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Abstract This study explores the behavior of compact
stars within the framework of f (R, Lm, T ) gravity, focus-
ing on the functional form f (R, Lm, T ) = R + αT Lm .
The modified Tolman–Oppenheimer–Volkoff (TOV) equa-
tions are derived and numerically solved for several values of
the free parameter α by considering both quark and hadronic
matter—described by realistic equations of state (EoSs). Fur-
thermore, the stellar structure equations are adapted for two
different choices of the matter Lagrangian density (namely,
Lm = p and Lm = −ρ), laying the groundwork for our
numerical analysis. As expected, we recover the traditional
TOV equations in General Relativity (GR) when α → 0.
Remarkably, we found that the two choices for Lm have
appreciably different effects on the mass-radius diagrams.
Results showcase the impact of α on compact star proper-
ties, while final remarks summarize key findings and dis-
cuss implications, including compatibility with observational
data from NGC 6397’s neutron star. Overall, this research
enhances comprehension of f (R, Lm, T ) gravity’s effects on
compact star internal structures, offering insights for future
investigations.

1 Introduction

Einstein’s theory of gravity proposed over a century ago not
only aids us in understanding various aspects of the universe
but also continues to undergo significant experimental test-
ing. These tests include the precession of Mercury’s peri-
helion [1], accurately predicted, recent detections of grav-
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itational waves originating from binary black hole systems
[2], and neutron star (NS) mergers [3] observed by the Virgo
and LIGO collaboration (Laser Interferometer Gravitational-
Wave Observatory), along with the first image of a black
hole’s shadow obtained by the Event Horizon Telescope
project [4]. Consequently, the results predicted by General
Relativity (GR) are in excellent agreement with observational
data collected, primarily since the early 20th century.

Despite the success of GR, in recent years, there have been
proposals for alternative theories of gravity, often referred in
the literature as modified gravity theories [5–7]. Some of
these theories seek to extend GR by introducing additional
terms into the standard Einstein-Hilbert action. An example
of this is f (R) gravity [8–12] and its various extensions [13–
15], where R is the Ricci scalar. Some arguments in favor of
these theories suggest that the rotation speed of spiral galax-
ies, represented by the rotation curve, could be explained
without resorting to the presence of dark matter. Additionally,
it is proposed that the accelerated expansion of the universe
could be understood without the inclusion of dark energy,
through the updating of the theory of gravity beyond GR
[16–21]. Indeed, it is expected that the adopted gravitational
model be capable of describing all available astronomical
observations, among which NSs and quark stars (QSs) stand
out.

The gravitational environments surrounding NSs, exotic
stars, and the proximity of black hole event horizons pose
unique challenges and offer singular opportunities [22–24].
Shaped by the immense mass and density of compact celes-
tial objects, these extraordinary scenarios establish a unique
platform where gravity manifests with unparalleled inten-
sity. These environments evolve into observational arenas,
allowing for the direct observation of gravitational forces to
conduct theoretical tests of gravity.
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Among all the observables of a compact star we have the
mass, radius and the gravitational redshift. The mass and
radius are very important, because these quantities can be
obtained directly from different astronomical observations.
In fact, their values offer significant information about the
global structure of the star and, at the same time, we can
obtain improved insights into the equation of state that gov-
erns the microscopic interior of the star. It is important to
mention that the recent launched telescopes have more sen-
sitivity and therefore it is possible to obtain more precise
values for the mass and radius of a NS and strange quark
stars. Moreover, thanks to this new technology it is possible
to investigate the validity of GR (as well as its modifica-
tions) in the strong-field regime. Nowadays, it has become
very common to explore the extreme physics of neutron stars
taking into account the mass-radius window imposed by the
data from the Neutron Star Interior Composition Explorer
(NICER) [25], MM-Newton Data and the gravitational wave
laser interferometers LIGO-VIRGO [3]. Therefore we can
say that we are in a era where it is possible to use advanced
observations to obtain more information about compact stars
and the possible modifications of General Relativity.

In this study we will focus on f (R, Lm, T ) theory of
gravity [26], which generalizes and unifies the f (R, T ) and
f (R, Lm) gravity models. In other words, this theory con-
sistently impose that the gravitational Lagrangian is an arbi-
trary function of the Ricci scalar, the trace of the energy-
momentum tensor and of the matter Lagrangian density. Par-
ticularly, we will adopt the f (R, Lm, T ) = R+αT Lm model
and investigate the effect of the free parameter α on the most
basic macroscopic properties of a compact star such as radius
and mass. To do so, it becomes necessary to obtain the mod-
ified stellar structure equations for the two different choices
of Lm .

We will specifically examine the effects of f (R, Lm, T )

theory on the internal structure of relativistic compact stars
made of hadronic matter for NSs and quark matter for QSs.
For this purpose in 2, we will, at first, give a little review
of how the gravitational field equations are obtained in
f (R, Lm, T ) theory of gravity. Then in Sect. 3, from the
field equations, we will obtain a modified version of the
well-know Tolman-Oppenheimer-Volkoff (TOV) equations
for the hydrostatic equilibrium state of a compact star. In
Sect. 4 we will compute the mass versus radius relation and
discuss our outcomes in terms of α. Finally, in Sect. 5, we
give some remarks and some perspectives.

2 Gravitational field equations in f (R, Lm, T ) theories

Proposed by Haghani and Harko [26] as a generalization and
unification of the f (R, T ) [13] and f (R, Lm) [14] gravity
models, the gravitational Lagrangian is given by an arbi-

trary function of the Ricci scalar R, of the trace T of the
energy-momentum tensor Tμν , and of the matter Lagrangian
Lm , so that Lgrav = f (R, Lm, T ). Thus, the full action in
f (R, Lm, T ) gravity theories reads

S = 1

16π

∫
f (R, Lm, T )

√−gd4x +
∫

Lm
√−gd4x, (1)

where g is the determinant of the metric tensor gμν , with
Greek indices assuming the values 0 − 3. Throughout this
work we will use geometrized units, that is, c = G = 1
and we use the metric signature (−,+,+,+). However, our
results will be given in physical units for comparison pur-
poses.

Now, varying the action 1 with respect to the inverse
metric gμν , one obtains the following field equations in
f (R, Lm, T ) gravity

fR Rμν − 1

2
[ f − ( fL + 2 fT )Lm]gμν + (gμν� − ∇μ∇ν) fR

=
[

8π + 1

2
( fL + 2 fT )

]
Tμν + fT τμν, (2)

in which � ≡ ∂μ(
√−ggμν∂ν)/

√−g, fR ≡ ∂ f/∂R, fT ≡
∂ f/∂T , fL ≡ ∂ f/∂Lm , Rμν is the Ricci tensor, ∇μ the
covariant derivative with respect to the symmetric connec-
tion associated to gμν , and the new tensor τμν is defined as
[26]

τμν = 2gαβ ∂2Lm

∂gμν∂gαβ
. (3)

It is evident that, when f (R, Lm, T ) = f (R), from Eq. (2)
we retrieve the field equations in the framework of met-
ric f (R) gravity [27,28]. If f (R, Lm, T ) = f (R, T ), we
reobtain the field equations of the f (R, T ) gravity model,
while the particular case f (R, Lm, T ) = f (R, Lm) gives the
field equations of the f (R, Lm) theory. Furthermore, when
f (R, Lm, T ) = R (i.e., the Hilbert-Einstein Lagrangian),
we recover the standard field equations in pure GR, namely,
Rμν − (1/2)gμνR = 8πTμν .

Taking into account the covariant divergence of the field
equations (2), we find the non-conservation equation of the
energy-momentum tensor Tμν :

∇μTμν = 1

8π + fm

[
∇ν(Lm fm) − Tμν∇μ fm

−Aν − 1

2
( fT∇νT + fL∇νLm)

]
, (4)

where we have used the fact that ∇μRμν = ∇νR/2 and the
mathematical property (�∇ν − ∇ν�)φ = Rμν∇μφ, valid
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for any scalar field φ. Moreover, we have defined

fm = fT + 1

2
fL , Aν = ∇μ( fT τμν). (5)

The trace of the field equations leads to a second-order
differential equation given by

3� fR + R fR − 2( f − 2 fm Lm) = (8π + fm)T + fT τ,

(6)

with τ being the trace of the tensor τμν . For the particular
case f (R, Lm, T ) = f (R), such an expression reduces to
the widely known dynamical equation for the Ricci scalar in
pure f (R) gravity theories [29,30]. Notice that non-linear
functions in R lead to a non-vanishing scalar curvature in the
exterior region of a compact star. For the sake of simplicity, in
this work we are focused on the algebraic function originally
proposed in Ref. [26], i.e., f (R, Lm, T ) = R+αT Lm , with
α being a matter-geometry coupling constant. In other words,
our main task will be to investigate the impact of the αT Lm

term on the internal structure of NSs and QSs.
For the above mentioned functional form, Eqs. (2) and (4)

reduce to

Gμν =
[
8π + α

2
(T + 2Lm)

]
Tμν + αLm(τμν − Lmgμν),

(7)

and

∇μTμν = α

8π + α(Lm + T/2)

[
∇ν

(
L2
m + 1

2
T Lm

)

−Tμν∇μ
(
Lm + T

2

)
− ∇μ(Lmτμν)

−1

2
(Lm∇νT + T∇νLm)

]
, (8)

respectively, where Gμν is the usual Einstein tensor. As
expected, the Einstein field equations Gμν = 8πTμν and
conservation equation ∇μTμν = 0 are recovered when
α = 0. Later we will examine the non-conservative effects
of Eq. (8) on the internal structure of compact stars.

In the next section, we are going to obtain the system
of differential equations that describe the hydrostatic equi-
librium state of compact stars for the two choices of perfect
fluid matter Lagrangian [31,32], i.e., Lm = p and Lm = −ρ.

3 Modified TOV equations

We discuss here some of the main procedures that lead to
the deduction of the hydrostatic equilibrium equation in the
context of f (R, Lm, T ) = R + αT Lm gravity model. To

study compact stars, such as NSs, magnetars and other astro-
physical structures, we assume these objects as being static
(no rotation) and spherically symmetric stellar systems [33].
Thus, we must use the appropriate metric in a convenient
coordinate system that describes the object being studied.
The most general metric describing the spacetime geometry
under this consideration is given by the line element

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin θ2dφ2), (9)

where ν and λ are radial functions that we want to determine
based on the field equations (7).

In addition, we consider that the dense matter can be
described as an isotropic perfect fluid represented by the fol-
lowing energy-momentum tensor:

Tμν = (p + ρ)UμUν + pgμν, (10)

with p and ρ representing the pressure and energy density of
the fluid, respectively. The quantity Uμ is the four-velocity,
which satisfies the normalization condition UμUμ = −1,
so it can be written as Uμ = e−ν/2δ

μ
0 . This implies that

T ν
μ = diag(−ρ, p, p, p) and T = −ρ + 3p.

As we can observe in Eq. (3), τμν depends on the matter
Lagrangian density Lm . Since there are two possibilities for
the matter Lagrangian that lead to the energy-momentum
tensor of a perfect fluid (10), i.e., Lm = p and Lm = −ρ (see
Ref. [34] and references therein for further discussion), we
have a degeneracy on the form of the field equations (7) which
will have an impact on the stellar structure equations. We will
adopt these two choices and analyze their implications on the
main macroscopic properties of compact stars, such as mass
and radius, in the context of f (R, Lm, T ) gravity. Let us start
with the possibility Lm = p.

3.1 Stellar structure equations for Lm = p

Using Lm = p, the field equations (7) reduce to

Gμν =
[
8π + α

2
(5p − ρ)

]
Tμν − αp2gμν, (11)

and hence the 00 and 11 components are given respectively
by

e−λ

(
λ′

r
− 1

r2

)
+ 1

r2 = 8πρ − α

2
(ρ − 5p)ρ + αp2, (12)

e−λ

(
ν′

r
+ 1

r2

)
− 1

r2 = 8πp + α

2
(3p − ρ)p, (13)

where the prime denotes differentiation with respect to the
radial coordinate r . In addition to the field equations, the
non-conservation equation of the energy-momentum tensor
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(8), for the index ν = 1, becomes

p′ + ν′

2
(ρ + p) = − αp(p′ − ρ′)

16π + α(5p − ρ)
. (14)

Similar to the pure general relativistic scenario, we rede-
fine the metric function λ(r) as

e−λ(r) = 1 − 2m(r)

r
, (15)

where m(r) represents the gravitational mass within a sphere
of radius r . Rearranging Eqs. (12)–(14), we get the differen-
tial equations required to describe static spherically symmet-
ric stellar structures in the f (R, Lm, T ) = R+αT Lm gravity
model with Lm = p, which are given by

dm

dr
= 4πr2ρ + αr2

2

[ρ

2
(5p − ρ) + p2

]
, (16)

dp

dr
= −

(ρ + p)
[
4πrp + m

r2 + αr
4 (3p − ρ)p

]
(

1 − 2m
r

) [
1 + αp

16π+α(5p−ρ)

(
1 − dρ

dp

)] , (17)

where we have considered a barotropic EoS in the form p =
p(ρ), so that ρ′ = (dρ/dp)p′.

3.2 Stellar structure equations for Lm = −ρ

In this case, Eq. (7) becomes

Gμν =
[

8π + 3α

2
(p − ρ)

]
Tμν − αρ2gμν, (18)

so that its 00 and 11 components are

e−λ

(
λ′

r
− 1

r2

)
+ 1

r2 = 8πρ + α

2
(3p − ρ)ρ, (19)

e−λ

(
ν′

r
+ 1

r2

)
− 1

r2 = 8πp + 3α

2
(p − ρ)p − αρ2. (20)

On the other hand, from the non-conservation equation of the
energy momentum tensor (8), we obtain

p′ + ν′

2
(ρ + p) = α

[
4ρρ′ + 3p(ρ′ − p′)

]
16π + 3α(p − ρ)

. (21)

Similarly to the previous case, in view of Eqs. (19)–(21),
the modified TOV equations for the matter Lagrangian Lm =

−ρ take the form

dm

dr
= 4πr2ρ + αr2

4
(3p − ρ)ρ, (22)

dp

dr
= −

(ρ + p)
[
4πrp + m

r2 + 3αr
4 (p − ρ)p − αr

2 ρ2
]

(
1 − 2m

r

) {
1 + α[3p(1−dρ/dp)−4ρ(dρ/dp)]

16π+3α(p−ρ)

} .

(23)

For both choices of the matter Lagrangian density, the
modified TOV equations will be solved from the center at
r = 0 to the surface of the star at r = rsur satisfying the
boundary conditions:

m(0) = 0, ρ(0) = ρc, (24)

where ρc is the central energy density and rsur is determined
when the pressure vanishes. In this way, the total gravitational
mass of the compact star will be given by M ≡ m(rsur). Given
a specific EoS for dense matter, we will next construct the
mass-radius diagrams for both sets of differential equations.

4 Results

Here, we will discuss the impact of f (R, Lm, T ) theory on
the internal structure of relativistic compact stars. At first
we investigate the case Lm = p and then the case Lm =
−ρ, where the free parameter for both theories is α. All our
numerical results are therefore shown in terms of α, which
is given in μ1 = 10−78 s4/kg2 units (i.e., 1.46 × 1010 m2

in geometric units) for Lm = p and μ2 = 0.1μ1 for the
second choice Lm = −ρ. Of course, the solutions for α = 0
correspond to pure Einstein gravity.

As input for the equations of stellar hydrostatic equilib-
rium, we utilized two realistic equations of state (EoS). The
first one is derived from a relativistic mean-field approach,
known as the IU-FSU parameterization [35]. We opted for
this parameterization due to its satisfactory capability in
explaining both nuclear properties [36] and stellar matter
properties [37]. To describe the crust of neutron stars (NSs),
we adopted the complete EoS proposed by Baym, Pethick,
and Sutherland (BPS) [38]. Subsequently, we compared the
results obtained with the IU-FSU with those derived from an
EoS for quark matter. Specifically, we employed the MIT bag
model [39]. For a more extensive and didactic explanation on
the EoS, we refer the reader to Refs. [40,41] and references
therein.

Given a specific central densityρc = 1.5×1015 g/cm3, we
begin our analysis by solving the stellar structure equations
(16) and (17) for hadronic matter, where we vary the theory
parameter in the range α ∈ [−0.3, 0.3]μ1. This solution is
shown in the left panel of Fig. 1, where we observe that
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Fig. 1 Radial behavior of the
mass distribution m, pressure p
and non-conservative term X for
neutron stars with Lm = p (left
panel) and quark stars with
Lm = −ρ (right panel). In both
panels we have considered the
same central density value
ρc = 1.5 × 1015 g/cm3.
Furthermore, for the free
parameters we have adopted
different ranges, i.e.,
α ∈ [−3.0, 3.0]μ1 for Lm = p
and α ∈ [−1.5, 1.5]μ2 for
Lm = −ρ. For hadronic matter,
the main consequence of the
αT Lm term is a decrease in the
total mass m(rsur) and an
increase in the radius rsur as α

increases from its negative
values. On the other hand, for
quark matter, both the total mass
and radius decrease with
increasing α

the mass profile (top plot) is strongly affected by α near the
surface of the NS, while the pressure (middle plot) undergoes
substantial changes only in the intermediate region. As a
result, the mass M increases (decreases) as α becomes more
negative (positive). Note further that the radius of the star
grows with increasing α from its negative values. However,
as we will see below in the M − ρc relations, this behavior
can be reversed depending on the value of ρc.

From Eq. (8), it is evident that the null covariant diver-
gence of the energy-momentum tensor is not achieved in
f (R, Lm, T )gravity. In order to explore the non-conservative
effects of this theory on the stellar structure, we will do a
graphical analysis of the right-hand term of Eq. (8). For the
matter Lagrangian density Lm = p, such term becomes

X1 = − αp(p′ − ρ′)
16π + α(5p − ρ)

, (25)

as can be seen in Eq. (14). The lower left plot of Fig. 1 illus-
trates the magnitude of non-conservative effects along the
radial coordinate of the NS. As expected, such effects become
stronger as |α| increases. In particular, X1(r) indicates that
the violation of the conservation of energy-momentum ten-
sor has a greater repercussion in the intermediate zone, while
its impact is irrelevant both at the center and at the surface
of the star.

Similarly, we obtain the solution of the modified TOV
equations for Lm = −ρ, namely, Eqs. (22) and (23). Consid-
ering the same central density value, the right plot of Fig. 1
displays the radial profile of the mass, pressure and non-

conservative term for quark matter. In this case, the non-
conservative effects are quantified by

X2 = α
[
4ρρ′ + 3p(ρ′ − p′)

]
16π + 3α(p − ρ)

, (26)

obtained from Eq. (21). It is observed that both the mass
and the radius of the quark star decrease with the increase
of the parameter α, which is varied in the interval α ∈
[−1.5, 1.5]μ2. The non-conservative impact, measured
through X2, on the star has a similar behavior to X1, however,
it is no longer zero at the surface. This last characteristic in
X2 is due to the fact that the energy density is not zero at
the surface of a quark star. As a consequence, given a central
density, we can conclude that the internal structure of a com-
pact star is strongly modified as the non-conservative effects
are intensified by increasing |α|.

For hadronic matter EoS in Fig. 2, we have selected the
IUFSU model for both choices of the matter Lagrangian den-
sity Lm . We observe for the first case (upper row), that an
increase for positive α leads to a decrease in the maximum-
mass values with respect to the GR counterpart. On the
other hand, for sufficiently negative values of α (see brown
curves), it is not possible to reach the critical NS since
the curve continues to grow. Concerning the radius of the
star, rsur is strongly affected by the presence of the αT Lm

term for both positive and negative values of α. According
to the M − ρc relation (see right panel), the gravitational
mass undergoes large alterations for central densities above
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Fig. 2 Gravitational mass as a function of radius (left side) and central
density (right side) for NSs in f (R, Lm , T ) = R + αT Lm modified
gravity using the IUFSU model, where the particular case α = 0 corre-
sponds to the pure GR solutions. The numerical results in the top row
correspond to Lm = p, where α is given in μ1 = 10−78 s4/kg2 units
(which in geometric units assumes the value 1.46 × 1010 m2). Mean-
while, in the lower row we have chosen Lm = −ρ, with α given in
μ2 = 10−79 s4/kg2 units. The cyan region represents the NS in the qui-

escent low mass X-ray binary (LMXB) NGC 6397 [42–44]. The blue
and red lines stand for the massive NS pulsars J1614-2230 [45] and
J0348+0432 [46], respectively. The radius of PSR J0740+6620 (which
has a gravitational mass of 2.08 ± 0.07 M�) from NICER and XMM-
Newton Data [25] is indicated by the green top dot with their respective
error bars. Moreover, the orange bottom dot represents the radius esti-
mate for a 1.4 M� NS [25]

1015 g/cm3, while the changes are irrelevant below this value
of ρc. In addition, the lower row of Fig. 2 presents the results
for Lm = −ρ, where we can observe the strong impact of α

on the mass and radius for the full range of central densities.
Specifically, regardless of the value of ρc, the gravitational
mass increases (decreases) for negative (positive) α. Unlike
the first choice, here it is always possible to obtain a critical
configuration, that is, a NS of maximum mass on the M −ρc
curve. Another peculiar and interesting feature of this choice
is that the radius does not decrease (and on the contrary, only
increases as ρc increases) when positive α is large enough

in the small-mass region (i.e., when M � 0.3 M�), see for
example the curve obtained for α = 0.4μ2.

In Fig. 3 we exhibit our results for quark stars adopting the
MIT bag model EoS. For Lm = p, we have a behavior similar
to the NS case, that is, the mass decreases (increases) slightly
for negative (positive) α in the low-central-density region,
however, this behavior is inverted after a certain value of
ρc. Indeed, it is observed that the greatest modifications take
place when ρc � 1015g/cm3. On the other hand, for quark
stars with Lm = −ρ, the effects of α on the M−rsur relation
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Fig. 3 Mass-radius diagrams (left) and mass versus central density (right) for QSs with MIT bag model EoS in f (R, Lm , T ) = R+αT Lm gravity,
where several values of α have been considered. As in Fig. 2, the top and bottom rows correspond to Lm = p and Lm = −ρ, respectively

are irrelevant at small masses. Nonetheless, the modifications
induced by α become significant when M � 1.2 M�.

For hadronic stars, and case Lm = p we can see that the
results for massive stars adjust better with the constraints of
the low mass -ray binary (LMXB) NGC 6397 [42–44], but
the case Lm = −ρ has more models outside the constrains,
specifically models for positive α. On the other this type of
constraint offer useful information for stars below approxi-
mately 2.0 M�, in specific for stars of 1.4 M�. For the case
of quark stars the behavior repeats in a more strongly way.
Note further that, for hadronic stars, considering the case of
Lm = p, our findings show that for negative values of α

results are compatible with the massive NS pulsars J1614-
2230 [45] and J0348+0432 [46], contrarily to the case of
positive values of α, which not satisfy the constraints. In the
case of quark stars only the cases of negative α satisfy the
constraints from J1614-2230 and J0348+0432.

For an isolated static spherical star, described by the
line element (9), the surface gravitational redshift estab-
lish a relation between mass and radius, namely zsur =
(1−2M/rsur)

−1/2 −1. Here, we can also calculate the gravi-
tational redshift of light emitted at the surface of the compact
stars belonging to the several sequences shown in Figs. 2
and 3. For hadronic matter, Fig. 4 exhibits the behavior of
zsur as a function of mass for for both choices of Lm . As
expected, due to the peculiar behavior of the different curves
in the M − rsur diagrams, the redshift is strongly affected by
the theory parameter α when Lm = p for sufficiently high
masses, while the changes are smaller for Lm = −ρ. Note
further that the redshift behaves similarly for quark stars, as
shown in Fig. 5.
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Fig. 4 Surface gravitational redshift zsur plotted against the total mass M for neutron stars in f (R, Lm , T ) gravity with both choices of Lm . We
have considered the same range for α as in Fig. 2, where α = 0 (black curve) gives the redshift of the configuration sequence in pure Einstein
gravity

Fig. 5 Gravitational redshift of light emitted at the surface of quark stars as a function of the gravitational mass for the same values of α as adopted
in Fig. 3. Remark that in the case Lm = −ρ, the redshift deviates substantially from the GR results only for high masses

5 Final remarks

In summary, in this work we have investigated the phe-
nomenology of compact stars within the framework of
f (R, Lm, T ) gravity theories, focusing on the specific func-
tional form f (R, Lm, T ) = R + αT Lm . The gravitational
field equations for this functional form were outlined, and the
non-conservation equation for the energy-momentum tensor
was derived. In addition, we have considered two choices
for the matter Lagrangian density, namely Lm = p and
Lm = −ρ, and examined their impact on the equilibrium
structure of relativistic compact stars. The modified stellar
structure equations have been derived separately for the two
adoptions of Lm , so that the conventional TOV equations are
retrieved when α = 0.

This study began with an introduction emphasizing the
relevance of testing GR in extreme environments, such as
NSs, and then introduced the f (R, Lm, T ) gravity model.
The central idea was to examine the deviations introduced
by the αT Lm term with respect to the GR counterpart when
analyzing the most basic properties of a compact star. For two
realistic EoSs of dense matter (IUFSU and MIT bag model),
the resulting mass-radius diagrams were analyzed for var-
ious values of the free parameter α. As a result, our find-
ings indicate that the parameter α has a significant impact
on the mass-radius relations for both NSs and QSs. We
have also explored the influence of α on the surface grav-
itational redshift for the different equilibrium configuration
sequences.

Specifically, for Lm = p, our outcomes have revealed
that α has a prominent effect on the gravitational mass for
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ρc � 1015 g/cm3, while the changes are irrelevant for central
densities below this value. The maximum mass decreases as
a consequence of using positive values of α, however, it is
not possible to reach a maximum-mass point (i.e., a critical
configuration) when α is sufficiently negative. On the other
hand, in the case of hadronic stars with Lm = −ρ, both the
radius and the mass suffer significant deviations from their
general relativistic value throughout the range of central den-
sities, which does not happen for Lm = p. We can conclude
therefore that each choice of Lm has a noticeably different
influence on the radius and mass of compact stars composed
of hadronic matter and quark matter. Similarly to the results
reported in previous studies in the strong-field regime [47–
54], here we have shown that the non-conservative effects
(product of the modification of conventional GR) play an
important role within compact stars in f (R, Lm, T ) gravity
theories.

We also confronted our results with the modern astro-
physical constraint: the neutron star in the quiescent low
mass X-ray binary (LMXB) NGC 6397 [42–44]. We observe
that all our models and chosen parameters can satisfy this
important constraint. Note further that our findings for suffi-
ciently negative values of α are compatible with the massive
NS pulsars J1614-2230 [45] and J0348+0432 [46]. Remark-
ably, our mass-radius predictions for the choice Lm = −ρ

using hadronic matter favors the description of the pulsar
PSR J0740+6620 from NICER and XMM-Newton Data
[25], while the choice Lm = p does not provide consistent
results with this observational measurement. Note further
that the EoSs adopted in this study do not provide maxi-
mum masses above 2M� in pure Einstein gravity, however,
f (R, Lm, T ) = R + αT Lm gravity with α sufficiently neg-
ative favors the description of different massive millisecond
pulsars with masses greater than two solar masses. Thus,
this work contributes to the understanding of the impact of
f (R, Lm, T ) gravity on the internal structure of compact
stars and provides valuable insights for future investigations
in the field.
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