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Abstract The oscillations of ultra-relativistic neutrinos
are realized by the propagation of assumed zero-mass on-
shell neutrinos with the speed of light in vacuum com-
bined with the phase modulation by the small mass term
exp[—i (m%k /2| p|)t] with a time parameter 7. This picture is
realized in the first quantization by the mass expansion and in
field theory by the use of 8 (x*— yO —1) (0| T*v 4 (x) v ()]0)
with the neutrino mass eigenstates vy and a finite positive
7 after the contour integral of the propagating neutrino ener-
gies. By noting that the conventional detectors are insensi-
tive to neutrino masses, the measured energy-momenta of
the initial and final states with assumed zero-mass neutri-
nos are conserved. The propagating neutrinos preserve the
three-momentum in this sense but the energies of the mas-
sive neutrinos are conserved up to uncertainty relations and
thus leading to oscillations. Conceptual complications in the
case of Majorana neutrinos due to the charge conjugation in
d = 4 are also discussed.

1 Neutrino oscillations and mass expansion

The phenomenon of neutrino oscillations [1-3] is fundamen-
tal to measure the small neutrino masses, and it would be dis-
astrous if the different formulations should lead to different
neutrino masses. If one writes the neutrino mixing with the
PMNS matrices U%*

va) = Y U wg), (1)

k

where |vg) are the mass eigenstates which diagonalize the
neutrino mass matrix, and the flavor eigenstates |v,), (@ =
e, 1, 7), are related to each other by the above mixing for-
mula. We define the charged lepton flavor eigenstates by the
mass eigenstates. One may start with the production of the
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flavor eigenstate neutrino v, in the energetic pion decay
at >t + Vi, 2)

for example, by measuring 7 and u™T, and the neutrinos
thus produced propagate toward the detector in the oscillation
experiment; the direction of each mixed neutrinos may not
necessarily be in the exact specific direction considering the
accuracy of the measurements of 7+ and ™. The oscillation
is observed in each direction of the mixed neutrinos. We
analyze the Dirac neutrinos in the main part of the present
paper for simplicity, and the case of the Majorana neutrinos,
which are constrained by the complications of the Majorana
fermions in d = 4, shall be discussed in Appendix. It is
known that the relation (1), if interpreted as a superposition
of on-shell mass eigenstates with identical three-momentum,
leads to the standard oscillation formula [4,5]

Y UPkexplip ¥ —i\/p? +m2 ) (U

k

2
(v (0)|ve (1)) > =

P 2

S Uk expl—i U | 3)
- 2051

where ¢ = L, the neutrino propagation distance, is assumed
together with |p 12> m%k. It is known also that the identi-
cal energy assumption of neutrinos, instead of the identical
three-momentum assumption in the above derivation, gives
essentially the same formula [6]. In this paper we want to
understand how the oscillation formula is robust against var-
ious ways to derive it.

We first mention the idea of the wave packet of neutrinos in
the first quantization formalism [7]. If one of the mass eigen-
states in the neutrino v,,, for example vy, should be identified
immediately after the pion decay (2) such a mass eigenstate
due to the reduction of quantum states would propagate with-
out oscillations, although the flavor change 8 — « would
be induced by the (inverse) mixing in (1). The actual val-
ues of neutrino masses are, however, very small and thus the
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specification of the mass of one of neutrinos is practically
impossible; in fact, as is explained later, the neutrino masses
need to be not measured by the conventional detectors to
measure the neutrino oscillations. To treat the un-identified
neutrino mass eigenstates consistently, Kayser [7] suggested
the idea of the wave packet of particles involved, such as v,
in (2). The wave packet is more generally understood as a
means to incorporate the semi-classical aspects of neutrino
oscillations into quantum mechanics in a consistent manner,
and it has been successfully incorporated in the field theoreti-
cal formulations [6,9-13] and a related quantum mechanical
formulation [14]. It has been shown also that the kinematics
of the neutrino production generally implies the mass depen—
dence of the neutrino momentum such as p = p(m ,) and
that the mass-dependence of the momentum depends how
they are produced [15, 16]; for example, the two-body decay
7t — ut + v or other neutrino production processes.

One may consider the propagating phase of a flavor eigen-
state in vacuum determined by the phase of the mass eigen-
states initially located at (¢, X) = (0, 0)

Z Ut expligp (¢, %5 my,) 1|1 (0, 0)) “

k

Ve (t, X)) =

by assuming that the neutrino masses are very small and thus
the measured neutrinos are ultra-relativistic, in accord with
experimental facts which imply the mass differences Am?
on the order of (1072¢V)2. One then obtains the Lorentz
invariant

¢ (1, Xmy) = p(my )X — E(p(m}), m} )t
= pO)F — E(p(0),0)t +m3, p'(0) - (¥ — 1)
2

vk 4
§|;3(0)|t+ O(my,) ()

where

pmy) = pO) +my p'(0) + O(m}),

EBOn3,),mb) = \[Bm3) +m3,,

= E(p(0),0) +m} p'(0) - g

1 m O ;
+§m (my,) (6)
with
- - - IE(p(0),0 p(0
EGO),0) = /502, 7, = LLOD _ 2O )

ap(0) |p(0)]

We assume that the momentum p(0) is common to all the
mass eigenstates of neutrinos. The velocity ¥, is the group
velocity of the propagating (now regarded as massless) neu-
trinos. The basic assumption of the wave packet (although we
do not write an explicit form of the wave packet following
the analysis by Giunti and Kim [16]) is that the neutrinos are

@ Springer

concentrated at the center of the wave packet (see also [6])
X — gt >~ 0. ®)

The neutrino wave packets are essentially the spreading of
the initial and final state weak vertices, since the neutrinos
rarely interact with surrounding materials. We assume that
the geometrical spreads of the weak vertices, which are large
in the microscopic sense so that the spread of the neutrino
momentum is negligibly small by the uncertainty principle,
but still the geometrical spreads are very small compared with
the macroscopic distance between the two weak vertices. In
other words, all the neutrino mass eigenstates are assumed
to be measured at X — U,¢ > 0 or at a finite distance away

from 0, then the term m? P /(0) - (X — Vgt) is much smaller
2

§ I (0)|t in (5) for large #; this is also ensured by the
2
fact that |m2 p '(0)| is of about equal magnitude to 5 2 | p(O)I

which is conﬁrmed to be the case. The small quantities with
o (m? ,) or higher powers in the neutrino mass are neglected.

One thus measures the oscillations caused by next to the
last term of (5) with the common momentum factor

2
Bk .y UHke
E U exp|: 2| (O)I :|( ) )

k

than —

When the exponential factor is written in the form

— (JPO2 +m2 —

(9) is universal, i.e., depends on the intrinsic properties of
the neutrinos independently of how the neutrinos were pro-
duced. The common factor p(0)X — E(0)t for each mass
eigenstate in (5) does not contribute to the oscillation. We
thus recover the standard oscillation formula (3) using r >~ L
which arises from X — U,r =~ 0 in (8) with |U,| = 1. Phys-
ically, the semi-classical relation ¢+ ~ L with a small error,
which is determined by the conventional detectors, is not
influenced by the neutrino masses. In the above analysis, we
chose the vanishing masses of propagating neutrinos as the
fiducial values and the observed neutrinos are assumed to be
essentially massless.

Alternatively, if one assumes the time-to-distance conver-
sion t = L to be a valid ansatz for massless on-shell neu-
trinos,! one would obtain the formula (9) directly since the
term m,z)k p’(0) - (x — v,1) then vanishes. Also this picture
is consistent with the exact three-momentum conservation
induced by the three dimensional integration at both of the
initial and final weak vertices, which are implicitly assumed.
We derived the formula (5) by the mass expansion, which

0, (10)

I This idea of the time-to-distance conversion was criticized in [6].
To avoid the criticism, we use this idea only for the on-shell massless
neutrinos in (5) and also in the field theoretical amplitude discussed in
the next section. See also [17].
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is an expansion in terms of a Lorentz scalar quantity of the
Lorentz invariant phase p(m3, )X — E(m3 )t; this may imply
the Lorentz invariance of the oscillation formula (9) [6]. The
present picture may agree with our intuitive understanding
of neutrino oscillations; the ultra-relativistic neutrinos prop-
agate with the speed of light X — v,z = 0 in vacuum for
a measured momentum2 p(0), and the effects of the small

. m . . .
mass differences _%Ip(?g()lt are measured by oscillations in

vacuum.” The ratio —%% provides an important quan-
tity in this analysis, namely, it needs to be very small and
not measured by the conventional detectors; this constraint,
namely, not measurable by conventional detectors, generally
arises because of the energy non-conservation in neutrino
oscillations (or by an analysis of energy-time uncertainty
relations). In the next section on the Feynman amplitude
approach to neutrino oscillations we discuss how the same
criterion arises.

2 Feynman amplitude approach
To understand the oscillation phenomena in a field theoretical

formulation, one may start with an extension of the Standard
Model. The leptonic sector is given by

m, 0 O e
Eleptvm‘ (x) = (27 o, ?) [iyaaa - 0 my 0 ] 2%
0 0 mg T

my 0 0 V]
+ (01,92, 03) [iy*0 —| 0 my, O |1| 2
0 0 my, V3

§ e (=) [ €
——={(V1, V2, v3) LU y* W, ] 5 w | +hel}

V2 r
(1

with a 3 x 3 unitary mixing matrix U in (1). We ignore the neu-
tral current and electromagnetic interactions. All the particles
belong to respective mass eigenstates and the lowest order
Feynman amplitudes (using the Fermi approximation) are
well-defined without infrared singularities. One can confirm
that the conventional tree-level Feynman amplitude, which
consists of the production and detection weak vertices con-
nected by the Feynman propagator of massive neutrinos, does
not give rise to the neutrino oscillations when one integrates
over all the values of the weak interaction points x** and y*
withx” > y* aswellas y* > x* inthe Fermi approximation
of weak interactions we work. This integration over interac-
tion points, which incorporates backward moving off-shell
anti-neutrinos as well as forward moving off-shell neutrinos,
preserves the energy-momentum precisely at each interac-
tion point. We thus have no time scale to measure oscillations

2 The oscillations in the dense medium are not considered here.

which are related to the time translation non-invariance. We
shall demonstrate below that the Feynman amplitude with
only a part of the forward on-shell neutrino propagator repro-
duces the neutrino oscillation amplitude (3) by preserving
the measured overall energy-momentum up to uncertainty
relations. Feynman rules are used to specify the quantum
mechanically allowed couplings.

The Feynman amplitude approach to neutrino oscillations
has been discussed in the field theoretical formulation by
Kobzarev et al. [8], Grimus and Stockinger [10], Giunti,
Kim and Lee [11] who emphasized the wave packets, and
using plane waves by Egorov and Volobuev [17-19], among
others. In the latter approach [17-19], the (effective) limit
x% — 39 — oo was considered in the propagating neutrinos
of the form §(x0 — y0 — r)(T*vlL(x)vI]i(y)) using a gen-
eralization of the Grimus and Stockinger theorem [10] and
thus achieving the on-shell condition of all the propagat-
ing neutrinos. They emphasized that the momentum space
Feynman-like amplitude thus defined produces the oscilla-
tion amplitude [17-19] and the probability interpretation of
the oscillation amplitude is justified based on the probability
interpretation of the conventional Feynman amplitude. They
note the simplicity of their formulation compared to those
of the past formulations such as [10]. We follow the basic
ideas of [10,11,17-19], and we shall simplify the deriva-
tion of oscillation amplitudes and add several remarks on the
robustness of the amplitude thus derived.

We write the effective Lagrangian of neutrino processes
as

Lepr =Y WF@Liy"d, — My, v (x)
k

FTE @)U VK () + vk U H T8 () (12)

by incorporating the neutrino production and detection pro-

cesses in the sources Jg(y) and J 1’? (x), respectively, which
are chosen generally not to be Hermitian conjugate to each
other. We have a generalization of Schwinger’s source func-
foned

tions

T
Tr) = / amyie IR,

JR(y) =/

For example, Zk{vlli (x) (U Tyke JR(x)} describes the decay
nt — put +v, and
D lIg(0OU ok vi (x)} describes the electron production of

d*P;
@2n)*

e Py e p). (13)

3 Schwinger’s source functions in the conventional sense stand for the c-
number quantities, whereas we include parts of weak vertices in them.
We thus generalize the notations of Schwinger’s source functions in
the present use and ours are regarded as short hand notations of the
conventional Feynman diagram.

@ Springer
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ve + n — p + e. The source functions (in a generalized
context as above) are expressed in terms of plane waves as in
the conventional Feynman amplitudes. In the neutrino oscil-
lation experiments, the macroscopic distance between the
production vertex and the detection vertex is one of the main
observables. Following [17-19] (see also [16]), we work in
the framework of plane waves and consider the configura-
tions in a 4-dimensional sense where the neutrino produc-
tion and absorption points, which are denoted by y* and x*,
respectively, are correlated by a fixed time difference

=041 (14)

with a very large macroscopic t > 0.

A suitable choice of J 5 (Py) and Jg (P;) specifies the ini-
tial and final systems of the neutrino oscillation experiments
as described above. We then have the oscillation amplitude
for the initial (production) vertex such as

at - ut+v, (15)
and the final (absorption) vertex such as
Vet+n—> p+te (16)

with the neutrino oscillations communicating v, (¢ = )
to v.(B8 = e). Our proposal is to analyze the conventional
Feynman amplitude for the weak process, where the neutrino

is exchanged,
at+n—-put4+p+e 17

which is written by the prescriptions of source functions
described above with an extra §-function as

/d“xd“ye”’f"J,f(Pf)Uﬂka(xO —y0 -1
) (T* v (v YU JE (e~ By

e
= /d4xd4y5(x0 —y0 = t)e’P/XJg(Pf)(TyS)

d*p ip .
Qm)* \ p> —m?2 +ie

xe—ip(x—y) (Uf)la Jg(Pi)e—iP,'y

xUPK

_ /dyO(ZJT)383(P_f - Pi)Jg(P_f)(l_T)/S)Uﬁk

y d*p ip 50
Quy* \ p* —m2 +ie

. . : 0y
x (2383 (p — Pe P THIIT Uy g (P! P10
l—ys

2 )

dpo ip _ipO74i PO .
w5 <pz_,,z+ e T U TP
Vi

(18)

— @n)*s*(P; — P)JR(Pr)(

where P; = g5 — p, is the entering four-momentum in
the case of the pion decay, and Py = p, + p. — py is the
four-momentum of the outgoing final system; m%k stands for

@ Springer

the neutrino mass eigenvalue squared. Up to this point, the
formula is faithful to what defined by the first line in (18).

We now make an approximation. Since the energy resolu-
tion of conventional detectors cannot detect neutrino masses,
we neglect the possible neutrino mass dependence in P; and
Py; those four-momenta are written as if all the propagating
neutrinos are massless. The summation ), over the neutrino
masses then operates only on the neutrino propagators, and
the formula (18) is written after the contour integral over the
neutrino energy as

I
Qr)*s* (P — P)JL (@)(Ty“)

ﬁkl —ip”r-%—iPi‘)r ko 3 o/ p.
x{ZU 2p0€ uh |p0:m, P JR(P).

k

19)

The effect of the energy non-conservation induced by 8 (x* —
y9 — 1) is still seen by the presence of the time parameter
in the formula.

We would like to add several comments on the above
derivation of the formula (19). It implies that the Feynman
amplitude with the modified Feynman propagator [17-20]
describing only a part of the forward propagating neutrinos

8(x0 — ¥ — (T v v ()

gives rise to the neutrino oscillation probability for large fixed
7, as is seen in (24) later; the formula (19) gives the conven-
tional result (3) if one assumes the time-to-distance conver-
sion T = L. In the present paper, we adopted the propagator
of neutrinos (20) which is the same as in [17-19] with a
fixed large 7, but we obtain the on-shell condition of neu-
trinos by performing the contour integral with respect to the
neutrino energy [20], instead of taking the (effective) limit
x% — y0 — o0 in [17-19] with the help of the Grimus and
Stockinger theorem. By this way we performed the above cal-
culations of the amplitude (19) with an approximation stated
above, in the lowest order of perturbation. This simplified
evaluation was possible since we assumed that the energy-
momentum of the initial and final systems, represented by P;
and Py, respectively, are independent of the neutrino masses
because of the limited accuracy of conventional detectors
of weak interactions. The neutrino momentum p = ﬁi also
becomes mass independent. By this assumption we were able
to take the summation over the massive neutrinos ) _, outside
the 8-function as in the final formula (19).* We are assum-
ing that the neutrinos and other particles contained in the
source functions are expressed by plane waves, and the on-

shell condition of propagating neutrinos p° = ./p2? + m‘z)k

(20)

4 If one takes the summation >« including 84(Pf — P;), one would be
able to describe the sum of three-independent Feynman amplitudes of
mass eigenstates with an extra constraint §(x0 — yO — 7).
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arises from the contour integral [ d p? containing the factor
e~ P’T with T > 0.

The phase et i in (19) is common to all the massive
neutrinos and thus neglected in the absolute square of the
amplitude. We have the essential part of the amplitude char-
acteristic to oscillations from (19) [17-20]

ip _.0
Uﬂk_eflp T(UT)kO(| _ - (21)
; 2p0 pO=/p>+m3 . p=F;
with t = L. Namely, we recognize the mass differences of
the massive neutrinos only by the neutrino oscillations which
are caused by the second term on the right-hand side of

e_ipof _ e—i4/ﬁlr—i(m%k/2|ﬁ|)r—i0(mﬁk)r (22)
leading to the flavor-changed oscillating final states recog-
nized by weak interactions as in (3).

For the ultra-relativistic neutrinos, the spin factor

4 1|:() 1Pl:|
2pg 2 vy Po

in (21) is regarded to be independent of the neutrino masses
since pr/po = [pi/|pII(L — (1/2)m3, /|IpI* +..) = pi/ 1],
and thus /p/(2po) =~ [¥° + ¥'pi/Ipl1/2 is regarded as
independent of the neutrino masses. The amplitude (19)
then contains the well-known oscillating factor in the quan-
tum mechanical formulation (5) [4,5] with the spin factor
@ %pl’ which does not influence the t or L-dependence
of the oscillation probability and thus may be absorbed in
the initial and final states. This appearance of the spin factor
is a new aspect of the Feynman diagram approach, although
it does not influence oscillations. We thus have the essential
part of the oscillating amplitude

Uﬂkefipor UT ko _ -
; @n |Po=,/p2+m%k, p=P;
2

- (24)

2
M
ZUﬁke '2|p\T(UT)ka|ﬁ:ﬁi
k

witht = L.

The analysis of an explicit connection between t and the
distance L = |¥ — ¥|, namely, the time-to-distance con-
version, and the specification of the appropriate extensions
of the initial ¥ and the final X around the points fixed by
7 = L = |X — y| do not appear in the above formulation
(19), although we used T = L at several places already. This
absence of the analysis of the time-to-distance conversion
is analogous to the case of (3) and thus we have to rem-
edy the shortcomings, although the direction from y to X in
the present case is specified by the given common momen-
tum p = ﬁi. The simplest idea may be to assume that the
time-to-distance conversion is a valid ansatz in the analysis

of neutrino oscillations for effectively massless on-shell neu-
trinos, since the conventional detectors cannot recognize the
neutrino masses. One would then obtain the desired result
from (24) (or (5)) directly. This abstract picture is consistent
also with the integration over yO, namely, the arbitrariness of
the origin of initial time in obtaining (19), and also with the
exact conservation of the three-momentum at the two weak
vertices following from the integration over X and y. Further
discussions on this matter shall be given later.

For the specific two-flavor case and the non-diagonal pro-
cess 4 — e, for example, the formula (24) gives the well-
known oscillation probability

2 2
lelpw) > = (sin20)2% {1 — cos [(m”lz'—;”> r” . (25)

The interval of L(= t) to measure the oscillations is then
specified by the standard

2 2
mv] — mv2

2|p|
depending on the mass difference of neutrinos, and the
momentum p carried by the (massless) neutrinos which is
determined by the measured p = Py; this value is assumed

to be independent of neutrino masses. The precise energy-
conservation (i.e., time-independence) in (25) is given by

L=2n (26)

my —my, =0 (27)
m2 —m2
namely, the vanishing oscillation l—cos[<%> 7] =0.

The persistent probability is

) = 1 — (sin20)22 11 — cos Ly T
= 2 2171

(28)

which satisfies |(i|u)|? + |{e|n)|? = 1 in the present case
of two-flavor neutrinos. In general, the absolute normaliza-
tion of the oscillation probability is not well-specified [6],
in particular, in the present case multiplying the Feynman
amplitude by 8 (x — y* — 1) and thus using only a part of the
Feynman amplitude, but the specific oscillation probabilities
are well-normalized as above.

3 Discussion and conclusion

The observed oscillation of ultra-relativistic neutrinos is
based on the two basic conditions. The first is that the mass-
less on-shell neutrinos (with various originally small mass
eigenstates) propagate for a given momentump(= 135) from
the position y to another X with the speed of light in vacuum

it =T =53 29)

@ Springer
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when measured with the conventional detectors which do
not recognize the neutrino masses; the present considera-
tion is thus limited to length scales of the neutrino propaga-
tion approximately within those of the atmospheric neutrino
oscillations. This may be called the semi-classical (particle)
aspect. The second is that the oscillations are caused by the
small phase modulation with the common momentum factor

m2
> UPtexp —iﬁz (U ke (30)
p p

such as in (24) and (5). This phase modulation is the quan-
tum mechanical (wave) effect and supplemented by the sub-
sidiary condition T = L = |X¥ — y| following from the
semi-classical consideration (29). Any formulation satisfy-
ing these two conditions (29) and (30) gives the oscillation
formula.

We assumed in Sect.?2 that the oscillation formula is, in
principle, applicable to any experiments without referring
to the specific positions y and X of weak vertices, as the
abstract formulations of (5) and (24) suggest. The assump-
tion of the time-to-distance conversion was accepted as a
valid ansatz for semi-classical on-shell massless neutrinos
with the (common) given momentum p. In this understand-
ing, the oscillation formulas are valid for any (4-dimensional)
configurations parallel transported from each other with fixed
D, independently of the specification of the origin of time
yY. The neutrino oscillations are universal phenomena and
applicable to any chosen x and y in the direction of p with
7 = L = |X — y|. The simple Feynman diagram approach
in [17-19] and the present derivation of the oscillation for-
mula (19) may be counted among the schemes based on these
assumptions.

Alternatively, one may follow the elaborate wave packet
analyses in the past [6,9—14]. These analyses may be
regarded as clarifying the mechanisms how to satisfy these
conditions (29) and (30) including the quantum coherence of
neutrinos and the specification of positions y and X. The weak
vertices at X and ¥ are treated naturally in these wave packet
pictures, while the treatment of weak vertices are less trans-
parent in the present field theoretical treatment with Lorentz
invariant plane waves. In the wave packet picture, one may
assume that the semi-classical relation (29) is valid for the
points y and X that are by themselves spreading over the three-
dimensional domains so that the three-momentum conserva-
tion is ensured within the constraints of uncertainty relations.
The spreads of the points y and X of two weak vertices are
still assumed to be much smaller than the semi-classical dis-
tance L = |X — ¥| between them; as for an explicit wave
packet realization of these conditions see, for example, [11].
In fact, the wave packet formalism is regarded as an attempt
to incorporate semi-classical constraints such as (29) in the
framework of quantum mechanics consistently. In this sense,

@ Springer

the justification of the present Feynman amplitude approach
is also given by the idea of wave packets.

The on-shell neutrinos with the same three-momentum
and different masses mean that the energy conservation is
not satisfied in the intermediate states of the oscillation in
(19) (also in (5)), as is well known [6]. The time-dependent
neutrino oscillation in the case of two flavors in (25), for
example, may be regarded as measuring the effective energy-
nonconservation in the intermediate states (with the notation
with explicit 7)

AEt =2nh 3

where
2

77’[1)2
\/p +md| =TT (3
2|p|

AE=|\/132+m

standing for the propagating neutrino energy splitting. The
energy non-conservation is manifested as time-dependent
oscillations, i.e., the breaking of time translation invariance.
But one may regard that the energy non-conservation is super-
ficial since the energy-time uncertainty relation AEt > 7i/2
is satisfied naturally although rather marginally by (31) with
macroscopic t. This shows that AE is actually very small
and thus measurable only with oscillations, of which effects
vanish on average, but not measurable with the conven-
tional detectors. If A E should be measured by conventional
detectors, the energy-nonconservation would be confirmed
by oscillations; this would be a contradiction.’

Without the delta-functional constraint 8§(x* — y0 — 1),
one would have the conventional Feynman amplitude with
the propagating neutrinos

1= ys - i b
< ) Z ( —Mv2k+ie

where p = P;(now exact), and because of Feynman’s ie
both the forward propagating neutrinos and the backward
propagating anti-neutrinos contribute. In contrast, in our for-
mula (19) only a part of the neutrinos propagating forward
in time appear and those anti-neutrinos propagating back-
ward in time with negative energy are neglected.® With the
presence of 8(x% — y0 — 1) in the measurement of oscilla-
tions, the neutrino propagation may be regarded as a large
scale quantum effect. One may regard that the microscopic
CP symmetry of the oscillation amplitude is an indication
of the CP symmetry of the original Feynman amplitude; the

) SuUH L (33)

5 This contradiction would also be understood as the conventional
detectors measuring the energies below the uncertainty limits. The oscil-
lation (or the non-invariance of time translation) would not occur if AE
should be detected by conventional detectors.

© We are assuming that the neutrino is propagating in the oscillation

experiment, for simplicity. The anti-neutrino oscillation is measured in
addition to examine the CP violation.
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microscopic CP violation is described by the phase of the
PMNS matrix in the case of three or more leptonic flavors
(except for an extra CP violating U (1) phase even for two
flavors in the case of Majorana neutrinos, which is however
not measured by oscillation experiments [21-23]).

In conclusion, we first re-formulated the ultra-relativistic
neutrino oscillations using the neutrino mass expansion,
which simplifies the formulation substantially in the frame-
work of the first quantization. The characteristic property of
neutrino oscillations is that the conventional detectors can-
not recognize the finite neutrino masses, and thus the absence
of energy-momentum conservation in a precise sense. These
ideas were then applied to the Feynman amplitude approach
to neutrino oscillations with plane waves by constraining the
amplitude to a part of forward propagating massive neutrinos.
The time-to-distance conversion, which may be justified for
effectively massless on-shell neutrinos, was assumed to sim-
plify the analyses of ultra-relativistic neutrino oscillations. A
unified picture of ultra-relativistic neutrino oscillations was
thus presented.
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A Majorana neutrinos and charge conjugation

In this appendix we briefly summarize the conceptual com-
plications in the case of Majorana neutrinos using firstly
Weinberg’s model [24] and later the seesaw models [25].
The Weinberg’s model is defined by an effective Hermitian

Lagrangian [24]

Ly =V @)iy" v (x) — (1/2){v} (x)CMyvL(x) + h.c.)
= (I/D{Piy" 0,9 (x) = ¥ (O MY () (34)

where M, stands for the 3 x 3 diagonalized neutrino mass
matrix and we defined

Y(x) = vp(x) + CoL L (x), (35)

with C = iy?y". The field v (x) satisfies the classical Majo-
rana condition

Y@x) =Cy) (36)

identically regardless of the choice of v; . One may define the
Majorana fermion by (35) together with the Dirac equation
[iy"0, —M,]¥ (x) = 0. This is the conventional procedure.

In general one cannot define simultaneously a Majorana
fermion with well-defined C and P and a Weyl fermion for
which C nor P are defined in d = 4. The conceptual com-
plications are how to define an isolated free Majorana neu-
trino with well-defined C and P, while weak interactions are
described by a chiral fermion. Starting with a Dirac fermion,
one may obtain under the charge conjugation

v (x) = Cop(x) (37)

instead of the pseudo-charge conjugation symmetry vy (x) —
CT()C)T [26] implicit in the fermion (35). If one adopts
the pseudo-C symmetry vy (x) — CT(x)T together with
the representation of a Majorana fermion (35), one would
encounter various puzzling aspects. For example, the first
expression of the effective Lagrangian (34) is not invariant
under the P operation; also the mass term vLT xX)CMyvp(x) =
vLT x)CM l,(I_TVS)UL (x) vanishes under the pseudo-C sym-
metry. Apparently an idea of the pseudo-C symmetry needs
to be understood better [26].

A way to deal with Majorana neutrinos in a consistent
manner may be to use a general class of seesaw models [25],
which contain the equal number of left-handed and right-
handed fermions. One may use a Bogoliubov-type transfor-
mation to change the definition of the vacuum of the Weyl
fermion to the vacuum of the Majorana fermion [27]. The
conventional approach gives rise to

Yy (x) = vg + CVg’
Y_(x) = v, — Cvp’ (38)

in the seesaw model, which are Majorana fermions with
masses My # M_ if one uses the pseudo-C symmetry. But
the conventional parity is not well-defined.

After a suitable Pauli-Gursey transformation, which is
equivalent to the Bogoliubov transformation but extended
easily to three generations, one can rewrite the Majorana

@ Springer
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fermions as solutions of the seesaw model in the form [27]

1 _
Ye) = SN * CN' (x)] (39)

7
using Dirac-type massive fermions N (x), satisfying [i y# 9, —
Myilye(x) = 0 with Ilfi(x)c = 4Y¥1(x) and the same
masses My # M_ as in (38). The parity is defined by [27]

N(x) — iy'N@, —%). (40)

Those fields ¥4+ (x) in (39) are the Majorana fermions with
well-defined C and P in the conventional sense.

The formal left-handed components {7, (x) = (I_TyS)I/f_ (x)
with a U% modified by the Pauli-Gursey transformation
[27] may be used in a model of neutrino oscillations (19).
The modification of U%* is cancelled by a modification of

@1//_ (x) induced by the Pauli-Gursey transformation

when used in the oscillation formula (19). If (I_Tml//, (x) is
measured, %w_ (x) is recovered by the parity operation.
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