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Abstract We present for the first time a Friedmann-like
construction in the framework of an osculating Finsler–
Randers–Sasaki (F–R–S) geometry. In particular, we consider
a vector field in the metric on a Lorentz tangent bundle, and
thus the curvatures of horizontal and vertical spaces, as well
as the extra contributions of torsion and non-linear connec-
tion, provide an intrinsic richer geometrical structure, with
additional degrees of freedom, that lead to extra terms in
the field equations. Applying these modified field equations
at a cosmological setup we extract the generalized Fried-
mann equations for the horizontal and vertical space, show-
ing that we obtain an effective dark energy sector arising
from the richer underlying structure of the tangent bundle.
Additionally, as it is common in Finsler-like constructions,
we obtain an effective interaction between matter and geom-
etry. Finally, we consider a specific model and we show
that it can describe the sequence of matter and dark-energy
epochs, and that the dark-energy equation of state can lie in
the quintessence or phantom regimes, or cross the phantom
divide.

1 Introduction

General Relativity (GR) has been proved a successful the-
ory of gravity, tested with high precision at Earth-based and
Solar System experiments (perihelion precession of Mercury,
gravitational redshift, Shapiro time-delay effect, etc) [1].
Nevertheless, at the theoretical level one faces the problem of
non-renormalizability [2], since GR cannot be incorporated
in a quantum description [3]. Additionally, at the cosmologi-
cal level we still have the open issues of dark matter and dark
energy [4,5], as well as possible tensions between predictions
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and observations, such as the H0 [6] and σ8 tensions [7] (for
a review see [8]). Hence, a large amount of research was
devoted in the construction of various gravitational modifi-
cations, namely theories that possess general relativity at as a
particular limit, but which in general exhibit richer behavior,
theoretically and cosmologically improved [9–12].

The basic procedures towards modified gravity construc-
tions is to start from the Einstein-Hilbert Lagrangian and add
extra terms, resulting to f (R) gravity [13,14], f (G) gravity
[15], Weyl gravity [16], Lovelock gravity [17], etc. Further-
more, one can consider alternative geometries, beyond the
Riemannian one, such is the torsional formulation of gravity,
and construct extensions such as f (T ) gravity [11], f (T, TG)

gravity [18], f (T, B) gravity, etc. In similar lines, one can
use non-metricity, resulting to symmetric teleparallel gravity
[19,20], f (Q) gravity [21], etc.

However, one can proceed to more radical geomet-
rical modifications, namely use Finsler and Finsler-like
geometries, which have richer structure than Riemannian
framework, and use them in order to construct gravitational
theories [22–53]. These modified theories of gravity use gen-
eralized metric structures, where a vector field is incorporated
in the geometrical construction, and have contributed with
different directions in the development of locally anisotropic
models for the gravitational field theory and cosmology.

In Finsler and Finsler-like geometries more than one con-
nection and curvature appear, which depend on the position
and velocity, in contrast to GR in which there is only the
Levi-Civita connection and the curvature of the Riemannian
space. Therefore, gravity can be studied in a different way
in the framework of an 8-dimensional Lorentz tangent bun-
dle or a vector bundle which includes the observer (veloc-
ity/tangent vector) with extra internal/dynamical degrees of
freedom [25–30,54], as well as in an osculating Riemannian
and Barthel framework [55–57].
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Concerning this approach, all kinds of generalized met-
ric theories belong to the larger class of the so called
“anisotropic field theories”, since Lorentz violations, veloc-
ity fields and torsions produce anisotropies in the space
and the matter sector [40,42,58,59]. Hence, these inter-
nal geometrical anisotropies, which should not be confused
with spacetime anisotropies that may appear in Riemannian
geometry too (e.g. in Bianchi cases) are induced by internal
direction/velocity y-variables in addition to the position x-
variables in the structure of the base manifold. In these lines,
geometrical anisotropies can be considered as a “potential”
or a tidal field in the matter sector [60]. In cases where an
anisotropy is included in the metric structure of spacetime,
as it appears in Finsler and Finsler-like cosmologies, it is
incorporated in the effective energy–momentum tensor of the
anisotropic structure, which could potentially lead to energy
exchange between geometry and matter [61]. Finally, simi-
larly to general relativity, geometrical effects are produced
not only by the distribution of mass-energy but also by its
motion [62].

In this work we propose a novel geometrical struc-
ture, namely that of Finsler–Randers–Sasaki type, in order
to extract generalized gravitational field equations. Then,
applying them in a cosmological framework we construct
Finsler–Randers–Sasaki cosmology, which is characterized
by modified Friedmann equations with new terms that depend
on the underlying geometry and the tangent bundle features.
As we will show, these terms can lead to interesting cos-
mological implications, and describe the thermal history of
the Universe, as well as the effective dark energy sector.
The plan of the work is the following: In Sect. 2 we provide
the basic concepts of Finsler–Randers–Sasaki geometry, and
we extract the general gravitational field equations. Then,
in Sect. 3 we proceed to the application at a cosmological
framework, and we extract the modified Friedmann equa-
tions for the horizontal and vertical subspaces, investigating
also specific examples. Finally, in Sect. 4 we discuss our main
results.

2 Finsler–Randers–Sasaki geometry and gravity

In this section we present the basics of Finsler–Randers–
Sasaki geometry and gravity. We will start by introducing
some geometrical aspects from Finsler geometry and the
oscullating Riemannian metric, and then we will use it to
construct a gravitational theory.

2.1 Finsler–Randers–Sasaki geometry with oscullating
Riemannian metric

We consider an n-dimensional bundle M , as well as its tan-
gent bundle T M , with a fibered and differentiable (smooth)
metric function F(x, y) with the following properties:

1. F is continuous on T M and smooth on˜T M ≡ T M\{0},
namely the tangent bundle minus the null set {(x, y) ∈
T M |F(x, y) = 0}.

2. F is positively homogeneous of first degree on its second
argument:

F(xμ, kyα) = kF(xμ, yα), k > 0. (1)

3. For each x ∈ M the fundamental metric tensor:

gi j (x, y) = ±1

2

∂2F2

∂yi∂y j
(2)

is non-singular, with i, j = 0, 1, . . . , n − 1.

A Lorentz tangent bundleT M over a spacetime 4-dimensional
manifold M is a fibered 8-dimensional manifold with local
coordinates {xμ, ya}, where the Greek indices of the space-
time variables x are κ, λ, μ, ν, . . . = 0, . . . , 3 and the Latin
indices of the fiber variables y are a, b, . . . , f = 0, . . . , 3.
An extended Lorentzian structure on T M can be provided if
the background manifold is equipped with a Lorentz metric
tensor of signature (−1, . . . , 1). As it is known, a metric fol-
lowing the above three properties is called a Finsler metric
[22,23].

Additionally, one can introduce the oscullating Rieman-
nian metric on a differentiable manifold [63]. In particular,
this can be defined by a tangent vector field Y : U → TU ,
where U ⊂ M is an open neighborhood on M with the prop-
erty Y (x) �= 0 ∀x ∈ U . In such a case the metric can be
defined by the relation:

gi j (x) = gi j (x, y)|y=Y (x), x ∈ U. (3)

In the following we will consider that all non-vanishing
global vector fields, defined on the spacetime manifold, sat-
isfy M y(x) = Y (x) [64]. The pair (U, gi j (x, y(x)) is called
Y -oscullating Riemannian metric associated to (M, F) man-
ifold.

As it is known, the length of a curve c in a Finsler space
is given by the integral

l(c) =
∫ b

a
F(x, y)dτ, (4)

with y = dx
dτ

and τ an affine parameter along the curve. In a
Finsler–Randers (FR) spacetime [65] the metric is given by
the relation [66,67]:

F(x, dx) = (−aμν(x)dx
μdxν

)1/2 + fαdx
α, (5)

where aμν(x) is a Riemannian pseudo-metric and fα a cov-
ector with || fα|| � 1. Note that the 1-form fαdxα can be
interpreted as the “energy” produced by the anisotropic force
field fα , and hence due to (4) and (5) the integral

∫ b
a F(x, dx)
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represents the “total work” that a particle requires in order to
move along a path with proper time τ .

We proceed by writing the corresponding Lagrangian
function of an FR space with an oscullating Riemannian met-
ric, which is

F(x, y(x)) = [−gμν(x, y(x))y
μ(x)yν(x)

]1/2

+ fα(x)yα(x), (6)

with || fα|| � 1. We mention here that in the above expres-
sion the second term fα(x)yα(x) can be interpreted as the
“power” that is produced due to propagation of particles
through the force-field fα(x). Now, from (2), (3) and (6)
we can extract the metric tensor vαβ(x, y(x)) as

vαβ(x, y(x)) = gαβ(x) + hαβ(x, y(x)), (7)

where

hαβ(x, y(x)) = 1

L
(Aβgαγ + Aγ gαβ + Aαgβγ )yγ (x)

+ 1

L3 Aγ gαεgβδ y
γ (x)yδ(x)yε(x), (8)

with L =
√

−gαβ yα(x)yβ(x) and ||Aγ || << 1. Due to rela-
tion (8), the metric (7) can be called “weak Finslerian metric”
[67]. Hence, as we can see from (7), the term hαβ(x, y) can be
considered as a perturbation. For convenience, and in order
to make notation lighter, in the following we will write y
instead of y(x).

Let us now introduce the Sasaki-type metric on T M [68].
Such a metric has the form:

G = gμν(x, y) dxμ ⊗ dxν + vαβ(x, y) δyα ⊗ δyβ. (9)

In our approach we consider that the Finslerian metric
vαβ(x, y) is given by (7), and the unified adapted frame is
defined in the form EA = {δμ, ∂̇α} with

δμ = δ

δxμ
= ∂

∂xμ
− Nα

μ(x, y)
∂

∂yα
(10)

and

∂̇α = ∂

∂yα
, (11)

and where EA is the adapted basis of the tangent space TxM .
Furthermore, we define the dual basis E A = (dxμ, δyα) with

δyα = dyα + Nα
λ dx

λ, (12)

where E A is the adapted basis of the cotangent bundle T ∗M
and Nα

λ are the components of the nonlinear connection with
α, λ = (0, 1, 2, 3). The nonzero coefficients of a canonical
and distinguished d-connection D on T M read as [22]:

Lμ
νκ = 1

2
gμρ

(
δκgρν + δνgρκ − δρgνκ

)
(13)

Lα
βκ = ∂̇βN

α
κ + 1

2
vαγ

(
δκvβγ − vδγ ∂̇βN

δ
κ − vβδ ∂̇γ N

δ
κ

)
(14)

Cμ
νγ = 1

2
gμρ∂̇γ gρν (15)

Cα
βγ = 1

2
vαδ

(
∂̇γ vδβ + ∂̇βvδγ − ∂̇δvβγ

)
. (16)

Finally, concerning the non-linear connection, we choose a
Cartan-type of the form:

Nα
μ = 1

2
yβgαγ ∂μgβγ , (17)

which is known to have interesting applications [69].
We now have all the geometrical quantities in order to

calculate the curvature tensors. In particular, in such a frame-
work the Riemann and Ricci curvature tensors of the hori-
zontal space are defined as [22,23]:

Rμ
νκλ = δλL

μ
νκ − δκ L

μ
νλ + Lρ

νκ L
μ
ρλ − Lρ

νλL
μ
ρκ + Cμ

να�α
κλ

(18)

Rμν = Rκ
μνκ = δκ L

κ
μν − δνL

κ
μκ + Lρ

μνL
κ
ρκ − Lρ

μκ L
κ
ρν

+ Cκ
μα�α

νκ , (19)

where �α
νκ represents the curvature of the nonlinear connec-

tion and is defined as

�α
νκ = δNα

ν

δxκ
− δNα

κ

δxν
. (20)

Moreover, the curvature tensors of the vertical space are given
by:

Sα
βγ δ = ∂̇δC

α
βγ − ∂̇γC

α
βδ + Cε

βγC
α
εδ − Cε

βδC
α
εγ (21)

Sαβ = Sγ
αβγ = ∂̇γC

γ
αβ − ∂̇βC

γ
αγ + Cε

αβC
γ
εγ − Cε

αγC
γ
εβ .

(22)

Thus, the generalized Ricci scalar curvature in the adapted
basis is:

R = gμνRμν + vαβ Sαβ = R + S, (23)

where

R = gμνRμν , S = vαβ Sαβ. (24)

In the same lines, one can define the torsion tensor as

T α
νβ = ∂̇βN

α
ν − Lα

βν, (25)

where Lα
βν is given in (14).

2.2 Finsler–Randers–Sasaki gravity

Having presented the Finsler–Randers–Sasaki geometrical
framework, we can use it in order to construct a gravitational
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theory. An Einstein-Hilbert-like action on T M can be defined
as

K =
∫
N

d8U
√|G|R + 2κ

∫
N

d8U
√|G|LM , (26)

for some closed subspace N ⊂ T M , where LM is the stan-
dard matter Lagrangian and κ is the gravitational constant.
Note that

d8U = dx0 ∧ · · · ∧ dx3 ∧ dy4 ∧ · · · ∧ dy7, (27)

while the absolute value of the metric determinant |G| is√|G| = √−g
√−v, with g, v the determinants of the metrics

gμν, vαβ respectively, as it follows from the form of (9).
Performing variation of the above action in terms of gμν ,

vαβ and Nα
κ we extract the field equations as (the details are

presented in Appendix A):

Rμν − 1

2
(R + S) gμν +

(
δ(λ
ν δκ)

μ − gκλgμν

)

×
(
DκT β

λβ − T γ
κγ T

β
λβ

)
= κTμν (28)

Sαβ − 1

2
(R + S) vαβ +

(
vγ δvαβ − δ(γ

α δ
δ)
β

)

×
(
DγC

μ
μδ − Cν

νγC
μ
μδ

)
= κYαβ (29)

gμ[κ ∂̇αL
ν]
μν + 2T β

μβg
μ[κCλ]

λα = κZκ
α , (30)

where we have defined the “energy–momentum tensors”

Tμν ≡ − 2√|G|
�

(√|G|LM
)

�gμν

= − 2√−g

�
(√−gLM

)
�gμν

(31)

Yαβ ≡ − 2√|G|
�

(√|G|LM
)

�vαβ

= − 2√−v

�
(√−vLM

)
�vαβ

(32)

Zκ
α ≡ − 2√|G|

�
(√|G|LM

)
�Nα

κ

= −2
�LM

�Nα
κ

, (33)

where δ
μ
ν and δα

β are the Kronecker symbols.
Note that the second field equation (29) is simplified to:

− 1

2
Rvαβ = κYαβ, (34)

where in our case Sαβ and S are zero and the mixed Car-
tan symbols Cμ

νγ are also zero as we can see from (15).
Additionally, we mention that the third field equation (30)
is identically zero since the coefficients Lρ

μν are identical to
the classical to Christoffel coefficients of the FRW model,

thus they do not depend on the vertical coordinates yα . The
mixed Cartan coefficients Cμ

νγ are zero as we mentioned and
the mixed energy–momentum tensor Zκ

α is also zero from
relation (33) since we do not consider the matter field to
depend on the non-linear connection Nα

κ .
Let us make some remarks in order to give a physical

interpretation of Eqs. (28), (29) and (30). As one can see,
they may contain a source of local-matter creation and con-
tribute to the anisotropic energy–momentum tensors Tμν

and Yαβ of the horizontal and vertical spaces. Hence, the
energy–momentum tensor Tμν includes additional informa-
tion of the action of the local anisotropy of matter fields.
Yαβ , on the other hand, is an object with no equivalent in
Riemannian gravity, and it incorporates more information of
intrinsic anisotropy, which is produced from the vertical met-
ric structure vαβ , and it includes additional gravitational field
in the framework of the osculating tangent bundle. Finally,
the energy–momentum tensor Zκ

α reflects the dependence
of matter fields on the nonlinear connection Nα

μ , a structure
which induces an interaction between internal and external
spaces. This tensor is different from Tμν and Yαβ , which
depend on just the external or internal structure respectively.

Lastly, we introduce a new tensor, quantifying the covari-
ant derivative of the torsion tensor, namely

Bμν = DμT β
νβ = δμT β

νβ − Lκ
μνT

β
κβ. (35)

Using this definition we can re-write (28) as:

Rμν − 1

2
(R + S) gμν +

(
δ(λ
ν δκ)

μ − gκλgμν

)
Bκλ = κTμν ⇒

Rμν − 1

2
(R + S) gμν + B(μν) − gμνB = κTμν, (36)

where we have omitted from the above relation the term
T γ

κγ T β
λβ since it is of second order. Hence, taking the covari-

ant derivative of (36) we extract the continuity equation for
our theory, namely

Dμ(B(μν) − gμνB) = κDμTμν. (37)

As expected, and as we discussed in the Introduction, Finsler–
Randers–Sasaki gravity, similarly to other Finsler-like mod-
els, gives rise to an effective interaction between geometry
and matter, which can have interesting cosmological impli-
cations.

3 Cosmology

In this section we apply the Finsler–Randers–Sasaki geom-
etry and the oscullating Riemannian framework at a cosmo-
logical setup, and using the general field equations we derive
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the generalized Friedmann equations. Then we will provide
specific examples.

3.1 General case

We consider the usual homogeneous and isotropic Friedmann–
Robertson–Walker (FRW) metric

gμν(x) = diag

(
−1,

a2(t)

1 − kr2 , a2(t)r2, a2(t)r2sin2θ

)
,

(38)

with a(t) the usual scale factor and k = 0,±1 the spatial
curvature, and substituting it in (9) we find:

G = −dt2 + a2(t)

1 − kr2 dr
2+a2(t)r2dθ2+a2(t)r2sin2θdφ2

+(gαβ(x) + hαβ(x, y))δyα ⊗ δyβ. (39)

For simplicity, in the following we focus on the spatially-flat
case k = 0.

We consider the energy momentum tensor for a perfect
fluid in the horizontal and the vertical space:

Tμν = (ρm + pm)uμuν + pmg
μν (40)

Y αβ = (ρm + pm)yα yβ + pmvαβ, (41)

where ρm and pm are respectively the energy density and
pressure of the matter perfect fluid, while uμ and yα are the
velocities of the fluid in the horizontal and vertical space
respectively. We notice from relations (41) and (7), (8), that
the energy momentum tensor Y αβ of the vertical space con-
stitutes an anisotropic perturbation of the horizontal energy
momentum tensor Tμν .

In order to proceed, we have to consider an ansatz for Aγ

and yγ . Firstly, it proves convenient to introduce the follow-
ing scalars:

W0 = A0y
0 (42)

W1 = A1y
1 (43)

W2 = A2y
2 (44)

W3 = A3y
3, (45)

and as we can see, W0 represents the time-anisotropic contri-
bution of our space while W1,W2,W3 express the directional
components of the anisotropic contribution. In this work we
will focus on the case considering y2 = y3 = 0 in order to
have only a dependance on the parameter t :

Aγ = (A0(t), A1(t), 0, 0) (46)

yγ = (y0, y1, 0, 0), (47)

with y0, y1 constants, and A0(t), A1(t) time-dependent func-
tions, in agreement with FRW symmetries.

Inserting the G-metric from (39) into the horizontal field
equation (28) of the previous section we finally extract the
generalized Friedmann equations of the horizontal and ver-
tical space (extracted as (B15), (B16) and (B22), (B23) in
Appendix B) as

[
1 − 5

2L(t)
W1(t)

] [
ȧ(t)

a(t)

]2

− 5

2L(t)
[Ẇ0(t) + Ẇ1(t)] ȧ(t)

a(t)
= κ

3
ρm(t) (48)

[
1 − 5

4L(t)
W1(t)

]
ä(t)

a(t)
+ 1

2

[
ȧ(t)

a(t)

]2

− 5

2L(t)
Ẇ1(t)

ȧ(t)

a(t)
+ 5

4L(t)
[Ẅ0(t)+Ẅ1(t)]= − κ

2
pm(t),

(49)

and

{
pm(t) + 1

2κ

{
ä(t)

a(t)
+

[
ȧ(t)

a(t)

]2
}}

×
{

1 − 1

L(t)
[3W0(t) + W1(t)]

+ 1

L(t)3 (y0)2[W0(t) + W1(t)]
}

= [ρm(t) + pm(t)](y0)2, (50){
pm(t) + 1

2κ

{
ä(t)

a(t)
+

[
ȧ(t)

a(t)

]2
}}

×
{

2 − 3

L(t)
[W0(t) + 3W1(t)]

}

= L(t)2[ρm(t) + pm(t)], (51)

with L(t) = √
(y0)2 − a(t)2(y1)2. Finally, the continuity

equation (37) under the above considerations becomes:
[

1 − 15

4L(t)
W1(t)

]
ρ̇m(t)

= −3
ȧ(t)

a(t)
[ρm(t) + pm(t)][1 − 5W1(t)]

−5W1(t)
[
(y0)2 − L(t)2

]
2L(t)3

[
ȧ(t)

a(t)

]
ρm(t). (52)

As expected and as usual, out of the three Eqs. (48), (49),
(52) only two are independent, while out of the (50), (51),
(52) only two are independent.

As we observe, in Finsler–Randers–Sasaki cosmology we
obtain extra terms in the Friedmann equations, arising from
the richer geometrical structure. In particular, the anisotropic
torsion terms quantified by the covector field Aμ introduce
additional degrees of freedom on the tangent bundle of space-
time, which provide the extra contributions in the Friedmann
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equations. In the case where the internal geometrical struc-
ture disappears, namely when W0 and W1 become zero, the
above equations recover the standard Friedmann equations.
Additionally, as it was discussed above, in the scenario at
hand we obtain an interaction between geometry and matter,
which is now clear by the form of (52), and which in the case
W0 = W1 = 0 recovers the standard conservation equation
too.

We can re-write the Friedmann equations (48), (49) in
their standard form

3H2 = κ (ρm + ρDE ) (53)

2Ḣ = −κ (ρm + ρDE + pm + pDE ) , (54)

with H(t) = ȧ(t)/a(t) the Hubble function, and where we
have introduced an effective dark energy density and pressure
of the form

κρDE = 15

2L
H(W1H + Ẇ0 + Ẇ1) (55)

κpDE = − 5

2L

[
W1(Ḣ + H2) + Ẇ1H − Ẅ0 − Ẅ1

]
, (56)

where we have emitted the explicit time-dependence of the
various quantities in order to make the notation lighter. Thus,
the dark-energy equation-of-state parameter is defined as

wDE ≡ pDE

ρDE
. (57)

Additionally, the conservation equation (52) can be writ-
ten as

ρ̇m + 3H(ρm + pm) = Q, (58)

where the interaction term Q is given by

Q ≡ 15

4L
W1ρ̇m − 5

2L3 W1

[
(y0)2 − L2

]
Hρm + 15W1H.

(59)

Hence, differentiating (48) and inserting into (49) using (59)
we also acquire

ρ̇DE + 3H(ρDE + pDE ) = −Q. (60)

One can now clearly see that in the scenario of Finsler–
Randers–Sasaki gravity and cosmology we obtain an
interaction between geometry and matter, and therefore an
interaction between the effective dark energy and matter sec-
tors. Such an interaction is common in Finsler-like cosmolo-
gies [27,51,53,59,70] and it is very interesting since inter-
acting cosmologies [71–75] are known to have many advan-
tages, including solving the coincidence problem [76,77] as
well as alleviating cosmological tensions [78,79].

3.2 Specific model

For completeness, in this subsection we will examine a
specific model. As one can see from the general Friedmann
equations (48), (49), or equivalently from the effective dark-
energy sector (55), (56), the appearance of the arbitrary func-
tions W0(t) and W1(t), i.e. of A0(t), A1(t), makes the result-
ing cosmological phenomenology very capable. The only
point that one should be careful is that the argument of the
square root in L(t) should be positive, and thus y1 should be
suitably smaller than y0.

Let us investigate a specific example. For simplicity we
focus on dust matter, namely we assume that pm = 0. We
solve the Eqs. (48), (50) and (52) numerically, and as inde-
pendent variable we use the redshift 1 + z = 1/a (we set
the present scale factor a0 = 1). Furthermore, we intro-
duce the matter and dark energy density parameters, �m ≡
κρm/(3H2) and �DE = κρDE/(3 H2) respectively. Lastly,
we impose �DE (z = 0) ≡ �DE0 ≈ 0.69 and �m(z = 0) ≡
�m0 ≈ 0.31 in agreement with observations [80].

We present the evolution of �m(z) and �DE (z) in the
upper graph of Fig. 1. As we can see, we can recover the
universe thermal history, i.e. the succession of matter and
dark energy epochs. Moreover, in the middle graph Fig. 1
we show the evolution of the corresponding effective dark-
energy equation-of-state parameter wDE (z) according to
(57). For this specific example wDE lies in the quintessence
regime. Nevertheless, note that according to the form of (55),
(56), one could have other scenarios, in which wDE can
be phantom-like, or experience the phantom divide cross-

Fig. 1 Upper graph: The effective dark energy density parameter �DE
(green-solid), and the matter density parameter �m (blue-dashed), as
a function of the redshift z, for Finsler–Randers–Sasaki cosmology
under the ansätze (46), (47), with y0 = 1, y1 = 10−6 in units where
κ = 1. Middle graph: The corresponding dark-energy equation-of-
state parameter wDE . Lower graph: The corresponding deceleration
parameter q. We have set the initial conditions �DE (z = 0) ≡ �DE0 ≈
0.69 [80]
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ing during the evolution. Finally, for completeness, in the
lower graph of Fig. 1 we depict the deceleration parameter
q, defined as q = −1 − Ḣ

H2 . As we can see, the transition
from acceleration to deceleration happens at ztr ≈ 0.7, in
agreement with observations.

4 Discussion and concluding remarks

In this work we presented for the first time a Friedmann-
like construction in the framework of an osculating Finsler–
Randers–Sasaki geometry, building the corresponding
gravitational theory and applying it at a cosmological setup.
In particular, we considered a vector field in the metric on the
total structure of a Lorentz tangent bundle, which depends on
the position coordinates. In this approach, the curvatures of
horizontal and vertical spaces, the extra contributions of tor-
sion, non-linear connection and the vector field, that depend
on x and y(x), provide an intrinsic richer geometrical struc-
ture, with additional degrees of freedom, that lead to extra
terms in the field equations.

Applying these modified field equations at a cosmological
setup, considering explicit ansätze for the Finsler–Randers–
Sasaki metric functions, we extracted the generalized Fried-
mann equations for the horizontal and vertical parts of R-S
spacetime, in which we have the appearance of extra terms,
which can be collected to build an effective dark energy
sector. Hence, in the framework of Finsler–Randers–Sasaki
geometry and gravity, we obtain an effective dark energy
density and pressure arising from the richer underlying struc-
ture of the tangent bundle. Additionally, as it is common in
Finsler-like constructions, we acquire an effective interaction
between the matter and the geometrical sectors, and in partic-
ular of the extra Finsler–Randers–Sasaki degree of freedom
and matter energy density.

We elaborated the generalized Friedmann equations numer-
ically for a specific model, replicating the thermal evolution
of the universe, encompassing distinct matter and dark energy
epochs. Our analysis revealed that the dark-energy equation-
of-state parameter could occupy the quintessence or phan-
tom regime, or undergo a phantom-divide crossing during
the evolution.

Several crucial steps remain to be comprehensively
explored. Firstly, a thorough investigation into cosmologi-
cal applications is imperative, involving data confrontation
from Type Ia Supernovae (SNIa), Baryon Acoustic Oscil-
lations (BAO), and Cosmic Microwave Background (CMB)
observations. Additionally, one could consider different and
more complicated ansätze for the Finsler–Randers–Sasaki
metric functions. Another interesting subject is the investi-
gation of spherically symmetric and black hole solutions in
the theory at hand. These essential and intriguing inquiries
are reserved for future research projects.
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Appendix A: Action variation and general field equations

In this Appendix we extract the general field equations, per-
forming variation of the action (26) on the Finsler–Randers–
Sasaki geometry. In particular, varying (26) we acquire

�K =
∫
N

d8U(R + S)�
√|G| +

∫
N

d8U
√|G|(�R + �S)

+ 2κ

∫
N

d8U �
(√|G|LM

)
, (A1)

with

�
√|G| = − 1

2

√|G| (gμν�gμν + vαβ�vαβ
)

(A2)

�R = 2gμ[κ ∂̇αL
ν]
μν�Nα

κ + Rμν�gμν + Dκ Z
κ (A3)

�S = Sαβ�vαβ + Dγ B
γ . (A4)

In the above expressions we have defined: Rμν = R(μν) +
�α

κ(μC
κ
ν)α and

Zκ = gμν�Lκ
μν − gμκ�Lν

μν

= − Dν�gνκ + gκλgμνDλ�gμν

+ 2
(
gκμCλ

λα − gκλCμ
λα

)
�Nα

μ (A5)

Bγ = vαβ�Cγ
αβ − vαγ �Cβ

αβ

= − Dα�vαγ + vγ δvαβDδ�vαβ. (A6)
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Applying the Stoke theorem on the Lorentz tangent bundle
we obtain

∫
N

d8U
√|G|Dκ Z

κ

=
∫
N

d8U
√|G| T α

καZ
κ

=
∫
N

d8U
√|G|Dν

[
T β

κβ

(−�gνκ + gνκgμλ�gμλ
)]

−
∫
N

d8U
√|G|

[
−DνT β

μβ + gμνDλT β
λβ

]
�gμν

+ 2
∫
N

d8U
√|G| T β

κβ

(
gκμCλ

λα − gκλCμ
λα

)
�Nα

μ

(A7)∫
N

d8U
√|G|Dκ Z

κ

=
∫
N

d8U
√|G|

(
δ(λ
ν δκ)

μ − gκλgμν

)

×
(
DκT β

λβ − T γ
κγ T

β
λβ

)
�gμν

+
∫
N

d8U
√|G| 4T β

κβg
κ[μCλ]

λα�Nα
μ (A8)

∫
N

d8U
√|G|DαB

α

= −
∫
N

d8U
√|G|Cμ

μβB
β

= −
∫
N

d8U
√|G|Dα

[
Cμ

μβ�vαβ − vαβvγ δC
μ
μβ�vγ δ

]

−
∫
N

d8U
√|G|

(
DαC

μ
μβ − vγ δvαβDγC

μ
μδ

)
�vαβ,

(A9)

where we have also used the Leibniz rule. Applying the
Stokes theorem again and eliminating the new boundary
terms, we find

∫
N

d8U
√|G|DαB

α

=
∫
N

d8U
√|G|

(
vγ δvαβ − δ(γ

α δ
δ)
β

) (
DγC

μ
μδ − Cν

νγC
μ
μδ

)
.

(A10)

As a last step, the matter part of the action yields

∫
N

d8U �
(√|G|LM

)

=
∫
N

d8U
√|G| 1√|G|

�
(√|G|LM

)
�gμν

�gμν

+
∫
N

d8U
√|G| 1√|G|

�
(√|G|LM

)
�vαβ

�vαβ

+
∫
N

d8U
√|G| 1√|G|

�
(√|G|LM

)
�Nα

κ

�Nα
κ . (A11)

Finally, combining Eqs. (A1)–(A6), (A8), (A10), (A11)
and setting �K = 0, we result to the field equations, namely

Rμν − 1

2
(R + S) gμν +

(
δ(λ
ν δκ)

μ − gκλgμν

)

×
(
DκT β

λβ − T γ
κγ T

β
λβ

)
= κTμν (A12)

Sαβ − 1

2
(R + S) vαβ +

(
vγ δvαβ − δ(γ

α δ
δ)
β

)

×
(
DγC

μ
μδ − Cν

νγC
μ
μδ

)
= κYαβ (A13)

gμ[κ ∂̇αL
ν]
μν + 2T β

μβg
μ[κCλ]

λα = κZκ
α , (A14)

where we have defined the “energy–momentum tensors”

Tμν ≡ − 2√|G|
�

(√|G|LM
)

�gμν

= − 2√−g

�
(√−gLM

)
�gμν

(A15)

Yαβ ≡ − 2√|G|
�

(√|G|LM
)

�vαβ

= − 2√−v

�
(√−v LM

)
�vαβ

(A16)

Zκ
α ≡ − 2√|G|

�
(√|G|LM

)
�Nα

κ

= −2
�LM

�Nα
κ

, (A17)

where δ
μ
ν and δα

β are the Kronecker symbols.

Appendix B: Friedmann equations

In this Appendix we show how the general field equations
(28)–(30), under the cosmological metric (38) and (39) give
rise to the Friedmann equations on the horizontal and vertical
space.

Let us start from the horizontal space. First we will calcu-
late the trace of the torsion T β

νβ that is required inside (35),
(36). From the torsion definition (25) we have that:

T α
κα = ∂̇αN

α
κ − Lα

ακ . (B1)

If we substitute the non-linear connection (17) and the com-
ponents of Lα

ακ from (14) we find:
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T α
κα = −1

2
gαγ δκhαγ

+ 1

2
hγ δδκg

γ δ ⇒ T α
κα = −1

2
δκh, (B2)

where h is the trace of the metric hαβ from (8). From the
above relation we can see that the torsion tensor is of first
order in terms of the weak metric hαβ .

As a next step we use (8) in order to express the hαβ -terms

in terms of Aα and L =
√

−gαβ yα(x)yβ(x). In this way we
finally find

T α
κα = −1

2
δκh = −5

4L

[
2∂κ Aα y

α + Aα(2∂κ y
α

−yδgαβ∂κgβδ)
] − 5

2L3 gαβ∂κ y
α yβ Aγ y

γ

= Bκ + �κ, (B3)

where we have set

Bκ = −5

4L

[
2∂κ Aγ y

γ + Aγ (2∂κ y
γ − yαgβγ ∂νgαβ)

]
(B4)

�κ = −5

2L3 gαβ∂κ y
α yβ Aγ y

γ . (B5)

Additionally, we calculate the δ-derivatives of the terms Bκ

and �κ as

δμBκ = − 5

4L

[
2∂μ∂κ Aγ y

γ + ∂κ Aγ (2∂μy
γ − yδgγ ε∂μgδε)

+ 2∂μAγ ∂κ y
γ + 2Aγ ∂μ∂κ y

γ − ∂μ(Aε∂κgγ ε)y
γ

+ 1

2
Aε∂κgγ ε(2∂μy

γ − yδgβγ ∂μgβδ)
]

+ 1

L3

(
2∂κ Aγ gαβ∂μy

α yβ yγ +2Aγ ∂κ y
γ gαβ∂μy

α yβ

− Aε∂κgγ εgαβ∂κ y
α yβ yγ

)
, (B6)

δμ�κ = −5

2L3

[
∂μgαβ∂κ y

α yβ Aγ y
γ + gαβ∂μ∂κ y

α yβ Aγ y
γ

+ gαβ∂κ y
α∂μy

β Aγ y
γ + gαβ∂κ y

α yβ∂μAγ y
γ

− 1

2
∂μgαδ y

δ∂κ y
αAγ y

γ + gαβ∂κ y
α yβ Aγ ∂μy

γ

+ 1

2
gαβ∂μgδε∂κ y

α yβ yδgγ ε Aγ

]

+ 15

4L5

(−∂μgδε y
δ yε − 2gδε∂μy

δ yε

+2gδε y
δN ε

μ

)
gαβ∂κ y

α yβ Aγ y
γ . (B7)

In order to proceed, we have to consider an ansatz for
Aγ and yγ . As we mentioned in (46), (47), in this work
we will focus on the case Aγ = (A0(t), A1(t), 0, 0) and
yγ = (y0, y1, 0, 0), with y0, y1 constants and A0(t), A1(t)
time-dependent functions, which is consistent with FRW

symmetries. Under these ansätze, (B4), (B5) give

Bν = − 5

4L
(2∂ν Aγ y

γ − Aα y
γ gαε∂νgγ ε) (B8)

�ν = 0, (B9)

where L = √
(y0)2 − (y1)2a2. Similarly, (35) becomes

Bμν = −5

4L

[
2yγ (∂μ∂ν Aγ − �κ

μν∂κ Aγ )

−2yδgγ ε∂(μAγ ∂ν)gδε + Aγ y
δ

×
(
gδε∂μ∂νg

γ ε + 1

2
∂νg

γ ε∂μgδε + �κ
μνg

γ ε∂κgδε

)]
.

(B10)

Hence, inserting the FRW metric (38), the time-component
and the trace of the (B10) finally gives

Bt t = −5

2L

{
y0 Ä0 + y1 Ä1 − 2y1 Ȧ1

(
ȧ

a

)

+W1

[
2

(
ȧ

a

)2

− ä

a

]}
(B11)

B = −5

2L

{
−y0 Ä0 − y1 Ä1 − 3y0 Ȧ0

(
ȧ

a

)

−y1 Ȧ1

(
ȧ

a

)
+ W1

[(
ȧ

a

)2

+ ä

a

]}
, (B12)

with W1(t) = A1(t)y1 according to definition (43).
As a last step we take the time component of (36) and its

trace, inserting all the above expressions, and substituting the
FRW metric (38). After some straightforward manipulations
we obtain two equations, namely

(
ȧ

a

)2

− κ

3
ρm = −1

3
(Bt t + B) (B13)

ä

a
+ κ

6
(ρm + 3pm) = 1

3
(Bt t − 1

2
B), (B14)

where ρm and pm are respectively the energy density and
pressure of the perfect fluid energy–momentum tensor Tμν .
Lastly, inserting (B11), (B12) we obtain

[
1 − 5

2L(t)
W1(t)

] [
ȧ(t)

a(t)

]2

− 5

2L(t)
[Ẇ0(t) + Ẇ1(t)] ȧ(t)

a(t)
= κ

3
ρm(t) (B15)

[
1 − 5

4L(t)
W1(t)

]
ä(t)

a(t)
+ 1

2

[
ȧ(t)

a(t)

]2

− 5

2L(t)
Ẇ1(t)

ȧ(t)

a(t)
+ 5

4L(t)
[Ẅ0(t) + Ẅ1(t)]

= −κ

2
pm(t). (B16)
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In order to extract the cosmological equations arising from
the vertical space we begin from (7) and (8). From those we
can calculate:

vαβ(x, y(x)) = gαβ(x) − hαβ(x, y(x)), (B17)

where

hαβ(x, y(x)) = 1

L
Aγ (yβ(x)gαγ + yγ (x)gαβ

+ yα(x)gβγ ) + 1

L3 Aγ y
α(x)yβ(x)yγ (x).

(B18)

The vertical energy–momentum tensor is:

Y αβ = (ρm + pm)yα yβ + pmvαβ ⇒ (B19)

Y αβ = pmg
αβ + (ρm + pm)yα yβ

− pm
L

Aγ (yβ(x)gαγ + yγ (x)gαβ + yα(x)gβγ )

− pm
L3 Aγ y

α(x)yβ(x)yγ (x), (B20)

where we used relations (B17) and (B18).
Hence, starting from the vertical field equation (34), by

raising the indices and substituting (B20), we obtain:

− R

2κ

[
gαβ − 1

L
Aγ (yβgαγ + yγ gαβ + yαgβγ )

− 1

L3 Aγ y
α yβ yγ

]

= pmg
αβ + (ρm + pm)yα yβ − pm

L
Aγ (yβgαγ + yγ gαβ

+ yαgβγ ) − pm
L3 Aγ y

α yβ yγ , (B21)

where R = ä
a + ȧ2

a2 .
If we take α = β = 0 and α = β = 1 in the above

Eq. (B21) we finally extract the vertical cosmological equa-
tions:
{
pm(t) + 1

2κ

{
ä(t)

a(t)
+

[
ȧ(t)

a(t)

]2
}}{

1 − 1

L(t)
[3W0(t)

+W1(t)] + 1

L(t)3 (y0)2[W0(t) + W1(t)]
}

= [ρm(t) + pm(t)](y0)2, (B22){
pm(t) + 1

2κ

{
ä(t)

a(t)
+

[
ȧ(t)

a(t)

]2
}}

×
{

2 − 3

L(t)
[W0(t) + 3W1(t)]

}

= L(t)2[ρm(t) + pm(t)]. (B23)
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