently, we visually represent its reliance on the
BH parameters in Fig. 8. Figure 8 (upper plot) displays
the efficiency of the acceleration mechanism, which is the
ratio of the energies of ionized and infalling particles with
Z/A = 1. The figure shows this efficiency at different ion-
ization sites as a function of the BH’s charge per solar mass.
The efficiency significantly declines as the charge of the BH
increases. Moreover, it declines as the distance between the
BH and the ionization point increases. Similar behavior can
be observed in the case of varying parameter l (lower plot).

4 Collisions of charged particles near the event horizon
of the KR BHs

The study by Banados in [78] first examined the acceleration
of particles colliding near spinning Kerr BHs. It was shown
that the center of mass energy of colliding particles might
become infinite in an extremely revolving Kerr BH. Various
authors have studied the effects of external magnetic fields
on the acceleration of charged particles near BHs in different
gravity models and situations. These investigations may be
found in references such as [79–83]. Research has shown
that the energy extraction process is more efficient in head-
on collisions.

Our current objective is to examine several instances of
charged particle collisions in the equatorial plane under var-
ious conditions from the observer’s perspective in motion.
Two conditions permit the determination of the critical value
of the angular momentum: (i)ṙ = 0 and (ii) dṙ/dr = 0.

Figure 9 illustrates this. A negative radial velocity results
from an increase in the angular momentum. The particles
cannot approach the central object from that value due to
large centrifugal forces.

Consequently, we examined the permissible values of the
angular momentum to determine the critical values. The
dependency of the critical angular momentum for different
values of the BH’s parameters and particle charge is shown in
Fig. 10. The upper panels show the relationship between the
critical angular momentum and the parameter (q) between
different values of the parameter l (on the left) and Q (on
the right). The top left panel illustrates that as the value
of l increases, the allowable range of angular momentum
declines, and there is a linear relation with the q param-
eter. Similarly, the bottom panel depicts the critical angu-
lar momentum with a BH Q charge, considering different
parameters l (on the left) and q (on the right). Similar behav-
ior can be observed for both cases.

The general expression for the energy of the center of mass
can be expressed as [84,85]

{Ec, 0, 0, 0} = m1u
μ
1 + m2u

μ
2 , (36)
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Fig. 8 Ratio of energies plotted
against the BH charge Q for
different values of spacetime
parameters. l = 0 shows the
standard RN BH solution (lower
panel) results

here, the variables uα
1 and uβ

2 represent the four-velocity of
the two particles involved in the collision, with masses m1

and m2 correspondingly. It is straightforward to compute the
square of the center of mass energy, as described in Eq. (36),
and get the result.

E2
c = m2

1 + m2
2 − 2m1m2gμνu

μuν, (37)

E2
c

m1m2
= m1

m2
+ m2

m1
− 2gμνu

μ
1 u

ν
2. (38)

If the masses of the colliding particles are denoted as m1 =
Am and m2 = Bm. Then we have

E2
cm

m2c4 = A2 + B2 − 2gμνu
μ
1 u

ν
2. (39)

Now, we will investigate the collision of particles with iden-
tical initial energies and masses (E1 = E2 = m). We shall
examine the acceleration of charged particles near a KR BH
by applying the standard equation for the center of mass
energy of two colliding particles of equal mass. As a conse-
quence, the equation for the center-of-mass energy becomes.

E2
c = E2

c

4m2c4 = 1 − gαβu
α
1u

β
2 . (40)

Consequently, by using the constituents of the four-velocity,
the ultimate equation for the energy of the center of mass in
the equatorial plane (where θ = π/2) may be expressed as
follows:

Fig. 9 Radial dependence of the square of radial velocity for different
values of angular momentum of the particle

E2
c = 1 + 1

f (r)
(E1 − q1At ) (E2 − q2At )

+L1L2

r2 + 1

f (r)

√
(E1 − q1At )

2 − f (r)
(

1 + L2
1

r2

)

×
√

(E2 − q2At )
2 − f (r)

(
1 + L2

2

r2

)
. (41)

In Fig. 11, we have illustrated the radial profiles of the
center-of-mass energies of charged particles that collide with
varying signatures. The graphs depict three distinct scenarios
in which the particle charges remain constant: (i) a positive-
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Fig. 10 Dependence of the critical angular momentum on q (top panels) and Q (bottom panels) for different values of the BH and particle
parameters

Fig. 11 Radial dependence of CME for parameters l (top row), L (middle row), and Q (bottom row) for different values of spacetime parameters
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positive configuration (left column), (ii) a positive-negative
configuration (middle column), and (iii) a negative-negative
configuration (right column). The graph representing the
energy of the center of mass shows a downward trend as the
value of the parameter l (upper row) and the angular momen-
tum L (middle row) increase. Note that the energy increases
most significantly in the collision of negatively charged par-
ticles compared to the other two cases. Moreover, we can
observe the same behavior of the center-of-mass energy by
varying the parameter Q (lower row).

5 Conclusions

A better understanding way to probe the spacetime geome-
try of BHs in modified/alternative gravity theories is through
investigations of test particle dynamics and energetic pro-
cesses. For this, in the present work, we aimed to explore
spacetime geometry around charged BHs in KR gravity
obtained in Ref. [63]. We have started our studies by investi-
gating the KR parameter on the event horizon radius and the
extreme value of the BH charge. Then, we derived the equa-
tions of motion of charged particles and analyzed the effective
potential for circular orbits. It is shown that in the positively
charged particle cases, the positive (negative) parameter l
contributes (decreases) to the maximum effective potential
compared to the RN BH and Schwarzschild BH cases. Mean-
while, the distance where the effective potential takes max-
imum shifts towards the central BH. A negatively charged
particle’s effective potential value decreases due to negative
Coloumb interaction. Also, at l > −0.15, there is no mini-
mum effective potential.

We have analyzed the radial profiles of the specific angular
momentum and energy of particles corresponding to circular
orbits for different l and the charge of KR BH in the cases
of positively and negatively charged particles. It is obtained
that in l > 0 cases, the minimum of the angular momentum
decreases, and the orbit where the minimum occurs shifts
towards the BH.

The ISCO for charged particles around charged BHs in KR
gravity has also been studied. The effect of the BH charge and
the KR parameter on the ISCO radius have been analyzed,
and it found that the ISCO increases in the presence of l > 0
and decreases for l < 0. It is also observed that the minimum
value in ISCO radius slightly increases (decreases) in the case
of l < 0 (l > 0). Moreover, the maximum charge of the KR
BH is greater than 1 at l < 0. However, it is less than 1 when
l > 0.

There are two types of Penrose process: in the classical
Penrose process, a particle decays by two in the ergore-
gion of a rotating BH, so one of them falls into the BH,
and another part goes out with increased energy. In this sce-
nario, the energy efficiency is proportional to the BH spin.

In the magnetic Penrose process, the particle decays into two
charged particles, and the magnetic field causes the escap-
ing charged particles to increase in time due to the induced
electric field. We have also explored the electric Penrose
process around the charged BH in KR gravity. Finally, we
have considered collisions of charged particles. In doing this,
we have first investigated the critical angular momentum of
charged particles, providing their collision. The critical value
decreases (increases) due to the presence of attractive (repul-
sive) Coulomb interaction and also decreases (increases) at
l > 0 (l < 0) cases. We have also studied collisions between
positively charged particles and those with positive and nega-
tive electric charges. Our findings have shown that a negative
value of l causes an increase in the center of mass-energy. The
energy is slightly greater in the negatively charged particle
collisions when Q > 0.
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