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Abstract We consider the cosmological implications of
the Weyl geometric gravity theory. The basic action of the
model is obtained from the simplest conformally invariant
gravitational action, constructed, in Weyl geometry, from
the square of the Weyl scalar, the strength of the Weyl vec-
tor, and a matter term, respectively. The total action is lin-
earized in the Weyl scalar by introducing an auxiliary scalar
field. To maintain the conformal invariance of the action the
trace condition is imposed on the matter energy–momentum
tensor, thus making the matter sector of the action confor-
mally invariant. The field equations are derived by varying
the action with respect to the metric tensor, the Weyl vec-
tor field, and the scalar field, respectively. We investigate the
cosmological implications of the theory, and we obtain first
the cosmological evolution equations for a flat, homogeneous
and isotropic geometry, described by Friedmann–Lemaitre–
Robertson–Walker metric, which generalize the Friedmann
equations of standard general relativity. In this context we
consider two cosmological models, corresponding to the vac-
uum state, and to the presence of matter described by a lin-
ear barotropic equation of state. In both cases we perform
a detailed comparison of the predictions of the theory with
the cosmological observational data, and with the standard
� CDM model. By assuming that the presence of the Weyl
geometric effects induce small perturbations in the homoge-
neous and isotropic cosmological background, and that the
anisotropy parameter is small, the equations of the cosmolog-
ical perturbations due to the presence of the Weyl geometric
effects are derived. The time evolution of the metric and mat-
ter perturbations are explicitly obtained. Therefore, if Weyl
geometric effects are present, the Universe would acquire
some anisotropic characteristics, and its geometry will devi-
ate from the standard FLRW one.
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1 Introduction

Einstein’s general relativity is a physical theory essentially
based on the geometry of Riemann [1]. The gravitational field
equations, as proposed by Einstein [2,3], and Hilbert [4] pro-
vide a description of the gravitational field in which the con-
tractions of the curvature tensor determine the gravitational
interaction of massive objects. The gravitational force is thus
not due to the microscopic exchange of particles (quanta of
the fields), as is the case in electrodynamics, but it is an intrin-
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sic property of space-time structure. General relativity has
found extensive applications in astrophysics and cosmology,
and it has been extensively tested at various scales. At the
level of the Solar System, general relativity gives an excel-
lent description of the of the gravitational dynamics, and fully
explains the perihelion precession of Mercury, the bending
of light by the Sun, or the Shapiro time delay effect [5,6]. The
experimental detection of the gravitational waves [7,8] has
also brilliantly confirmed the predictions of general relativity,
and it has opened a new window for the understanding of the
intricate physical processes taking black hole – black hole,
or black hole – neutron star merging processes [8]. One of
the most intriguing predictions of general relativity is related
to the existence of black holes, whose existence in the static
spherically case was predicted by Schwarzschild [9], while
the rotating black hole solution was obtained by Kerr [10].
The first images of the supermassive black hole M87* were
presented recently by the Event Horizon Telescope collab-
oration [11–13]. The observations point towards a Kerr-like
structure for the Sgr A* black hole. But still one cannot reject
the possible existence of differences with respect to the pre-
dictions of standard general relativity.

The impressive success, of general relativity as a physi-
cal theory of gravity based on geometric concepts, influenced
significantly not only physics, but also mathematics. The dif-
ferential geometric approach to gravity pioneered by Einstein
led to a deeper understanding of the structure of Riemannian
geometry, and opened the ways for its generalization. The
possibility of solving physical problems by using geometri-
cal methods suggested to study geometries that go beyond
Riemann geometry, and general relativity. Historically, the
first proposal to generalize Riemann geometry, was due to
Weyl [14,15]. Weyl was motivated in this generalization by
the intention of solving one of the most important problems
of theoretical physics, namely, the unification of the gravita-
tional and electromagnetic forces. For an extensive account
of the historical aspects of Weyl geometry, its evolution, and
its physical and mathematical implications see [16]. A few
years later after Weyl’s work another important generaliza-
tion of Riemann geometry was introduced by Cartan [17–20],
based on the concept of torsion. Geometries with torsion rep-
resent the mathematical foundations of the Einstein–Cartan
theories of gravity [21]. In these types of theories torsion
describes the effects on the space-time geometry arising from
the rotation of compact objects.

In building his geometry, Weyl adopted two fundamental
principles. The first is the possibility of the variation of the
length of a vector during its parallel transport. The variation
of the length is described by a geometric quantity called non-
metricity Qλμν . Consequently, in Weyl geometry, the covari-
ant derivative of the metric tensor gμν satisfies the condition
∇̃λgμν = Qλμν , also called the nonmetricity condition. Sec-
ondly, Weyl postulated that the laws of nature must be confor-

mally invariant. In the first formulation of Weyl’s geometry
for the nonmetricity a particular form was adopted, namely,
Qλμν = Aλgμν , where Aμ is the Weyl vector. Weyl also pro-
posed the interpretation of the vector Aμ as the electromag-
netic field potential. However, the physical interpretation of
Weyl’s geometry was strongly disapproved by Einstein. Due
to this criticism, as well and as a result of the general devel-
opment of theoretical physics, for a long time Weyl’s unified
field theory was not accepted as a possible physical approach
to the unification of the electromagnetic and gravitational
interactions. But Weyl’s geometry has many beautiful char-
acteristics, and it opens the way for the full implementation
of the conformal invariance of physical laws. Weyl’s geome-
try is also at the origin of the gauge theory [22,23], which has
become the fundamental theoretical tool in particle physics.
Thus, in the past century, Weyl’s geometry did continue to
inspire the work of both physicists and mathematicians.

One of the interesting attempts for the reconsideration
of Weyl’s theory from a physical point of view was due
to Dirac [24,25], who introduced a real scalar field φ of
weight w(φ) = −1 in the basic theory. As for the grav-
itational Lagrangian Dirac proposed the expression L =
−φ2R + kDμφDμφ + cφ4 + WμνWμν/4, where R is the
Ricci scalar, c and k = 6 are constants, and Wμν is the elec-
tromagnetic type tensor constructed from the Weyl vector.
The Dirac Lagrangian has the important property of con-
formal invariance. A slightly modified version of the Dirac
model was investigated, from a cosmological perspective, in
[26]. The cosmological implications of a Weyl-Dirac type
Lagrangian of the form L = W λρWλρ −φ2R+σφ2wλwλ +
2σφwλφ,λ + (σ + 6)φ,ρφ,λgρλ + 2�φ4 + Lm, where σ and
� are constants, were investigated in [27]. In the cosmologi-
cal model based on the action introduced in [27], the creation
of particles at the beginning of the Universe is determined
by the Dirac gauge field. During the late time evolutionary
phases of the Universe, the Dirac gauge field represents the
source of the dark energy triggering the de Sitter exponential
cosmic expansion of the Universe.

Weyl’s geometry was also generalized to include tor-
sion. The corresponding geometry is called the Weyl–Cartan
geometry, and it has also been extensively studied from both
physical and mathematical points of view [28–36]. For a
detailed review of the geometry and of the cosmological
applications of the Riemann–Cartan and Weyl–Cartan space-
times see [37]. The role of the torsion in the Weyl–Dirac
theory was investigated in [38–40]. By including the tor-
sion tensor in the theory one can also obtain a conformally
invariant massive electrodynamic theory, generalizing clas-
sical electromagnetism.

Another interesting mathematical approach with impor-
tant physical applications was initiated by Weitzenböck [41],
who introduced the geometrical structure known today as the
Weitzenböck space. The Weitzenböck spaces have the basic
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properties ∇μgσλ = 0, Tμ
σλ �= 0, and Rμ

νσλ = 0, respectively,
where Tμ

σλ is the torsion tensor. Weitzenböck spaces reduce
to a Euclidean manifold when Tμ

σλ = 0. Moreover, the tor-
sion tensor Tμ

σλ has distinct values in the different points of
the manifold. Since the Riemann curvature tensor vanishes
identically, the Weitzenböck spaces have the property of dis-
tant parallelism, also known as teleparallelism, or absolute
parallelism. Einstein proposed a unified teleparallel theory
of electromagnetism and gravitation based on the Weitzen-
böck geometry [42]. Cosmological applications of the Wey-
Cartan-Weitzenböck geometry were considered in [43,44].

A teleparallel formulation of the gravitational field can
be obtained by replacing the metric tensor gμν with a set of
tetrad vectors eiμ. Thus, the torsion tensor, constructed from
the tetrad fields, describes completely gravity, with the curva-
ture replaced by the torsion. This approach represents the so-
called teleparallel equivalent of General Relativity (TEGR),
which was initially developed in [45–47]. The corresponding
theory is also known as the f (T) gravity theory, withTdenot-
ing the torsion scalar. In the f (T) type theories the equations
describing the gravitational field are of second order, while in
other modified gravity theories, like, for example, the f (R)

gravity theory, the field equations in the metric formalism
are of fourth order [48]. See [49] for a review of the TEGR
type theories. f (T) theories can also explain geometrically
the recent accelerated expansion of the Universe, without the
need of introducing in the field equations a dark energy term,
or the cosmological constant [50–61].

The determinations by the Planck satellite of the fluc-
tuations in the temperature distribution of the Cosmic
Microwave Background Radiation [62,63], as well as the
investigations of the light curves of the Type Ia supernovae
[64], have provided compelling evidence that the present
day Universe is in a phase of rapid cosmological expan-
sion. Moreover, these observational findings have also con-
clusively proven that only around 5% of the matter-energy
content of the Universe consists of baryonic matter, with 95%
being represented by two other components, called generi-
cally dark matter, and dark energy, respectively. In order to
interpret theoretically the cosmological observational data,
the �CDM (� Cold Dark Matter) model was introduced,
which is essentially based on the reintroduction in the stan-
dard gravitational field equations of the cosmological con-
stant λ, first proposed in 1917 by Einstein [65] to obtain a
static cosmological model of the Universe. Later on, Einstein
rejected the possibility of the existence of �. The �CDM
model gives a very good description of the observational data,
especially at low redshifts, and thus it is considered the stan-
dard cosmological paradigm of the present times. However,
in its basic formulation the �CDM model is confronted with
an important objection related to its theoretical foundation.
Presently no satisfactory explanation of the nature (physical
or geometrical) of the cosmological constant does exist, and

thus the theoretical basis of the �CDM model are at least
uncertain.

Thus, it is justifiable to suppose that to obtain a realis-
tic physical picture of the Universe, fully consistent with
the cosmological observations, one should extend standard
general relativity. It may be possible that the Einstein field
equations, describing very well the gravitational dynamics
in the Solar System, are only a first order approximation of
a more general gravity theory. Many modified gravity theo-
ries have been proposed, and for a detailed reviews see [66–
68]. Generalizations of Einstein’s relativity in the presence
of geometry-matter couplings have been introduced in [69–
71]. For a unified approach to modified gravity theories see
[72,73].

The �CDM model is also confronted with several other
problems, which are mostly the results of the increase in accu-
racy of the cosmological observations. An important cosmo-
logical challenge is the difference between the expansion rate
of the Universe as determined from the Cosmic microwave
Background Radiation satellite observations, and the numer-
ical values obtained from the local (low redshift) determi-
nations [74]. This discrepancy is called as the Hubble ten-
sion [75–77]. The Hubble constant (H0) as measured by the
Planck satellite, has the value of 66.93±0.62 km/ s/ Mpc [78],
while the value of 73.24±1.74 km/ s/ Mpc [74] is obtained by
the SH0ES collaboration. The differences between these two
values is more than 3σ [79]. The Hubble tension, if indeed it
exists, points strongly towards the need of considering new
gravitational theories, and extending, or even fully replacing,
the �CDM model.

An important avenue for the extension of standard cosmol-
ogy, and for obtaining explanations of the present-day obser-
vations, is related to the reexamination of Weyl’s theory as a
possible description of the gravitational interaction. A fun-
damental idea, first introduced by Weyl, is the consideration
of the conformal invariance of the physical laws. It turns out
that the fundamental equations of elementary particle physics
are conformally invariant, but Einstein’s general relativity is
not. Hence, in order to make all the equations describing
elementary particle interactions consistent, it is necessary
to reformulate general relativity as a conformally invariant
field theory. Theories of gravity, satisfying the requirement
of the conformal invariance, as well as conformally invariant
theories of elementary particle physics were proposed and
investigated in detail in [80–86].

A fully conformally invariant theory of gravity can be
obtained from the action S = −αg

∫
CλμνκCλμνκ√−gd4x =

−2αg
∫ (

RμνRμν − R2/3
) √−gd4x, where Cλμνκ is the

(conformally invariant) Weyl tensor, and αg is a constant.
This theory was introduced, and extensively investigated, in
[87–92]. The theory can also provide an explanation for the
unusual motion of the massive particles orbiting around the
galactic centers, which is usually explained by assuming the
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existence of a mysterious, and yet undetected, component of
the Universe, called dark matter.

Weyl geometry represents the mathematical basis of the
f (Q) modified gravity theory [93–95], and of its general-
izations [96–100]. In the f (Q) theory, the basic geomet-
ric parameter, fully describing the gravitational interaction,
is the non-metricity Q. The action of the f (Q) theory is
obtained as S = ∫

f (Q)
√−gd4x, where f (Q) denotes an

arbitrary analytical function of Q. An extension of the f (Q)

theory, based on the action S = ∫
f (Q, T )

√−gd4x where
T is the trace of the matter energy–momentum tensor, was
introduced in [97]. The f (Q) theory, as well as its exten-
sions, were intensively investigated from both theoretical and
observational points of view [101–108].

A novel, and very interesting perspective on Weyl grav-
ity, and of its applications in elementary particle physics,
cosmology and astrophysics, was proposed, and extensively
developed, in [109–121]. This approach to gravity heavily
relies on concepts from elementary particle physics, and in
the following we will call it the Weyl geometric gravity the-
ory (sometimes it is also called quadratic Weyl gravity [120]).
The starting point in this approach to Weyl gravity is to lin-
earize, in the quadratic Weyl action [14,15], the square of
the Weyl scalar R̃2 via the introduction of an auxiliary scalar
field φ. As a result, quadratic Weyl gravity can be reformu-
lated as a gravitational theory linear in the curvature scalar.
This linearization has important physical implications. In the
curvature linearized Weyl action one can introduce a sponta-
neous breaking of the D(1) symmetry as a result of the pres-
ence of a Stueckelberg type mechanism, having a geometric
origin. Consequently, the Weyl gauge vector field acquires a
mass, originating from the spin-zero mode of the R̃2 term.
The Stueckelberg mechanism is implemented via the replace-
ment of the scalar field φ with a constant value (its vacuum
expectation value), with φ →< φ >. Hence, through this
mechanism the Weyl vector field becomes massive, and in
this way the dynamical scalar field φ is absorbed in the mass
of the vector field. Consequently, the scalar field is eliminated
from the initial scalar-vector-tensor theory. After removing
φ, the Einstein-Proca action is obtained from the initial Weyl
action. Therefore, a vector-tensor theory is reobtained, which
is similar to the initial Weyl geometric gravity theory.

The pathway to gravity via the linearization procedure of
the quadratic Weyl action also provides some insights on
the Planck scale, and on the cosmological constant. We have
already mentioned that the Einstein-Proca action emerges
from the initial Weyl action in the broken phase. Conse-
quently, all mass scales, including the Planck scale, as well as
the cosmological constant �, have a geometric origin [116].
The Higgs field, which plays an essential role in the standard
model of elementary particles, also originates from geome-
try, and it is created through the fusion of Weyl bosons in the
very early Universe, during the reheating phase.

The physical and cosmological properties of the Weyl geo-
metric gravity have been extensively investigated recently.
The conformally invariant coupling between geometry and
matter was considered in [122–124]. The Palatini formula-
tion of the theory in the presence of conformally invariant
matter-geometry couplings was studied in [123]. The Pala-
tini formulation of the quadratic Weyl gravity R̃2 + R2

μν was
also analyzed in [113], by assuming that the metric and the
Weyl connection are independent quantities. In the Palatini
approach all the mass scales do appear as a purely geometric
effects. Moreover, a spontaneous breaking of the gauge scale
symmetry can be implemented in the theory. An inflation-
ary scenario can also be constructed, and the tensor-to-scalar
ratio is predicted as 0.007 ≤ r ≤ 0.01, at 95% CL, and
N = 60 efolds. The investigation of the inflation in the Weyl
geometric gravity in its metric and Palatini versions was ini-
tiated in [114]. Since the two versions of the Weyl geometric
gravity have different non-metricities, both determined by
the Weyl gauge field, the physical predictions of the two
formalisms are different. Black hole solutions in Weyl geo-
metric gravity were obtained, by using both numerical and
analytical methods, in [125]. The possibility that dark matter
is a Weyl geometric effect was considered in [126]. Stellar
type objects in Weyl geometric gravity were studied in [127].
The spin Hall effect for light was generalized to the case of
Weyl geometry in [128]. The thermodynamical properties of
the Weyl geometric black holes were analyzed extensively in
[129]. The behavior of the galactic rotation curves in Weyl
geometric gravity were investigated in [130].

It is the goal of the present paper to consider isotropic
and anisotropic cosmological models in the simplest model
of the Weyl geometric gravity. Our starting point is a gravi-
tational action consisting of the sum of the square R̃2 of the
Weyl scalar, and of the field strength F2

μν of the Weyl vector.
The action can be linearized in the Weyl scalar, by introduc-
ing an auxiliary scalar field φ. Then the conformally invariant
Weyl action can be reformulated as an effective scalar-vector-
tensor theory in Riemann geometry, with the action contain-
ing effective couplings between the scalar field and the Ricci
scalar, and the Weyl vector field. These terms are confor-
mally invariant by construction. Moreover, a matter term is
also added to the total action in a conformally invariant way.
The field equations corresponding to this action are obtained
in the metric formalism, by varying the action respect to the
metric tensor, Weyl vector and the scalar field.

An important question in conformally invariant gravita-
tional actions is how to implement the conformal invari-
ance of the matter terms. In this work, we will achieve
the requirement of the conformal invariance of the matter
action by imposing the trace condition on the effective mat-
ter action Lm , constructed with the help of the ordinary mat-
ter action Lm , and the square of the Weyl vector ω2, so that
Lm = Lm

(
Lm, ω2

)
. Once this condition is satisfied, the cor-
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responding gravitational field equations, and their solutions,
are conformally invariant.

After obtaining the gravitational field equations of the
Weyl geometric gravity, and the consistency condition
in the homogeneous and isotropic Friedmann-Lemaitre-
Robertson-Walker cosmological framework (the generalized
Friedmann equations), we consider a number of specific cos-
mological models. Thus, we investigate first a vacuum cos-
mological model, in which the matter Lagrangian and the
baryonic matter density are assumed to vanish. The cos-
mological equations are solved numerically, and the Hubble
function of the model is compared with a small observational
dataset of observational values of the Hubble function, as well
as with the predictions of the standard �CDM paradigm. The
behaviors of the deceleration parameter, of the Weyl vector,
and of the scalar field are also obtained.

The effect of the matter is considered in the next step
of our investigation. The generalized Friedmann equations
are again solved numerically, and the comparison with the
observations and �CDM model is performed in detail. The
variations with respect to the redshift of the matter energy
density, deceleration parameter, Weyl vector and scalar field
are also considered.

Finally, we investigate the anisotropic properties of the
Weyl geometric cosmological models. We consider the sim-
plest extension of the isotropic and homogeneous FLRW
geometry, namely Bianchi type I spacetimes. We write down
the gravitational equations describing the Weyl geometric
evolution in a Bianchi type I geometry in an effective form,
by introducing the equivalent dark energy and dark matter
terms, which also incorporate the contributions from Weyl
geometry. By assuming that the differences between the scale
factor of the isotropic FLRW model and the scale factors of
the Bianchi type I spacetime are small, it follows that the
deviations from isotropy are also small, and therefore we
can assume that they represent just a small perturbation of
the homogeneous and isotropic FLRW background metric.
We derive the basic equations satisfied by the perturbations of
the metric, and of the effective (geometric) energy densities
and pressures. It turns out that the cosmological evolution
of the perturbed geometric and physical quantities is deter-
mined by the Hubble function of the background isotropic
model. The perturbation equations are solved numerically,
for the case of the Bianchi type I geometry, and the behav-
iors of the relevant physical and geometrical quantities, like
the anisotropy parameter, deceleration parameter or energy
density and pressure perturbations are obtained.

As a possible test of the anisotropic Weyl geometric cos-
mological model we have considered the behavior of the
quadrupole Q2 of the CMBR as function of the deviations
δ1 and δ3 from the isotropic and homogeneous FLRW geom-
etry. Since the dynamical characteristics of the background
FLRW geometry in Weyl geometric gravity are known, one

could use the obtained expression of Q2 to put tight con-
straints on the parameters of the anisotropic Weyl geometric
cosmology model. For the isotropic case we have obtained
the constraints on the model parameters from the study of
the luminosity distance by using the observational data from
the type Ia supernovae.

The present paper is organized as follows. The action and
the field equations of the Weyl geometric gravity theory are
introduced in Sect. 2, where the conformally invariant con-
struction of the matter action is also discussed. The cosmo-
logical evolution of the isotropic and homogeneous Weyl
geometric gravity models is discussed in Sect. 3. The gen-
eralized Friedmann equations are obtained, and two cosmo-
logical models, corresponding to a vacuum Universe, and a
matter filled one, are explored in detail. A comparison with
the observational data for the Hubble function, and with the
�CDM model is also performed. Bianchi type I homoge-
neous and anisotropic cosmological models are considered
in Sect. 4, with the use of a perturbative approach. The behav-
ior of the various geometrical and cosmological quantities
describing the model are also considered in detail. Finally,
we discuss and conclude our results in Sect. 5.

2 Action and field equations of Weyl geometric gravity

in the present Section we write down first the action of Weyl
geometric gravity, quadratic in the Weyl scalar. Secondly,
we briefly introduce the basic concepts of Weyl geometry
to be used in the sequel. The problem of the conformally
invariant coupling of ordinary matter is also considered, and
the trace condition is obtained in a general form. Then, the
field equations of the theory are obtained by varying the Weyl
type action with respect to the metric.

2.1 From the gravitational Lagrangian to Weyl geometry

The most general gravitational Lagrangian density that is
invariant under a gauged Weyl symmetry, and defined in Weyl
geometry, is given by [114–116]

L1 = √
g

{ 1

4! ξ2 R̃
2 − 1

η2 C̃2
μνρσ − 1

4
F2

μν

}
, 0 < ξ, η < 1,

(1)

were Fμν is the field strength of the Weyl gauge field, and
C̃μνρσ is the Weyl tensor.

A local Weyl symmetry is defined as the invariance of the
action under the set of transformations

ĝμν = �q(x)gμν,
√

−ĝ = �2 q(x)
√−g, (2)

φ̂ = �−q/2(x)φ, ψ̂ = �−3q/4(x)ψ, (3)
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where �(x) is an arbitrary positive definite function of the
coordinates, q is a constant called the Weyl charge of the
metric, and φ and ψ are bosonic and fermionic fields, respec-
tively.

The gauged Weyl symmetry (or Weyl gauge symmetry
for short) is defined as the invariance of the action under the
transformations (2), and the transformation

ω̂μ = ωμ − 1

α
∂μ ln �, (4)

where ωμ is the associated Weyl gauge field, while α denotes
the Weyl gauge coupling constant.

In the following, by Weyl geometry we consider a geom-
etry that is invariant under the transformations (2), (3), and
(4), respectively. Also, for simplicity, and without loss of
generality, we will consider only the case q = 1. The Weyl
geometry is non-metric, and the covariant divergence of the
metric tensor satisfies the condition

∇̃μgαβ = −α q ωμ gαβ, (5)

where

∇̃μgαβ ≡ ∂μgαβ − �̃ρ
αμgρβ − �̃

ρ
βμgρα, (6)

and �̃
ρ
βμ are the coefficients of the Weyl connection.

The Weyl connection �̃ can be found by direct calculation
from Eq. (5), and it is given by

�̃λ
μν = �λ

μν

∣
∣
∣
∂μ→∂μ+α ωμ

= �λ
μν + α

2

(
δλ
μ ων + δλ

ν ωμ − gμν ωλ
)
, (7)

where the Levi-Civita connection �λ
μν is defined by

�λ
μν = 1

2
gλα(∂μgαν + ∂νgαμ − ∂αgμν). (8)

The scalar curvature R̃ of the Weyl geometry and the
square of the Weyl tensor C̃2

μνρσ can be obtained as [118]

R̃ = R − 3 α ∇μωμ − 3

2
α2 ωμ ωμ, (9)

C̃2
μνρσ = C2

μνρσ + 3

2
α2 F2

μν. (10)

In the following the quantities without tilde represent the Rie-
mannian geometric counterparts of the geometric quantities
defined in Weyl geometry.

Since �̃λ
μν = �̃λ

νμ, then Fμν = ∇̃μων − ∇̃νωμ = ∂μων −
∂νωμ, identical to Fμν as defined in the Riemann (or flat)
space-time.

We proceed now to the scalar-vector-tensor representa-
tion of the Weylian Lagrangian density (1). To obtain this
representation we perform the substitution [114–116]

R̃2 → −2φ2 R̃ − φ4, (11)

in the gravitational Lagrangian (1), where φ is an auxil-
iary scalar field. Moreover, we neglect in the gravitational
Lagrangian the term containing the Weyl tensor. This is
equivalent in taking the limit η → ∞ in our model. Hence,
the action of the Weyl geometric gravity theory can be written
as

S =
∫

d4x
√−g

[
1

12ξ2 φ2
(

R − 3α∇μωμ − 6α2ω2 − 1

2
φ2

)

−1

4
F2 + Lm

(
Lm , ω2, ψ

)
]

, (12)

where ψ is an external field, Lm is the ordinary (baryonic)
matter Lagrangian, andLm is the effective matter Lagrangian
of the Weyl geometric theory, respectively. The effective mat-
ter Lagrangian Lm must contain minimal or non-minimal
couplings between the matter Lagrangian and the Weyl geo-
metric quantities in order to assure the conformal invariance
of the theory. Moreover, we have denoted ω2 ≡ ωμωμ, and
F2 ≡ FμνFμν .

2.2 Conformal coupling of matter

It is important to note at this moment that it is not necessary
for the matter part Lm of the action (12) to be gauge invariant
with respect to the conformal transformations. However, the
variation of Lm must have this important invariance property
[131–134]. By varying the matter action in Eq. (12) we obtain

δSm = −1

2

∫
Tμν(tot)δgμν

√−gd4x +
∫

Gμδωμ

√−gd4x

+
∫

δLm
(
Lm, ω2, ψ

)

δψ
δψ, (13)

where by T (tot)
μν we denote the effective total energy-

momentum tensor, defined according to

T (tot)
μν = − 2√−g

δ
[√−gLm

(
Lm, ω2, ψ

)]

δgμν
, (14)

and

Gμ
(
Lm, ω2, ωμ,ψ

)
= δLm

(
Lm, ω2, ψ

)

δωμ
, (15)

denotes the Weyl current [131–134]. In the following we
assume that δLm/δψ = 0.

With the use of the mathematical results [131–134]

δgμν = −2δ�

�3 g̃μν = −2
δ�

�
gμν, (16)

δωμ = − 4

α
δ
∂μ�

�
= − 4

α
δ
(
∂μ ln �

) = − 4

α
∂μ (δ ln �)

= − 4

α
∂μ

(
δ�

�

)

= − 4

α
∇μ

(
δ�

�

)

, (17)
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we obtain for the variation of the matter action the relation

δSm =
∫

Tμν(tot)gμν

δ�

�

√−gd4x

+ 4

α

∫
Gμ∇μ

(
δ�

�

)√−gd4x = 0. (18)

After performing a partial integration of the second term in
the above equation, and with the use of the Gauss theorem,
from Eq. (18) we obtain the important consistency (trace)
condition that must be satisfied by the matter terms of the
Weyl geometric gravity theory

T (tot) = − 8

α
∇μ

[

ωμ
∂Lm

(
Lm, ω2, ψ

)

∂ω2

]

, (19)

where T (tot) = gμνT (tot)
μν is the trace of the effective energy–

momentum tensor, obtained with the help of the effective
matter Lagrangian Lm .

From Eq. (19) it immediately follows that when Lm =
Lm , the constraint (19) gives the usual trace condition T (m) =
0, where by T (m) we have denoted the trace of the ordinary
matter energy–momentum tensor. This leads to the important
result that the only conformally invariant form of ordinary
matter must have a traceless energy–momentum tensor, thus
corresponding to a radiation type fluid.

2.3 The gravitational field equations of Weyl geometric
gravity

In this paper, we will assume that the total (effective) matter
Lagrangian is given by

Lm = Lm + β(−ω2)n, (20)

where Lm is the baryonic matter Lagrangian, and β and n
are constants.

Before considering the cosmological implications of the
model, let us transform the action to a form which is easier to
handle in cosmology. If one defines the new set of quantities(
�, Aμ, β2

)
, given by

� = φ2, Aμ = αωμ, β2 = 12βξ2α−2n, (21)

one can write the action as

S = 1

12ξ2

∫
d4x

√−g

[

�

(

R − 3∇μA
μ − 6A2 − 1

2
�

)

−3ξ2

α2 F2 + Lm

(
Lm, A2, ψ

)]

, (22)

with the matter Lagrangian given by

Lm = 12ξ2Lm + β2(−A2)n . (23)

Also the trace constraint equation is simplified as

T (tot) = −8∇μ

(

Aμ
∂Lm

(
Lm, A2, ψ

)

∂A2

)

, (24)

Varying the action (22) with respect to gμν , � and Aμ

gives the full set of the field equations of the Weyl geometric
gravity as

�Gμν − 3

2
�

(

AμAν − 1

2
A2gμν

)

+ 1

4
�gμν + ��gμν

−∇μ∇ν� − 6ξ2

α2

(

F α
μ Fνα − 1

4
F2gμν

)

− 6ξ2Tμν

−β2nX

(

AμAν − 1

2n
A2gμν

)

+3

2

(
Aν∇μ� + Aμ∇ν� − gμν A

α∇α�
) = 0, (25)

12ξ2

α2 ∇αF
μα + 3�Aμ − 3∇μ� + 2β2nX Aμ = 0, (26)

R − 3

2
A2 − 3∇μA

μ − � = 0, (27)

where we have defined X ≡ (−A2)n−1.
The trace equation can also be written as

3ξ2T + β2(−A2)n−4
(

2n(n − 1)Aμ∇A2 − (n − 2)(−A2)2

+2nA2∇μA
μ

)

= 0. (28)

Using the trace of the metric equation to eliminate R in
the scalar field equation (27), one obtains

�� − ∇ρ

(
�Aρ

) − β2

3
(n − 2)X A2 − 2ξ2T = 0, (29)

3 Cosmological implications of Weyl geometric gravity:
the case of the FLRW geometry

In the present Section we consider the cosmological implica-
tions of the Weyl geometric gravity in the presence of bary-
onic matter coupled in a conformally invariant way to the
Weyl geometric quantities in a homogeneous and isotropic
Universe. As a first step in our study we obtain the gener-
alized Friedmann equations of Weyl geometric gravity. The
vacuum case and the cosmological evolution in the presence
of matter are both considered. In each case we compare the
predictions of the theory with the observational data.

123



509 Page 8 of 22 Eur. Phys. J. C (2024) 84 :509

3.1 The generalized Friedmann equations

We assume first that the geometry of the Universe can be
described by a flat FLRW ansatz of the form

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (30)

where a is the scale factor. We also introduce the Hubble
function (parameter) H defined as H = ȧ/a. In the following
by a dot we denote the derivative with respect to the time t . We
will assume that the energy momentum tensor has a perfect
fluid form, and in the comoving frame it is given by

Tμ
ν = diag(−ρ, p, p, p), (31)

where ρ and p denote the baryonic matter energy density and
pressure, respectively. For the matter Lagrangian we adopt
the expression Lm = −ρ. With the above assumptions we
can write

Aμ = (A0, 0), (32)

where A0 is a function of the cosmological time t only.
The cosmological field equations of the Weyl geometric

gravity theory can then be written as

�
(

12H2 − 3A2
0 − �

)
− 24ξ2ρ + 6(2H + A0)�̇

+2β2(1 − 2n)A2
0X = 0, (33)

2�Ḣ + 3

2
A2

0� + 6ξ2(ρ + p) − (H + 3A0) �̇ + �̈

+β2nA
2
0X = 0, (34)

�̇ − A0� − 2

3
β2nA0X = 0, (35)

6Ḣ + 3 Ȧ0 − � + 3

2
(A0 + 2H)(A0 + 4H) = 0, (36)

and

3ξ2(3p − ρ) = β2X
[
(n − 2)A2

0 − 6nA0H + 2n(1 − 2n) Ȧ0
]
,

(37)

respectively.
Now, combining the above set of equations, one can obtain

the conservation equation of the matter energy momentum
tensor as

ρ̇ + 3H(ρ + p) = 0, (38)

which shows that the matter sector is conserved in this theory.
This is however obvious from the action (12), since there is no

non-minimal coupling between the ordinary baryonic matter,
and the gravitational fields.

3.2 The vacuum solution

We will first investigate the cosmological evolution in Weyl
geometric gravity by neglecting the effect of the baryonic
matter, that is, by assuming ρ = p = 0, and Lm = 0,
respectively. In this case the cosmological evolution equa-
tions become

2�Ḣ + 3

2
A2

0� − (H + 3A0)�̇ + �̈ + β2nA
2
0X = 0, (39)

�̇ − A0� − 2

3
β2nA0X = 0, (40)

6Ḣ + 3 Ȧ0 − � + 3

2
(A0 + 2H)(A0 + 4H) = 0, (41)

and

β2X
(
(n − 2)A2

0 − 6nA0H + 2n(1 − 2n) Ȧ0

)
= 0, (42)

respectively. As can be seen from the above set of equations,
we have more equations than variables. In the following we
will solve numerically the Eqs. (39)–(41). We will then sub-
stitute the solution into Eq. (42) to check whether the extra
equation is also satisfied.

We define now the following set of dimensionless vari-
ables

τ = H0t, H = H0h,

A0 = H0 Ā0, β2 = γ H4−2n
0 , � = H2

0 �̄, (43)

where H0 is the present day value of the Hubble function.
Moreover, instead of the time coordinate, we introduce the
redshift coordinate z, defined as 1 + z = 1/a.

Hence, one obtains the cosmological field equations of
the Weyl geometric gravity in the vacuum in a dimensionless
form as

5(2nγ X̄ + 3�̄) Ā2
0 − 4n(2n − 1)(1 + z)γ X̄h Ā′

0

+ 6(1 + z)
(
h′�̄′ − h�̄( Ā′

0 + 2h′)
)

+ 18(1 + z) Ā0h�̄′ = 0, (44)

−2

3
�̄ + Ā2

0 + 6 Ā0h + 8h2 − 2(1 + z)h( Ā′
0 + 2h′) = 0,

(45)
3(1 + z)h�̄′ + 3 Ā0�̄ − 2γ n X̄ Ā0 = 0, (46)
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and

γ X̄
(

12n Ā0h − 4n(2n − 1)(1 + z)h Ā′
0 − (n − 2) Ā2

0

)
= 0,

(47)

respectively. Here, we have denoted X̄ = Ā2n−2
0 . Also, using

the relation h(z = 0) = 1, one can obtain the value of the
parameter γ in terms of the present day value of the scalar
and vector fields as

γ = Ā0(0)1−2n(�̄(0)2 − 3(2 + Ā0(0))2�̄(0))

2( Ā0(0) + 4n)
. (48)

In order to find the best fit value of the parameters H0,
�̄0 ≡ �̄(0), Ā0(0) and n, we use the Likelihood analysis
using the observational data on the Hubble parameter in the
redshift range z ∈ (0.07, 2.36) tabulated in [135].

In the case of independent data points, the likelihood func-
tion can be defined as

L = L0e
−χ2/2, (49)

where L0 is the normalization constant, and the quantity χ2

is defined as

χ2 =
∑

i

(
Oi − Ti

σi

)2

. (50)

Here i counts the data points, Oi are the observational value,
Ti are the theoretical values, and σi are the errors associated
with the i th data obtained from observations.

By maximizing the likelihood function, the best fit val-
ues of the parameters �̄0 ≡ �̄(0), Ā0(0), n and H0 at 1σ

confidence level, can be obtained as

H0 = 71.547+0.779
−0.772,

Ā0(0) = −0.040+0.001
−0.001,

�̄0 = 9.938+0.073
−0.076,

n = 1.989+0.101
−0.100. (51)

The corner plot for the values of the parameters H0, �̄0

and Ā0(0) with their 1σ and 2σ confidence levels is shown
in Fig. 1.

The redshift evolution of the Hubble function and of the
deceleration parameter q are represented, for this model, in
Fig. 2. Also, we have depicted the behavior of the cosmolog-
ical fields �̄ and Ā0 in Fig. 3.

Fig. 1 The corner plot for the values of the parameters H0, �̄0 ≡
�̄(0) and Ā0(0) with their 1σ and 2σ confidence levels for the vacuum
solution of the FLRW Weyl geometric gravity model

3.3 Cosmological evolution in the presence of matter

We assume now that the equation of state of the baryonic
matter fields is given by p = ωmρ, with a varying equation
of state parameter. We let the observations to determine ωm .
From the matter conservation equation, one can obtain

ωm = −1 − ρ̇

3Hρ
. (52)

After defining a set of dimensionless parameters as

τ = H0t, H = H0h, ρ̄ = 2ξ2

H2
0

ρ,

A0 = H0 Ā0, β2 = γ H4−2n
0 , � = H2

0 �̄, (53)

and transforming to the redshift coordinate, defined again
as 1 + z = 1/a, one obtains the cosmological field equa-
tions (generalized Friedmann equations) in the presence of
baryonic matter as

5(2nγ X̄ + 3�̄) Ā2
0 − 4n(2n − 1)(1 + z)γ X̄h Ā′

0

+18(1 + z) Ā0h�̄′

+6(1 + z)
[
h′�̄′ − h�̄( Ā′

0 + 2h′) + ρ̄′] = 0, (54)

−2

3
�̄ + Ā2

0 + 6 Ā0h + 8h2 − 2(1 + z)h( Ā′
0 + 2h′) = 0,

(55)
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Fig. 2 The behavior of the rescaled Hubble parameter H/(1 + z) (left
panel) and of the deceleration parameter q (right panel) as a function of
the redshift for the vacuum FLRW Weyl geometric gravity model for

the best fit values of the parameters as given by Eq. (51). The shaded
area denotes the 1σ error. The dashed line represents the �CDM model

Fig. 3 The behavior of Ā0 (left panel) and of �̄ (right panel) as a function of the redshift in the vacuum FLRW Weyl geometric gravity theory for
the best fit values of the parameters as given by Eq. (51). The shaded area denotes the 1σ error

γ X̄
(

12n Ā0h − 4n(2n − 1)(1 + z)h Ā′
0 − (n − 2) Ā2

0

)

−12ρ̄ + 3(1 + z)ρ̄′ = 0, (56)

and

3(1 + z)h�̄′ + 3 Ā0�̄ − 2γ n X̄ Ā0 = 0, (57)

respectively, where we have defined X̄ = Ā2n−2
0 . Noting that

h(z = 0) = 1, one can obtain the value of the parameter γ

in terms of the present value of the fields as

γ = Ā0(0)1−2n(�̄(0)2 − 3(2 + Ā0(0))2�̄(0) + 12ρ̄(0))

2( Ā0(0) + 4n)
.

(58)

By maximizing the likelihood function, the best fit values
of the parameters �̄0 ≡ �̄(0), Ā0(0), ρ̄0, n and H0 at 1σ

confidence level, can be obtained as

ρ̄0 = 0.299+0.001
−0.001,

H0 = 71.768+0.784
−0.787,

Ā0(0) = −0.040+0.010
−0.010,

�̄(0) = 10.210+0.085
−0.085,

n = 1.305+0.090
−0.084. (59)

The corner plot for the values of the parameters H0, ρ̄0,
�̄0, Ā0(0) and n with their 1σ and 2σ confidence levels is
shown in Fig. 4.
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Fig. 4 The corner plot for the
values of the parameters H0,
ρ̄0,�̄0 ≡ �̄(0) and Ā0(0) with
their 1σ and 2σ confidence
levels for the FLRW Weyl
geometric gravity model in the
presence of matter

The redshift evolution of the Hubble function, of the decel-
eration parameter q, and of the matter density parameter
� = ρ̄/h2 are represented, for this model, in Figs. 5 and 6,
respectively. Also, we have depicted the behavior of the cos-
mological fields �̄ and Ā0 in Fig. 7. One can compute the
value of the equation of state parameter ωm as

ωm = 0.3216+0.0001
−0.0001. (60)

4 Cosmological implications of Weyl geometric gravity:
the Bianchi type I geometry

In the present Section, we consider the cosmological applica-
tions Of the Weyl geometric gravity theory in an anisotropic
cosmological setting. We begin our analysis by writing
down the gravitational field equations corresponding to an
anisotropic expansion of the Universe. We will consider only
the case of flat Bianchi type I geometries, which are the sim-
plest anisotropic generalizations of the flat FLRW geometry.
As a first step in our analysis we analyze the general proper-
ties of the anisotropic Bianchi type I model in Weyl geomet-

ric gravity. In order to simplify our analysis, a perturbative
approach is developed.

4.1 Gravitational field equations in the Bianchi type I
geometry

In the following, we assume that on the large scale the
Universe is homogeneous, and thus all the cosmological
and physical parameters (metric, energy densities, pressures,
Weyl vector, and scalar field) are functions of the cosmolog-
ical time t only. In comoving Cartesian coordinates x0 = t ,
x1 = x , x2 = y, and x3 = z, and in an anisotropic geometry,
the components of the ordinary matter energy–momentum
tensor take the general form

T 0
0 = −ε, T 1

1 = T 2
2 = �, T 3

3 = �, (61)

where ε denotes the total (effective) energy density of the
cosmological fluid, which includes also the Weyl geometric
contributions, � = Px = Py denote the effective pressure
along the x and y directions, while � = Pz is the pressure
along the z direction. All the effective pressure terms include
also the geometric contributions coming from Weyl geome-
try.
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Fig. 5 The behavior of the rescaled Hubble parameter H/(1 + z) (left
panel) and of the deceleration parameter q (right panel) as a function of
the redshift for the best fit values of the parameters as given by Eq. (59)

for the FLRW Weyl geometric gravity theory in the presence of matter.
The shaded area denotes the 1σ error. The dashed line represents the
�CDM model

Fig. 6 The behavior of the matter density abundance ρ̄ (left panel) and
of the equation of state parameter ω (right panel) as a function of the
redshift for the best fit values of the parameters as given by Eq. (59)

for the FLRW Weyl geometric gravity theory in the presence of matter.
The shaded area denotes the 1σ error. The dashed line represents the
�CDM model

Since the energy–momentum tensor (61) corresponds to
an anisotropic effective cosmological fluid, the geometry
must also be anisotropic on a large cosmological scale. From
our choice of the components of the energy–momentum ten-
sor, as given by Eq. (61), it follows that the effective pressure
� along the z− axis could be different with respect to the
effective pressures � along the x and y axis.

The simplest geometry presenting the symmetry (61) of
the effective energy–momentum tensor in a homogeneous
Universe is the flat Bianchi type I geometry, with the metric
represented by

ds2 = −dt2 + a2
1(t)dx2 + a2

2(t)dy2 + a2
3(t)dz2, (62)

where ai , i = 1, 2, 3 are the three directional scale factors,
which are generally different. The Einstein field equations

Rμν = 1

2κ2

(

Tμν − 1

2
Tgμν

)

, (63)

take in a Bianchi type I geometry the form

3Ḣ + H2
1 + H2

2 + H2
3 = − 1

4κ2 (ε + � + 2�) , (64)

1

V

d

dt
(V Hi ) = 1

4κ2 (ε − �) , i = 1, 2, (65)

and

1

V

d

dt
(V H3) = 1

4κ2 (ε + � − 2�) , (66)
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Fig. 7 The behavior of �̄ (left panel) and Ā0 (right panel) as a function of the redshift for the best fit values of the parameters as given by Eq. (59)
for the FLRW Weyl geometric gravity theory in the presence of matter. The shaded area denotes the 1σ error

respectively, where, in order to simplify the mathematical
formalism, we have introduced the following notations

V = a1a2a3, Hi = ȧi
ai

, i = 1, 2, 3, (67)

and

H = 1

3

(
3∑

i=1

Hi

)

= V̇

3V
, (68)

respectively.
Hi , i = 1, 2, 3 are the three directional Hubble parame-

ters, while by H we have denoted the mean Hubble parame-
ter. The cosmological expansion parameter θ is related to the
Hubble parameter by the relation θ = 3H . The conservation
of the total energy–momentum tensor of the Weyl geometric
gravity cosmological model gives the evolution equation of
the effective energy density of the cosmic fluid as

ε̇ + 3 (ε + �) H + (� − �) H3 = 0. (69)

4.2 General properties of the Bianchi type I models

By taking into account the explicit expression of the
anisotropic energy–momentum tensor as described by Eq. (61),
from Eq. (65) it follows that we can take a1 = a2 without
any loss of generality. Hence θ , the expansion parameter of
the Universe, is represented as

θ = 2
ȧ1

a1
+ ȧ3

a3
. (70)

The shear scalar σ of the Universe is obtained in the form

σ = 1√
3

(
ȧ3

a3
− ȧ1

a1

)

. (71)

Equations (70) and (71) determine the relation between the
directional Hubble parameters H1 and H2 and the observable

cosmological parameters as

H1 = H2 = θ

3
− 1√

3
σ, H3 = θ

3
+ 2√

3
σ, (72)

respectively.
The late-time evolution of an anisotropic cosmological

model can be obtained from the study of another important
cosmological quantity, the anisotropy parameter A, defined
according to

A = 1

3

3∑

i=1

(
Hi − H

H

)2

. (73)

If the anisotropy parameter vanishes, A = 0, the considered
cosmological model is isotropic.

The differences of the effective pressures of the cosmolog-
ical fluid are given, as functions of the observable quantities,
by the general relation

� − � = 2
√

3κ2(θσ + σ̇ ). (74)

By adding Eqs. (65) and (66) we obtain

4κ2V̈ + (2� + � − 3ε) V = 0. (75)

These expressions will be considered in the next Section.

4.3 Perturbative approach to the Bianchi type I
cosmological models

In the present Section, we consider a simple and elemen-
tary perturbative approach to the gravitational field equa-
tions (64)–(66), by assuming that the anisotropic expansion
due to the presence of the Weyl geometric effects represents
a small perturbation of the background flat, and isotropic
FLRW geometry.
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Hence, the cosmological properties of the background
geometry are described by the isotropic scale factor a. More-
over, we suppose that the cosmological expansion rates along
the x and y axes are the same, which implies the condi-
tion a1 = a2. Furthermore, we assume that the perturbations
along these two axes are also equal. Therefore, the scale fac-
tors of the perturbed Bianchi type I geometry can be repre-
sented as [136]

ai = a + δi , δi � a, i = 1, 2, 3, (76)

where δi , i = 1, 2, 3, are small corrections terms to the scale
factor a of the isotropic Universe, induced by the existence of
the Weyl geometric effects. Our previous assumption implies

δ1 = δ2. (77)

For the background isotropic FLRW type geometry the
Hubble parameter is H0 = ȧ/a. Hence, for the directional
Hubble parameters Hi of the Bianchi type I geometry we
obtain

Hi = ȧ + δ̇i

a + δi
≈ H0

[

1 − δi

a

]

+ δ̇i

a
, i = 1, 2, 3.

(78)

The expression of the mean Hubble parameter H of the per-
turbed Bianchi type I geometry in the presence of Weyl geo-
metric effects is given by

H = 1

3

[

3H0 − H0
δ

a
+ δ̇

a

]

, (79)

where we have denoted

δ =
3∑

i=1

δi = 2δ1 + δ3. (80)

The square of the directional Hubble parameters can be
obtained as

H2
i ≈ H2

0 − 2H2
0

δi

a
+ 2H0

δ̇i

a
, i = 1, 2, 3. (81)

For the comoving volume V = ∏3
i=1 ai of the Universe

we obtain

V = a3
[

1 + δ

a

]

, (82)

and 1/V ≈ 1/a3.
To describe the perturbations of the effective energy den-

sity and pressure due to the presence of the anisotropic effects
induced by the presence of Weyl geometric terms, we intro-
duce the parameter β, which allows us to write the perturba-
tions of the effective energy density ε and pressure � = �

of the anisotropic cosmological model in Weyl geometric
gravity in the form

ε = ρDE + ρDM + β (ρDE + pDE + ρDM + pDM ) , (83)

and

� = � = pDE + pDM + β (ρDE + pDE + ρDM + pDM ) ,

(84)

respectively, where ρDE and pDE represent the effective
energy density and pressure of the dark energy and dark
matter components of the isotropic matter distribution, con-
structed with the help of the Weyl geometric quantities.

Therefore, in Eqs. (83) and (84) we have supposed that
the perturbations of the effective thermodynamic quantities
of the Weyl geometric cosmological fluid are proportional to
the sum of the energy densities and pressures of the effective
quantities of the isotropic model.

Hence, in a first order approximation in the metric, the
gravitational field equations describing the slightly perturbed
isotropic flat FLRW Universe due to Weyl geometric effects
become

3Ḣ0 + 3H2
0 −

[
Ḣ0 + H2

0

] δ

a
+ δ̈

a

= − 1

4κ2

[
ρDE + ρDM + 3 (pDE + pDM )

+ 4β (ρDE + pDE + ρDM + pDM )
]
, (85)

1

a3

d

dt

[
a3H0

]
+ 1

a3

d

dt

[
a2H0δ+

]
+ 1

a3

d

dt

[
a2δ̇1

]

− δ

a4

d

dt

[
a3H0

]
= 1

4κ2 (ρDE − pDE + ρDM − pDM ),

(86)

and

1

a3

d

dt

[
a3H0

]
+ 2

a3

d

dt

[
a2H0δ1

]
− δ

a4

d

dt

[
a3H0

]

+ 1

a3

d

dt

[
a2δ̇3

]
= 1

4κ2 (ρDE − pDE + ρDM − pDM ) ,

(87)

respectively, where we have denoted δ+ = δ1 + δ3.
The gravitational field equations of the background FLRW

geometry are, in Weyl geometric gravity, the generalized
Friedmann equations, which give the evolution of the scale
factor a as

3
ȧ2

a2 = 1

2κ2 (ρDE + ρDM ), (88)

2
ä

a
+ ȧ2

a
= − 1

2κ2 (pDE + pDM ), (89)

respectively. Equation (75), describing the time variation of
the rate of the expansion of the volume of the Universe,
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Fig. 8 The behavior of the perturbation function δ as a function of the
redshift z. The shaded area corresponds to the 1σ domain for the model
parameters (59)

becomes

4κ2 d2

dt2 a
3 + 3

[
a3 (pDE − ρDE + pDM − ρDM )

]

+ 4κ2 d2

dt2 (a2δ) + 3
[
a2 (pDE − ρDE + pDM − ρDM )

]
δ = 0.

(90)

With the use of Eqs. (88) and (89) we straightforwardly
find

1

a3

d
[
a3H0

]

dt
= 1

4κ2 (ρDE − pDE + ρDM − pDM ) ,

(91)

3Ḣ0 + 3H2
0 = − 1

4κ2 [ρDE + ρDM + 3 (pDE + pDM )] ,

(92)

and

d2a3

dt2 + 3

4κ2

[
a3 (pDE − ρDE + pDM − ρDM )

]
= 0,

(93)

respectively.
Consequently, the gravitational field equations describ-

ing the cosmological evolution in the presence of a small
anisotropy in the z-direction, induced by the presence of the
Weyl geometric effects, are given by

δ̈

a
− ä

a

δ

a
= − β

κ2 (ρDE + pDE + ρDM + pDM ) , (94)

1

a3

d

dt

[
a2H0δ1

]
+ 1

a3

d

dt

[
a2δ̇1

]
− δ

a4

d

dt

[
a3H0

]
= 0,

(95)

2

a3

d

dt

[
a2H0δ1

]
+ 1

a3

d

dt

[
a2δ̇3

]
− δ

a4

d

dt

[
a3H0

]
= 0.

(96)

For a known H0 and a, Eqs. (94)–(96) represent a system
of three ordinary differential equations for the three time
dependent functions (δ1, δ3, β), whose solutions indicate the
effects of the presence of Weyl geometry on the cosmological
evolution.

We consider now the perturbations of the average deceler-
ation parameter q of the anisotropic Bianchi type I Universe,
which is defined generally according to

〈q〉 = d

dt

1

H
− 1. (97)

Assuming again that the deviations from isotropy induced by
the Weyl geometric effects are small, the average deceleration

Fig. 9 The behavior of the perturbation functions δ1 (left panel) and δ3 (right panel) as a function of the redshift z. The shaded area corresponds
to the 1σ domain for the model parameters (59)
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parameter becomes

〈q〉 = q0 + 1

3

d

dt

(
1

aH0

[

δ − δ̇

H0

])

, (98)

where q0 = d [1/H0] /dt − 1 = −aä/ȧ2 is the deceleration
parameter as defined in the FLRW geometry.

By adding Eqs. (95) and (96), we find the second order
differential equation describing the evolution of the total per-
turbation δ due to the presence of anisotropic effects induced
by the Weyl geometry as

δ̈ + 4H0δ̇ −
[
Ḣ0 + 5H2

0

]
δ = 0. (99)

Equation (99) must be considered together with the two initial
conditions

δ (t0) = δ0, δ̇ (t0) = H0 (t0) δ0. (100)

Hence, we have obtained the result that the time evolution
of the metric perturbations, induced by the presence of Weyl
geometric effects, is fully determined by the Hubble param-
eter of the isotropic FLRW background. In Fig. 8 we have
plotted the behavior of the perturbation function δ as a func-
tion of redshift, by adopting for H0 the isotropic Weyl geo-
metric form considered in the previous Section. The shaded
area corresponds to the 1σ error in the model parameters
given by (59).

Once the total perturbation function δ is known, the behav-
ior of the deviations function from isotropy along the x and
y axes, δ1, is obtained as a solution of the second order dif-
ferential equation

2
d

dt
(a2H0δ1) − 2

d

dt
(a2δ̇1) + d

dt
(a2δ̇) − δ

a

d

dt
(a3H0) = 0.

(101)

The behavior of δ1 depends on the evolution of both a and
H0. Finally, In Weyl geometric gravity the time evolution of
the deviations from isotropy along the z axes can be obtained
immediately from the simple relation

δ3 = δ − 2δ1. (102)

In Fig. 9 we have plotted the behavior of the perturbation
functions δ1 and δ3 as a function of the redshift.

The parameter β, describing the perturbations of the effec-
tive geometric type density and pressure can be obtained as

β = κ2 (Ḧ0 + H2
0 )δ − δ̈

a(ρDE + pDE + ρDM + pDM )
. (103)

In Fig. 10 we have plotted the behavior of the perturbation
function β as a function of the redshift.

In Fig. 11 we have presented the behavior of the mean
anisotropy parameter A, in the presence of the Weyl geomet-
ric effects, as a function of the redshift z.

Fig. 10 The behavior of the perturbation function β as a function of
the redshift z. The shaded area corresponds to the 1σ domain for the
model parameters (59)

Fig. 11 The behavior of the anisotropy parameter A as a function of
the redshift z. The shaded area corresponds to the 1σ domain for the
model parameters (59)

In Fig. 12 we have presented the difference between the
isotropic and anisotropic deceleration parameter �q, in the
presence of the Weyl geometric effects, as a function of the
redshift z.

4.4 The quadrupole moment Q2

The anisotropic expansion of the Universe will also have an
influence on photon trajectories, and on the CMBR spectrum.
The photons emitted by astrophysical sources located at cos-
mological distances travel in the Bianchi type I geometry
by following the geodesic lines, described by the geodesic
equation given by [137]

duμ

dλ
+ �

μ
αβu

αuβ = 0, (104)
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Fig. 12 The behavior of the difference between the isotropic and
anisotropic deceleration parameter �q as a function of the redshift z.
The shaded area corresponds to the 1σ domain for the model parameters
(59)

where λ is the affine parameter along the trajectory. The
Christoffel symbols �

μ
αβ can be easily obtained from the met-

ric Eq. (62), and they are given by �0
i i = a2

i Hi , and �i
0i = Hi ,

i = 1, 2, 3 (no summation upon i in the Christoffel symbols).
The four-velocity uμ = dxμ/dλ of the photons is nor-

malized according to the relation uμuμ = 0, from which we

obtain (u0)
2 = a2

i

(
ui

)2
. Let us now consider the emission of

two photons, occuring at the times t0 = te and t1 = te + δτ ,
respectively, where δτ � te. in the first order of approxima-
tion in δτ , after taking the difference of the two normalization
conditions for photons, we obtain [137]

u0 d

dλ
δτ(λ) =

3∑

i=1

ai ȧi
(
ui

)2
δτ(λ) + O

(
δτ 2

)
, (105)

where λ is the wave length of the radiation. By denoting
by δτ (λr ) the time difference between the received signals,
and by introducing the redshift z, defined according to 1 +
z (λe) = δτ (λr ) /δτ (λe), with the use of Eq. (105) we obtain
the equation

d

dλ
ln(1 + z) = 1

u0

3∑

i=1

ai ȧi
(
ui

)2
. (106)

The components ui , i = 1, 2, 3, of the photon velocity
follow immediately from the geodesic equation of motion,
and they are given by

dui

dλ
+ 2

ȧi
ai
ui u0 = 0, i = 1, 2, 3, (107)

giving

ui (t) = u0i

a2
i (t)

, i = 1, 2, 3, (108)

where u0i , i = 1, 2, 3 are arbitrary constants of integra-
tion, which can be determined by taking into account that
the present day values of the scale factors are normalized
according to ai (t0) = 1.

We can reparameterize the affine parameter λ without
any impact on the physical behavior of the radiation, and
thus we normalize the present day photon four-velocities

ui (t0) = ûi , i = 1, 2, 3, according to
∑3

i=1

(
ûi

)2 = 1.
Moreover, we describe the unit vector û with the help of the
angles

(
ûx , û y, ûz

) = (sin θ cos φ, sin θ sin φ, cos θ), which
give the arrival angles of the photon beams to the observer,
as estimated at the present time. After the substitution of
the photon velocities into the redshift definition, we find the
relation [137]

1 + z
(
û
) =

√√
√
√

3∑

i=1

û2
i

a2
i

, (109)

or, equivalently,

1 + z
(
û
) = 1

a1

√
1 + û2

ye
2
y + û2

z e
2
z . (110)

In Eq. (110 we have introduced the eccentricities e2
y and

e2
z , defined according to

e2
y =

(
a1

a2

)2

− 1, e2
z =

(
a1

a3

)2

− 1. (111)

Since in the anisotropic Weyl geometric gravity model we
have assumed a1 = a2, we immediately obtain e2

y = 0, and

e2
z = 2

a
[δ1(t) − δ3(t)] , (112)

respectively.
The multipole spectrum Ql of the CMBR is described in

terms of the coefficients in the spherical expansion of the
temperature anisotropy field. The observationally important
quadrupole term Q2 is obtained as [137]

Q2 = 2

5
√

3

√
e4
z + e4

y − e2
z e

2
y = 2

5
√

3
e2
z

= 4

5
√

3

1

a
[δ1(t) − δ3(t)] . (113)

In the case of the anisotropic Weyl geometric gravity cos-
mological models one obtains

Q2 = 2

5
√

3
(1 + z)(5δ1 − 2δ), (114)

In Fig. 13 we have plotted the quantity Q2 as a function
of the redshift z.

The quadrupole moment measured by the Planck satellite
is Q ≡ (�T/T )Q ∼ 4.5×10−6 [138]. Hence, observational
results on the CMBR could be used to constrain the numerical
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Fig. 13 The behavior of the quadrupole term Q2 as a function of the
redshift z in the anisotropic Weyl geometric gravity cosmological mod-
els. The shaded area corresponds to the 1σ domain for the model param-
eter (59)

values of the model parameters, and the predictions of the
Weyl geometric gravity cosmological models.

The temperature distribution of the CMBR can be obtained
from the relation

T
(
û
) = T∗

1 + z
(
û
) , (115)

where by T∗ we have denoted the last scattering temperature,
which is independent on the direction. But in the presence
of anisotropies in the metric, photons travelling from distinct
directions will be redshifted differently. The spatial average
T̄ of the temperature field can be computed from the relation
4π T̄ = ∫

T
(
û
)
d�û. The anisotropies in the temperature

field can be obtained as

δT
(
û
) = 1 − T

(
û
)

T̄

= 1 − T∗
T̄

1
√

1 + 2 [δ1 (t0) − δ3 (t0)] cos2 θ
. (116)

Hence, a detailed comparison of the predictions of the
anistropic Weyl geometric cosmological model with the
CMBR data could lead to obtaining significant constraints
on the presence of the anisotropy in the Universe, and of the
Weyl geometric effects.

5 Discussions and final remarks

In the present paper, we have investigated the theoretical
possibility that our Universe may be modeled in terms of a
Weylian geometric structure, in which the gravitational prop-
erties are described by the metric tensor, and two other fields,
namely, a scalar and a vector field. The considered theory
implements strictly the idea of the conformal invariance of

the gravitational interaction. The problem of the role of the
conformal symmetry, or of the Weyl gauge group in gravita-
tional theories has attracted a lot of interest recently. Gerard
’t Hooft advanced the idea that conformal symmetry is an
exact symmetry of the natural laws, which is spontaneously
broken during the evolution of the Universe [139]. There-
fore, conformal symmetry may be as important for physics
as the Lorentz invariance of natural laws is. Moreover, the
breaking of the conformal symmetry may allow us to under-
stand in geometric terms the small scale structure of gravity,
and to obtain new insights in the physics of the Planck scale.
An approach to gravity based on the assumption that confor-
mal symmetry is an exact local, but spontaneously broken
symmetry, was investigated in [140].

Conformal symmetry also plays a fundamental role in
the Conformal Cyclic Cosmology (CCC) model [80–84],
in which the Universe is assumed to exist as o set of eons,
geometric structures corresponding to time oriented space-
times. Eons have interesting mathematical properties, and,
for example, they possess, as a direct result of their confor-
mal compactification, spacelike null infinities.

In the Weyl geometric theory considered in this work the
idea of conformal invariance is rigorously implemented at the
level of both geometry and matter. The starting point is the
conformally invariant geometric quadratic Weyl action, with
gravitational Lagrangian R̃2, supplemented by the square of
the strength of the Weyl vector field, and by a matter term.
A new perspective on the theory can be obtained by intro-
ducing an auxiliary scalar field in the formalism, thus trans-
forming the initial vector-tensor theory into a scalar-vector
tensor theory, linear in the Weyl (and Ricci) scalars. The
physical implications of this theory have been investigated in
detail elsewhere [118–121], and it was shown that it has many
attractive features, including the possibility of representing a
bridge between gravity and elementary particle physics. We
have analyzed in detail the cosmological implications of the
theory, by assuming a particular form, additive in the bary-
onic matter Lagrangian, and the Weyl vector, of the effec-
tive, conformally invariant matter Lagrangian. By using this
simplified model we have considered in detail two general
classes of cosmological models.

The first class we have considered is represented by flat,
homogenous and isotropic FLRW type models. The symme-
try of the problem imposes a fixed structure of the Weyl vec-
tor, which has only a non-zero temporal component. After
obtaining the generalized Friedmann equations, we have
investigated the vacuum model, and a baryonic matter filled
Universe. In both cases we have compared the predictions of
the Weyl geometric gravity theory with a small set of obser-
vational data for the Hubble parameter, as well as with the
predictions of the �CDM model.

The vacuum Weyl geometric gravity model gives a rel-
atively good description of the observational data for the
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Hubble, indicating that the geometric contributions from the
Weyl geometry can successfully simulate dark energy and
dark matter, and, to some extent, even baryonic matter. The
statistical analysis predicts a value of the Hubble constant
which is closer to the SHOES value [64] than to the Planck
value [62]. The deceleration parameter of the vacuum model
is relatively consistent with the �CDM predictions in the red-
shift range 0 < z < 1, but significant differences do appear
at higher redshifts. The exponent n, giving the contribution
of the square of the Weyl vector to the effective, conformally
invariant matter energy momentum tensor, is almost equal
to 2, and hence Lm = Lm + β

(−ω2
)2

. The temporal com-
ponent of the Weyl vector takes negative values, and it is a
decreasing function of the redshift (an increasing function of
time). On the other hand, the scalar field � is a monotoni-
cally increasing function of the redshift, increasing rapidly
with increasing z.

Adding baryonic matter to the Weyl geometric FLRW
model does not change drastically the parameters of the cos-
mological evolution. In the presence of matter the model
also gives an acceptable description of the observational data,
as well as of the �CDM model, but without succeeding in
reproducing it exactly. Similar differences do appear in the
case of the deceleration parameter, with the Weyl geometric
gravity model indicating much higher values of q at higher
redshifts. Significant differences do appear in the predictions
of the behavior of the matter energy density, with the Weyl
geometric gravity model predicting much higher matter den-
sity values as compared to the �CDM model. In the presence
of the baryonic matter the temporal component of the Weyl
vector is a monotonically decreasing function of the redshift,
taking negative values, while the scalar field is a positive,
monotonically increasing function of the redshift.

There is compelling observational evidence [62] that the
Universe is isotropic, and homogeneous on large scales.
However, the Planck Collaboration experiments have not
provided yet a conclusive observational proof for the cos-
mological isotropy. Moreover, recently a number of obser-
vations have questioned the nature of the geometry of cosmo-
logical spacetime itself, and suggested the existence of devi-
ations from the homogeneous and isotropic FLRW geome-
try. In this respect we may mention the quadrupole-octupole
alignment problem, the lack of correlations on large angular
scales, and the hemispherical power asymmetry [141,142].
All these observations seem to suggest a violation of statis-
tical isotropy in the Universe, and of the scale-invariance of
the primordial spectrum fluctuations. Hence, the investiga-
tion of the anisotropic cosmological models may not be of
purely theoretical interest, but could lead to the explanation
of some observed features of the cosmological expansion.
Hence, the above observations, as well as the Planck results
suggest that the possibility of the existence of a large scale

cosmological anisotropy in the Universe cannot be neglected
a priori in the theoretical models.

In the present work we have also considered an analy-
sis of the simplest anisotropic, Bianchi type I cosmologi-
cal models, in the Weyl geometric gravity theory.. We have
assumed that the Weyl vector has two nonzero components,
ωμ = (ω0, 0, 0, ω3). As a first step in our analysis we have
reformulated the cosmological evolution equations in terms
of an effective energy density, and of two effective pressures,
which combine the effects of the baryonic matter and of the
Weyl geometry. We have also considered that the deviations
from isotropy are very small, and that the anisotropic proper-
ties of the Universe can be described as a small perturbation
of the homogeneous and isotropic FLRW background met-
ric. For the case of the Bianchi type I geometry considered in
the present paper we have explicitly derived the perturbation
equations, by assuming that the scale factors of the Bianchi
type I Universe are given by ai = a + δai , i = 1, 2, 3, with
δai satisfying the condition δi � a, i = 1, 2, 3. If this con-
dition is not satisfied, non-linear effects must also be taken
into account, and included in the analysis of the cosmological
evolution.

Therefore, due to the presence of the z component of
the Weyl vector, and of the anisotropic effective pressure
distribution, the Weyl type Universe would achieve some
anisotropic properties, and its geometry will slightly dif-
fer from the standard FLRW one. Our perturbative analysis
has shown that the behavior of the total perturbations of the
FLRW metric δ, given by Eq. (99), depend only, in the con-
sidered linear approximation, on the Hubble function of the
isotropic model. Once this function is known, by numerically
integrating Eq. (99) one can obtain a full description of the
behavior of the anisotropic perturbations in the cosmology
of the Weyl geometric gravity theory.

The total perturbation of the metric, shown in Fig. 8, is
a monotonically increasing positive function of the redshift,
or a monotonically decreasing function of the cosmological
time. δ is relatively constant in the redshift range 0 < z < 1,
and increases rapidly afterwards, making at higher redshifts
the Universe more and more anisotropic. δ1, represented in
Fig. 9, has a similar behavior as δ, but δ3, shown in the same
Figure, takes negative values, and decreases with the redshift,
thus increasing the z axis anisotropy with increasing z.

An important parameter describing the cosmological
properties of the anisotropic Weyl geometric gravity cos-
mological models is the parameter β, defined in Eqs. (83)
and (84), respectively, and which describes the perturbations
of the effective densities and pressure of the model, which
include the contributions of the Weyl vector, and of the scalar
field. The variation of β, represented in Fig. 10, indicates
that for the considered background cosmological model this
quantity takes negative values, and it decreases with the red-
shift.
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The anisotropy parameter A, depicted in Fig. 11, is prac-
tically zero in the redshift range 0 < z < 2, and it increases
rapidly for z > 2. This indicates a rapid increase, and
the strong presence, of the anisotropies at higher redshifts.
Hence, in the present cosmological scenario, the initially
anisotropic Universe isotropizes in the large time limit, with
the present day Universe being isotropic on average. The dif-
ference of the isotropic and anisotropic deceleration param-
eters, represented in Fig. 12, shows an increase of the dif-
ference at higher redshifts, the differences between the two
quantities varying slowly in the redshift range 0 < z < 1.

In our analysis we have also pointed out the possibilities
of observationally testing the Weyl geometric gravity cosmo-
logical model, which could be done, for example, by using the
Planck data [62]. We have explicitly obtained the expression
of the quadrupole Q2 for an anisotropic Universe as functions
of the deviations δ1 and δ3 from the isotropic FLRW geome-
try. The variation of Q2 as a function of redshift is presented
in Fig. 13). Q2 is practically constant in the redshift range
0 < z < 1, but it rapidly increases at higher redshifts. One
can use the obtained expression of Q2 to obtain some con-
straints on the parameters of the anisotropic Weyl geometric
cosmological model. We have already obtained constraints
on the isotropic model parameters from the study of the lumi-
nosity distance by using the observational data coming from
the type Ia supernovae.

In the present paper we have investigated, in the frame-
work of Weyl geometric gravity, both homogeneous isotropic
and anisotropic cosmological models. We have also per-
formed a full comparison of the predictions of the isotropic
cosmological model with the observations, and we have
found that the model can give a satisfactory description of
the observational data up to a redshift of z = 2. We have
also assumed the existence on large cosmological scales of
small deviations from isotropy, and we have obtained a full
description of the behavior of the Bianchi type I models in
Weyl geometric gravity. In this study we have obtained the
basic theoretical tools necessary for the in depth investigation
of the implications of the Weyl geometric effects in cosmol-
ogy. The impact of the Weyl geometry on the cosmological
evolution, the observational implications of the presence of
this geometry, as well the possibilities of its observational
testing, will be considered in future studies.
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