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Abstract In this paper, we obtain analytical solutions
of Einstein field equations for a spherically symmetric
anisotropic matter distributions. For this purpose physically
meaningful metric potential corresponds to grr and a par-
ticular choice of the anisotropy has been utilized to obtain
the solutions in closed form. This class of solution has been
used to characterized observed pulsars from different aspects.
Smooth matching of interior spacetime metric with the exte-
rior Schwarzschild metric and in addition with the condition
of vanishing radial pressure across the boundary leads us to
determine the model parameters. Pulsar 4U1820−30 with its
current estimated data for mass and radius (Mass = 1.58M�
and radius = 9.1 km) has been allowed for testing the phys-
ical acceptability of our developed model. We have graphi-
cally analyzed the gross physical features of the observed pul-
sar. The stability of the model is also discussed under the con-
ditions of causality, adiabatic index and generalized Tolman–
Oppenheimer–Volkov (TOV) equation under the forces act-
ing on the system. Few more pulsars with their have been
considered, to show that this model is compatible with obser-
vational data, and all the requirements of a realistic star are
highlighted. Mass-radius (M–R) relationship have been gen-
erated for our model. The impact of anisotropy on the gross
physical features of stars have been explored with the graph-
ical presentation.

1 Introduction

Finding out a non-singular, regular and well-behaved solu-
tion for Einstein’s equations that would be used to under-
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stand the properties of highly dense relativistic stars, is an
active field of research. The solutions describing relativistic
stars can be broadly classified as isotropic and anisotropic.
In isotropic solutions the radial and transverse pressures are
considered to be same but in solutions with the considera-
tions of local anisotropy, the radial and transverse pressures
are taken unequal. The origin and nature of local anisotropy
in relativistic stars were thoroughly reviewed by Herrera and
Santos [1]. In [1] a number of reasons were pointed out for
the origin of anisotropy in compact stars. Let us take a look
into some reasons relevant to the present study. Existence as
a mixture of two or more isotropic fluids within the compact
star might lead to anisotropy development within the star.
Secondly, slow rotation of the star may give rise to local
anisotropy due to the effect of centrifugal force. Thirdly,
highly dense matter content within the compact star tend to be
viscous. The viscous matter might generate local anisotropy.
Apart from this, in [2], Herrera observed three principal fac-
tors responsible for the development of pressure anisotropy
inside a spherically symmetric star. They are:

– the effect of Weyl tensor
– the shear
– the “dissipative” effects which reveals itself through the

heat flux.

It is pointed out in [2] that even a spherically symmetric
system which is initially isotropic, may develop anisotropy
during its evolution due to these physical factors. It is highly
probable that this anisotropy would not vanish in the final
equilibrium state of the system. In fact, there is no known
physical process inside a compact star that can reverse the
anisotropy in pressure developed during its dynamical evo-
lution. Thus, principal pressures within the compact star
should, in general, be unequal. Jeans [3] studied anisotropy
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in the distribution of stars in a galaxy having spherical sym-
metry. However, Lemaitre [4] was the first to mention local
anisotropy in a general relativistic system. There are good
number of publications investigating the anisotropic solu-
tions for relativistic stars since the seminal endeavour by
Bowers and Liang [5]. After a year, Heintzmann and Hille-
brandt [6] reported that for “arbitrarily large anisotropy” the
mass of a neutron star has no upper limit while obeying the
stability constraints under small perturbation limit. Barraco
et al. [7] also found that the Buchdahl limit for isotropic
fluid spheres, is violated for anisotropic fluid distribution.
Mak et al. [8] proposed a model of anisotropic star gen-
eralizing Einstein’s field equations to D (D ≥ 4) dimen-
sions. In another paper [9], they obtained exact solution for
anisotropic star assuming some suitable forms of anisotropy.
They also found out exact solution for charged anisotropic
strange star considering conformal symmetry in yet another
paper [10]. They calculated the radius and mass of the mod-
elled strange quark star to be 9.46 km and 2.86M�. The
mass of the quark matter reported to be 1.772M�. Gleiser
and Dev [11] gave a new exact solution for anisotropic
star and investigated the stability of the star using Chan-
drasekhar’s method of perturbation. Many researchers mod-
elled quark star or strange star taking anisotropic pressure
[12–20]. There are instances of other choices of equations of
state. Recently, Kumar and Bharti [21] reviewed large num-
ber of static spherically symmetric anisotropic solutions of
the Einstein- Maxwell system and classified the solutions.
Interested readers may refer to this excellent review to get
updated on various categories of anisotropic solutions in liter-
ature. There are a number of models of compact star with the
consideration of local anisotropy that exploits well-known
Karmakar’s condition [22,23]. There are anisotropic solu-
tions where conformal symmetry is assumed within the star
[15,24,25]. Thirukkanesh et al. [26] explored the possibil-
ity of anisotropic superdense star with Vaidya Tikekar met-
ric for some chosen forms of anisotropy function. Assum-
ing Newton’s constant to be a function of radial coordinate,
Panotopoulos et al. [27] obtained anisotropic solution for the
interior of a relativistic star. Bhar et al. [28] examined several
physical features of anisotropic solution of static spherically
symmetric relativistic stars under general theory of relativity.
Azmat and Zubair [29] considered Drugapal V solution for
charged fluid sphere and extended it for anisotropic spherical
distribution under the consideration of gravitational decou-
pling through Minimum Geometric Deformation. Das et al.
[30] in their model of anisotropic compact star found out
the anisotropy function which is physically possible. They
also calculated the tidal love number of the star. In a simi-
lar approach, Parida et al. [31] explored the impact of tidal
love number, k2, on the equation of state parameter of the
matter content of the anisotropic star so as to constrain the
mass–radius relationship for the star. Bhar [32] studied inte-

rior solutions of anisotropic star under f (Q) gravity. The
solutions conform to all the conditions of physical viability.
Anisotropic solutions are studied in other modified theories
of gravity [33–35]. Rincón et al. [36] studied the role of com-
plexity factor on the physical features of anisotropic stars
considering a generalized Chaplygin equation of state. It is
apparent from the foregoing review of literature that physi-
cal possibilities of anisotropic stars are extensively explored
by the researchers. However, the effect of anisotropy on the
physical features of the star are yet to be investigated com-
pletely. In the present paper, we have explored the effect of
anisotropy parameter on all the physically relevant quanti-
ties of the star in order to understand what role it actually
plays on the stellar structure. Solving Einstein’s equations
for anisotropic fluid, we calculate the parameter values for
pulsar 4U1820 − 30. With this parameter values, we predict
possible equation of state for the pulsar. This approach may
be important for opening up prospects of further observation
of these astrophysical objects.

The plan of the paper is as follows. In the next Sect. 2 we
present Einstein Field Equations and the Energy-Momentum
tensor. In Sect. 3 we obtained exact analytical solution of
the system of equations and generating functions have been
discussed. In Sect. 4 unknown parameters are calculated with
the help of the matching conditions. In Sect. 5 qualitative
aspects of the model are analysed. In next section (Sect. 6) the
model is applied for the observed compact object 4U1820 −
30. In Sect. 7 we extensively analysed the stability features
of the model. The paper ends with a discussion in Sect. 8 of
the salient results of the present study.

2 Einstein field equations

In the usual Schwarzschild coordinates the geometry inside
the spherically symmetric body can be described by the fol-
lowing metric:

ds2− = −A2
0(r)dt

2 + B2
0 (r)dr2 + r2(dθ2 + sin2 θdφ2),

(1)

where all the metric potentials depend only on the radial coor-
dinate. We assume the star to be spherically symmetric and
constituted of anisotropic matter. The energy–momentum
tensor corresponding to this matter distribution is

Tαβ = (ρ + pt )uαuβ + pt gαβ + (pr − pt )χαχβ, (2)

where ρ represents the energy-density, pr and pt , respec-
tively denote fluid pressures along the radial and transverse
directions, uα is the 4-velocity of the fluid and χα is a
unit space-like 4-vector along the radial direction so that
uαuα = −1, χαχβ = −1 and uαχβ = 0.
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The Einstein field equations governing the evolution of
the system is then obtained as (we set G = c = 1)

8πρ =
[

1

r2 − 1

r2B2
0

+ 2B ′
0

r B3
0

]
, (3)

8πpr =
[
− 1

r2 + 1

B2
0r

2
+ 2A′

0

r A0B2
0

]
, (4)

8πpt =
[

A′′
0

A0B2
0

+ A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

]
. (5)

In Eqs. (3)–(5), a ‘prime’ denotes differentiation with respect
to r.

Making use of Eqs. (4) and (5), we define the anisotropic
parameter of the stellar system as

Δ(r) = 8π(pt − pr )

=
[

A′′
0

A0B2
0

− A′
0

r A0B2
0

− B ′
0

r B3
0

A′
0B

′
0

A0B3
0

− 1

r2B2
0

+ 1

r2

]
.

(6)

The anisotropic force is defined as 2Δ
r will be repulsive

or attractive in nature depending upon whether pt > pr or
pt < pr . The mass enclosed within a radius r of the sphere
is defined as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (7)

3 A physically acceptable model

A physically reasonable model of a star demands the metric
potentials to be regular at the center (r = 0). Keeping that
requirement in mind, we choose the metric potential grr in
the following form

B2
0 (r) = 1

ar4 − br2 + 1
, (8)

where a and b are the curvature constants having a dimension
of L−4 and L−2 respectively and it will be determined from
the junction conditions at the surface of the star. With this
choice of B0(r) Eq. (6) then reduces to

Δ(r) = ar3A0(r)+(ar4−1)A0′(r)+r(1−br2+ar4)A′′
0(r)

r A0(r)
.

(9)

On rearranging Eq. (9) we get

A′′
0(r)

A0(r)
+ (ar4 − 1)A′

0(r)

r(1 − br2 + ar4)A0(r)
= Δ(r) − ar2

(1 − br2 + ar4)
.

(10)

Now the above Eq. (10) can be solved for A0(r) if Δ(r) is
specified in particular form. One way to make the equation

easily integrable is to assume a suitable form of anisotropy
as

Δ(r) = ar2. (11)

The above choice for anisotropy is physically reasonable, as
at the center (r = 0) anisotropy vanishes as expected. This
feature will be explained graphically in Sect. 6. Herrera and
Santos [1] showed that anisotropy of this form may arise
within compact stars due to slow rotation. Also, this choice
provides a solution for Eq. (10) in closed form. Substituting
Eq. (11) in Eq. (10), we obtain,

A′′
0(r) + (ar4 − 1)

r(1 − br2 + ar4)
A′

0(r) = 0. (12)

We obtain a simple solution of the Eq. (12)

A0(r) =
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
2
√
a

+ C2,

(13)

where C1 and C2 are integration constants that can be
obtained from the boundary conditions. With the choices
of the metric potentials the matter density, radial pressure,
transverse pressure and mass are obtained as

8πρ =3b − 5ar2, (14)

8πpr = 4
√
aC1

√
ar4 − br2 + 1

C1 log
(

2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

+ ar2 − b, (15)

8πpt =8πpr + Δ

= 4
√
aC1

√
ar4 − br2 + 1

C1 log
(

2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

+ 2ar2 − b, (16)

m(r) =1

2
r3 (

b − ar2) . (17)

It is possible to show that the solution obtained in this
model can be expressed in terms of two generating func-
tions. For this purpose we followed the work by Herrera et

al. [37]. With the substitution of A2
0(r) = e

∫
(2z(r)− 2

r ) dr in
the Einstein field Equations, they found out the expression
of grr as

grr = z2(r)e
∫ (

4
r2z(r)

+2z(r)
)
dr

r2

⎡
⎣F − 2

∫ z(r)(1+Δ(r)r2)e

∫ (
4

r2z(r)
+2z(r)

)
dr

r8 dr

⎤
⎦

,

where F is an arbitrary integrating constant and other phys-
ical quantities in terms of the functions z(r) and Δ(r). They
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pointed out that these two functions as the generating func-
tions for complete description of any static solution of an
anisotropic fluid distribution. For the present model, we have

z(r) = ν′(r)
2

+ 1

r
(18)

or equivalently,

z(r) = 1

r
+ A′

0(r)

A0(r)
= 2

√
aC1r√

ar4 − br2 + 1
(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

) , (19)

and

Δ(r) =
(
bR3 − 2M

R5

)
r2. (20)

When compared to Eq. (11), we immediately get the value
of the parameter a = (bR3 − 2M)/R5. Note that both gen-
erating functions z and Δ(r) are always positive. Here z is
decreasing in nature where as Δ(r) is always increasing with
radial coordinate.
The physical parameters can also be expressed in terms of
generating functions.

4πpr = z(r − 2m) + m/r − 1

r2 , (21)

4πpt = (1 − 2m/r)

(
z′ + z2 − z

r
+ 1

r2

)

+z

(
m

r2 − m′

r

)
, (22)

4πρ = m′

r2 , (23)

where the mass function m(r) is related as

e−λ = 1 − 2m(r)

r
. (24)

4 Matching conditions at the surface of the star

Since the star static, and hence non-radiating, the exterior
of the star should be empty. Thus, the exterior space-time is
described by the Schwarzschild metric.

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2

+r2
(
dθ2 + sin2 θdφ2

)
, (25)

where r > 2m, m being the total mass of the stellar object.
The matching conditions that must be considered are:

(grr )interior = (grr )exterior , (26)

(gtt )interior = (gtt )exterior , (27)

pr (r = R) = 0. (28)

The continuity of the metric functions across the boundary
r = R yields

A2
0(R) =

(
1 − 2m

R

)
, (29)

B2
0 (R) =

(
1 − 2m

R

)−1

. (30)

The boundary conditions (26), (27), (28) determine the
constants which are

a = bR3 − 2M

R5
, (31)

C1 = M

R3 . (32)

C2 =
M

√
bR3−2M

R log

(
2
√

1 − 2M
R

√
bR3−2M

R5 + b − 4M
R3

)
− 2

√
1 − 2M

R

(
bR3 − 2M

)
4M − 2bR3 . (33)

Note from Eq. (31), that the value of a obtained the boundary
conditions is in conformity to the value obtained from the
generating function formalism.

5 Qualitative analysis of the physical features of the
model

1. Regularity of the metric potentials: The gravitational
potentials in this model must be finite at the center of the
star for the solution to be well-behaved. In our model, we
have chosen a form for B0(r) which is regular at the cen-
ter of the star, i.e., B2

0 (0) = 1. However, we have derived
the metric potential A0(r). At r = 0, A0(r) is also finite

A2
0(0) = (

C1 log(2
√
a−b)

2
√
a

+ C2)
2 = constant. Also, one

can easily check that (A2
0(r))

′
r=0 = (B2

0 (r))′r=0 = 0. It
is apparent from Eqs. (10) and (13) that metric poten-
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tials are finite and positive inside the star. These imply
that the metric is regular at the center and well-behaved
throughout the stellar interior.

2. Nature of pressure and density at the center: The cen-
tral density, central radial pressure and central tangential
pressure required to be finite and non-negative. In the
present model, the values at the center are:

ρ(0) = 3b,

pr (0) = 4
√
aC1

C1 log
(
2
√
a − b

) + 2
√
aC2

− b,

pt (0) = 4
√
aC1

C1 log
(
2
√
a − b

) + 2
√
aC2

− b.

Note that the density is always positive as b is a positive
quantity. The pressure in both directions are finite and
constant. The radial pressure and tangential pressure at
the centre are equal which readily indicates the vanish-
ing of pressure anisotropy at the center. The radial and
tangential pressure at the center will be non-negative if
one choose the model parameters satisfying the match-
ing conditions mentioned in Sect. 6. Also the variation of
mass and radius of the star against central density have
been plotted in Figs. 15 and 16. The plots show a max-
imum possible mass 2.06M� for the star corresponding
to the central density 1.23 × 1018 g-m−3.

3. Pressure and density throughout the star: The gra-
dient of energy density, radial pressure and tangential
pressure are required to be negative inside the star. These

physical quantities should be positive and monotonically
decreasing functions for a physically reasonable model
of compact star. In our model, we get the gradients of
these quantities as follows:

dρ

dr
= −10ar,

dpr
dr

= 2
√
a

⎛
⎜⎝− 4

√
aC2

1r(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

)2

⎞
⎟⎠

+2
√
a

⎛
⎝ C1

(
4ar3 − 2br

)
√
ar4 − br2 + 1

(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

) + √
ar

⎞
⎠ ,

dpt
dr

= −
⎛
⎜⎝ 8aC2

1r(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

)2

⎞
⎟⎠

−
⎛
⎝ 4

√
aC1r

(
b − 2ar2

)
√
ar4 − br2 + 1

(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

)
⎞
⎠ + 4ar. (34)

The gradient of the density, radial pressure and tangential
pressure are negative inside the stellar body are shown
graphically in the next section. Moreover, the plots of
the density and pressure show that all these quantities
are positive inside the star and monotonically decreasing
within the star.

4. Equation of state parameter: The equation of state
parameter is given by the ratio of the pressure to density.
It conveys significant information regarding the nature
of the constituent matter of the star. The maximum mass
the compact star also, depends on this parameter. Zel-
dovich indicated that this parameter, i.e., p/ρ must be
≤ 1 throughout the star. Equation of state parameters are
given by

ωr = pr
ρ

; ωt = pt
ρ

. (35)

To be non-exotic in nature the value of ω should lie within
0 and 1. Our model is shown to satisfies the condition
0 ≤ ωr ≤ 1, 0 ≤ ωt ≤ 1.

5. Causality Condition: The radial and transverse velocity
of sound (c = 1) are obtained as
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v2
sr = 1

5
√
ar

⎡
⎢⎣ 4

√
aC2

1r(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

)2

⎤
⎥⎦ − 1

5
√
ar

×
⎡
⎣ C1

(
4ar3 − 2br

)
√
ar4 − br2 + 1

(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

) − √
ar

⎤
⎦ ,

v2
st = 1

10ar

⎡
⎢⎣ 8aC2

1r(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

)2

⎤
⎥⎦ − 1

10ar

×
⎡
⎣ 4

√
aC1r

(
b − 2ar2

)
√
ar4 − br2 + 1

(
C1 log

(
2
√
a
√
ar4 − br2 + 1 + 2ar2 − b

)
+ 2

√
aC2

) − 4ar

⎤
⎦ . (36)

For a physically acceptable model of relativistic
anisotropic star the radial and transverse velocity speed
of sound must be smaller than 1(c = 1) in the interior of
the star, i.e., 0 ≤ dpr

dρ ≤ 1, 0 ≤ dpt
dρ ≤ 1. This condition is

known as causality condition and is verified graphically
in the next section.

6. Energy Conditions: The classical energy conditions are
helpful in predicting the nature of the matter inside the
compact star. Generally, the energy conditions are:

(a) Null Energy Condition (NEC): ρ + pi ≥ 0
(b) Weak Energy Condition (WEC): ρ + pi = 0, ρ ≥ 0.

(c) Strong Energy Condition (SEC): ρ + pi ≥ 0, ρ +
Σpi = 0.

Qualitatively, it can be concluded that the matter is nor-
mal, if all the energy conditions mentioned above are sat-
isfied. We have plot these expressions against the radial
distance for the star 4U1820−30 in the next section. The
plot remains positive everywhere within the star.

7. Moment of Inertia: Expression for Moment of inertia of
compact astrophysical objects taking into consideration
the effect of General Relativity is remarkably different
from the expression for solid sphere given in mechanics.
Using slow rotation approximation proposed by Hartle
[38], a number of attempts have been made for deriving
an approximate expression for the moment of inertia of a
compact star [39–41]. We use the approximate expression
for moment of inertia of strange star provided in [42].

I = 0.4 (1 + ξ) MR2, (37)

where ξ = M
R

km
M� is the dimensionless compactness

parameter [43]. This value of moment of inertia is valid
up to the maximum mass of the star. In the next section,
we have plot I against the mass of the star (see Fig. 13).
The plot clearly shows a maximum value for the moment

of inertia for mass 2.04M�. Interesting to note that this
value of mass is almost of the same value as the maxi-
mum mass of the star as obtained from the M–R diagram
(see Fig. 12).
The maximum rotational frequency of a compact star was
given by [44] in the following form

Ω = C
(

M

M�

) 1
2
(

R

10 km

)− 3
2

, (38)

where C is a constant. R and M are maximum allow-
able radius and mass of the star. Das et al. [45] used
this approximate value to calculate the time period of the
model star. We use their value to study the variation of
the time period of the star with mass (Fig. 14). The plot
shows a maximum value of the time period correspond-
ing to the mass 2.04M�.

6 Validity of the model with observational data

6.1 A particular pulsar 4U1820 − 30

The physical acceptability of this model has been examined
by plugging the masses and radii of observed pulsars as input
parameters. In order to validate our model, we have consid-
ered the pulsar 4U1820−30 whose estimated mass and radius
are M = 1.58 M� and R = 9.1 km, respectively [46]. Using
these values of mass and radius as an input parameter, the
boundary conditions have been utilized to determine the con-
stants as C1 = 0.00309, C2 = 3.52 and a = 0.000015877
by assuming b = 0.0075. Making use of these values of con-
stants and plugging the values of G and c in the expressions,
various physical variables have been plotted graphically.
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Fig. 1 Metric potentials A0(r)2 and B0(r)2

Fig. 2 Gradient of pressures and density for the pulsar 4U1820 − 30

Fig. 3 Energy density profile for the pulsar 4U1820 − 30

Regular and well-behaved nature of all the relevant phys-
ically meaningful quantities imply that all the requirements
of a realistic star are satisfied in this model. Figure 1 depict
the regularity of the metric potentials considering the pulsar
4U1820 − 30.

Figure 2 shows the variation of gradients which are nega-
tive throughout the stellar configuration ensures the decreas-
ing nature of density, radial and transverse pressures.

Figure 3 shows that the density decrease from its maxi-
mum value at the center towards its boundary.

Fig. 4 Radial and transverse pressure profile for the pulsar 4U1820 −
30

Δ

Fig. 5 Anisotropic pressure profile for the pulsar 4U1820 − 30

Variation of radial and tangential pressures has been plot-
ted in Fig. 4, which are also radially decreasing outwards
from its maximum value at the center and in case of radial
pressure it drops to zero at the boundary as it should be but
the tangential pressure remains non zero at the boundary.

Radial variation of anisotropy has been shown in Fig. 5
which is zero at center as expected and is maximum at the
surface.

In Fig. 6, the sound speed in radial and transverse direc-
tions have been plotted against the radial parameter which
ensures the non-violations of causality condition in the inte-
rior of the star.

The energy conditions are plotted in Fig. 7, which are
positive throughout the stellar configuration as required for
a physically meaningful stellar model.

Figure 8 depicted the smooth matching of the interior and
exterior metrices at the boundary.

The relationship between the thermodynamic parameters
energy density and pressure which reflects the nature of the
equation of state (EoS) of the matter distribution of a given
pulsar is plotted in Fig. 9 which shows an almost linear rela-
tionship. One can note that we have not assumed any EoS to
develop the model though able to extract the nature between
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Fig. 6 Radial and transverse velocities of sound against ’r’ for
4U1820 − 30

Fig. 7 Energy conditions plotted against radius ‘r’ for the pulsar
4U1820 − 30

Fig. 8 Matching of A0(r)2 and B0(r)2 with the exterior

the density and pressure. The equation of State (EoS) param-
eter as is shown in Fig. 10 lies between 0 and 1.

The mass function is given in Eq. (17) is monotonically
increasing the function of r and m(0) = 0 as depicted in
Fig. 11.

For a given value of the surface density (ρ(r = R) =
4.7 × 1014 g-cm−3), we have also obtained the mass–radius
(M−R) relationship in our model shown in Fig. 12. The max-
imum mass allowed in this model is 2M� (Figs. 13, 14, 15, 16).

Fig. 9 EoS for the model

Fig. 10 Equation of state parameter for the pulsar 4U1820 − 30

Fig. 11 Mass function corresponding to ‘r’ for the pulsar 4U1820−30

6.2 A wide range of pulsars

To show that this model has a wide range of applicability for
highly compact stars, we have also analyzed the validity of
my model by considering some well-known pulsars such as
RX J EXO1785 − 248, PSR J 1614 − 2230, Cen X-3 and
4U1608 − 52 [47].

The estimated masses and radii of these pulsars have been
used to determine the corresponding model parameters as
given in Table 1. Making use of these values, in Table 2,
we have calculated the values of the physically reasonable
parameters which are sufficient to justify the requirements
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Fig. 12 M−R relation

Fig. 13 Variation of the moment of inertia with mass

Fig. 14 Variation of the time period with mass

Fig. 15 Variation of the mass with central density

Fig. 16 Variation of radius with the central density

of a physically realistic star. Note that we have used ()|0 and
()|R to denote the evaluated values of the physical parameters
at the center and surface of the star, respectively. Addition-
ally, mass–radius and other parameters of some other stars
are discussed in Table 1. It can be seen from Table 2 that
this presented model satisfy Buchdahl condition as well as
surface redshift condition for other pulsars also.

7 Stability analysis of the model

7.1 Stability under TOV criterion

A star maintain its static equilibrium state under the forces
namely, gravitational force, hydrostatics force and anisotropic
force. This condition is formulated mathematically as TOV
equation by Tolman–Oppenheimer–Volkoff which is

− MG

r
(ρ + pr )

A0(r)

B0(r)
− dpr

dr
+ 2

r
(pt − pr ) = 0, (39)

where MG(r) is the gravitational mass of the star within the
radius r, can be derived from the Tolman–Whittaker formula
and Einstein’s field equations and is defined by

MG(r) = r B0(r)A′
0(r)

A2
0(r)

. (40)

Using the expression of MG(r) in Eq. (39) we obtain

− A′
0(r)

A0(r)
(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr ) = 0. (41)

The above equation is equivalent to

Fg + Fh + Fa = 0, (42)

where

Fg = − A′
0(r)

A0(r)
(ρ + pr ), (43)

Fh = −dpr
dr

, (44)

Fa = 2

r
(pt − pr ), (45)
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Table 1 Values of model parameters

Pulsar Mass (M�) Radius (km) a b C1 C2

EXO 1785 − 248 1.3 ± 0.2 8.849 ± 0.4 0.000016160 0.0068 0.002767 2.9317

PSR J 1614 − 2230 1.97 ± 0.04 9.69 ± 0.2 0.000026760 0.0089 0.003193 2.4616

Cen X-3 1.49 ± 0.08 9.178 ± 0.13 0.000015605 0.0070 0.002842 3.1040

4U1608 − 52 1.74 ± 0.14 9.52 ± 0.15 0.000017110 0.0075 0.002974 3.0917

Table 2 Values of physical quantities

Pulsar ρ|0 ρ|R dpr
dρ |0 dpr

dρ |R dpt
dρ |0 dpt

dρ |b (ρ − pr − 2pt )|0 (ρ − pr − 2pt )|R
EXO 1785 − 248 618 423 0.40 0.22 0.20 0.024 800 479

PSR J 1614 − 2230 809 429 0.66 0.21 0.46 0.02 1307 573

Cen X-3 635 439 0.54 0.31 0.34 0.10 888 517

4U1608 − 52 681 451 0.68 0.35 0.49 0.15 1053 537

represents the gravitational, hydrostatics and anisotropic
forces respectively.

The expression for Fg, Fh and Fa can be written as,

Fg = − 4
√
aC1r√

1 − br2 + ar4(2
√
aC2 + C1 log (−b + 2ar2 + 2

√
a
√

1 − br2 + ar4))2

[
2
√
a(bC2 − 2aC2r

2

+C1

√
1 − br2 + ar4) + C1(b − 2ar2) log (−b + 2ar2 + 2

√
a
√

1 − br2 + ar4)
]
, (46)

Fh = −2ar + 8aC2
1r

(2
√
aC2 + C1 log (−b + 2ar2 + 2

√
a
√

1 − br2 + ar4))2

+ 4
√
aC1r(b − 2ar2)√

1 − br2 + ar4(2
√
aC2 + C1 log (−b + 2ar2 + 2

√
a
√

1 − br2 + ar4))
, (47)

Fa = 2ar. (48)

The three different forces are plotted in Fig. 17. The figure
shows that hydrostatics and anisotropic force are positive and
is dominated by the gravitational force which is negative to
keep the system in static equilibrium.

Fig. 17 Different types of forces as function of radial coordinate r for
the pulsar 4U1820 − 30

7.2 Adiabatic index

The adiabatic index which is defined as

Γ = ρ + p

p

dp

dρ
, (49)

is related to the stability of a relativistic anisotropic stellar
configuration. A Newtonian isotropic sphere will be in stable
equilibrium if the adiabatic index Γ > 4

3 as per Heintzmann
and Hillebrandt’s concept [6] and forΓ = 4

3 , isotropic sphere
will be in neutral equilibrium. Based on some recent works
of Chan et al. [48] one can demand the following condition
for the stability of a relativistic anisotropic sphere

Γ > γ, (50)

where

γ = 4

3
−

[
4(pr − pt )

3|p′
r |r

]
max

, (51)

and Γ > 4
3 . In Fig. 18, we have plotted Γr , Γt , γ respectively.

clearly, it can be seen that values of Γr and Γt are greater
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Fig. 18 Adiabatic index for the pulsar 4U1820 − 30

Fig. 19 Variation of v2
t − v2

r against r for 4U1820 − 30

than γ throughout the stellar interior and hence the stability
condition is fulfilled.

Finally, it is to be noted that the adiabatic index γ is a local
characteristic of a specific EoS and depends on the interior
fluid density.

7.3 Cracking condition

Based on the cracking method to study the stability of
anisotropic stars proposed by Herrera [49], Abreu et al. [50]
proved that the region of an anisotropic fluid sphere is stable
where −1 ≤ v2

t −v2
r ≤ 0 is potentially stable which is shown

graphically in Fig. 19.

8 Discussions

In this study, we derived an analytic exact solution to the
field equations for a spherically symmetric matter distribu-
tion taking the local anisotropic pressure into account in
the framework of general relativity. The solution obtained
assuming a specific metric and imposing a specific form of
anisotropy potential has been shown to be non-singular, regu-

Fig. 20 Comparison of density profile with different b against r for
4U1820 − 30

lar and well-behaved and could describe relativistic compact
stellar objects.

Our analysis considered some well-known pulsars such as
4U1820 − 30, RX J EXO1785 − 248, PSR J 1614 − 2230,

Cen X-3 and 4U1608 − 52 with their recent observational
data we determined the different model parameters in Table 1
and then utilizing the model parameters the physical fea-
tures of the stars displayed in Table 2 where these values
of physically reasonable parameters are sufficient to justify
the requirements of a physically realistic star refers a stable
configuration. Matching of the interior solutions with that of
the exterior on any hypersurface along with the condition of
the vanishing radial pressure at the boundary refers to Dar-
mois matching conditions. The satisfaction of TOV-equation
shows that the combined effect of Fh and Fa balances Fg,
so that total force is essentially zero at all points inside a
star, refers to hydrodynamical stable equilibrium configura-
tion and satisfaction of causality guarantees that the solution
is physically viable. It should be mentioned here that we
have considered the transverse pressure dominates over the
radial pressure (pt > pr ) for the construction of the stellar
model. The model is unstable by the change in sign of the
anisotropic parameter (pr > pt ) where radial pressure wins
over tangential pressure.

We have analyzed the effects of anisotropy on the physical
parameters e.g., density, radial pressure, transverse pressure,
mass, and EoS of a star. The effects of variation of anisotropy
by tuning the model parameter b and hence the overall effects
of anisotropy on the gross physical features have been shown
graphically in this study. The central density picks a higher
value but the surface density tends to lower value with the
increase of b (Fig. 20). Figures 21 and 22 show that the
radial and transverse pressure increases through the interior
of the star with an increase of b, hence with an increase of
anisotropy. Figure 23 shows that anisotropy increases with
an increase of model parameter b.
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Fig. 21 Comparison of radial pressure profile with different b against
r for 4U1820 − 30

Fig. 22 Comparison of transverse pressure profile with different b
against r for 4U1820 − 30

Δ

Fig. 23 Comparison of anisotropy profile with different b against r for
4U1820 − 30

In general, the standard approach for constructing a stellar
model is to prescribe an equation of state (EoS) describing the
matter’s interior. In our present approach, we have not sug-
gested any EoS but still our model predicts an almost linear
pressure-density relationship. We have chosen well-behaved
forms of grr and the anisotropic factor. These choices also
play a role on the behavior of the EoS. We have calculated
the best fit for the EoS corresponding to pulsar 4U1820−30

Fig. 24 Linear fitting of the EoS profile with different b

Fig. 25 EoS profile with different b

by using the least squares technique. Figure 24 demon-
strates graphically the best fit for the EoS. It is found that
the approximation for the best-fitted relation is given as
pr = −290.6 + 0.58ρ. The EoS relating energy density and
pressure shows almost the same linear behaviour but with
the increase of b equation soften lowering the slope value
(Fig. 25).

We have also analyzed the mass–radius (M−R) relation-
ship for a specific surface density (ρ(r = R) = 4.7 ×
1014 g cm−3) for our model which in general, is obtained
from the TOV equations with a given EoS. In the present
study, in the absence of any prescribed EoS corresponding to
the matter composition, the M−R relationship has been gen-
erated for a given surface density. We note that the maximum
mass allowed in our model is Mmax = 2.05 M� correspond-
ing to radius R = 10.85 km which is in well agreement with
the recent measurements. In the Fig. 12, 2M

R is 0.56 which is
< 8/9, thus satisfy the Buchdahl condition. Recently, Alho et
al. [51] investigated the Buchdahl bound for static spherically
symmetric solutions. The Buchdahl bound on compactness
( 2M

R ) might be arbitrarily close to the Black hole limit (= 1)

for elastic material with no limit on the speed of wave prop-
agation. However, they reported the bound to be ≤ 0.924
for solutions with subluminal wave propagation speed. Our
result is in conformity to their result. Also Fig. 26 shows the
mass–radius (M−R) plot with different b clearly indicates
impacts of anisotropy on the M–R plot. It is noted that with
the increase of anisotropic parameter b, the maximum mass
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Fig. 26 M–R profile with different b

is allowed to pick higher values. In a study Ratanpal et al.
[52] discussed the impact of the charge on the M–R rela-
tionship in developing the stellar model in the background
of Finch–Skea geometry. In their study, it is revealed that a
stellar configuration tends to accommodate more mass with
the increase of the electromagnetic field. Our results arrived
at the same findings if we consider that a charge fluid distri-
bution has an anisotropic interpretation.

Considering the star to be a slow rotating one for a
fixed surface density, the moment of inertia has been plotted
against mass which shows the maximum mass to be 1.84 M�.

Again the variation of the time period of rotation with its mass
indicates the time period for the maximum allowable mass
for our model is 1.1 ms.

The model developed here can be significantly studied
to accommodate astrophysical objects with a wide range
of masses and radii. These results can be applied to pro-
vide a mechanism for constraining anisotropy to fine-tune
with observational data of different millisecond pulsars. The
study of the effects of electromagnetic fields in addition to
anisotropy is another area that we would also like to take up
in our future investigation.
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