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Abstract The present study is based on f (T ) gravity,
where we impose possible observational constraints on the
model parameters to obtain physically plausible features of
compact stars, specifically neutron stars. To do so, as a first
step, we consider the field equations in the f (T ) gravity
framework. We then solve the field equations to generate a set
of new exact solutions in f (T ) gravity where model param-
eters are found by using boundary conditions. A few tests are
performed to asses the stability of the model and compare the
obtained results with observations of compact stars, in par-
ticular with the compact binary merger event GW190814.
We observe the maximum mass of the star beyond the 3M�
when the surface density is of the order 1014gm/cm3 for the
higher torsion parameter, which implies that an anisotropic
solution in teleparallel gravity is more suitable for modeling
of massive compact objects in lower mass − gap, and thus
the model presented herein provides a satisfactory physical
scenario with respect to the observational signature.

1 Introduction

We are currently experiencing an accelerated expansion of
the universe, as evident from several observations, including
(i) type Ia supernovae [1–5], (ii) cosmic microwave back-
ground radiation [6,7], (iii) large-scale structures [8], (iv)
Planck satellite data [9–11], and (v) baryon acoustic oscilla-
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tions [12]. This new feature of late-time acceleration of the
universe is posing a significant challenge to the standard the-
ory of gravity, i.e., Einstein’s general relativity (GR). Hence,
to explain this enigmatic phenomenon, GR is invoking an
exotic agent, known as dark energy (DE), which has been
thought to be a possible candidate for pushing spacetime in
an outward direction. Interestingly, the erstwhile cosmolog-
ical constant �, which was introduced by Einstein to obtain
a static universe based on his GR, is now taking on the role
of this DE. However, to cope with the expanding universe
situation, the constant � is in general to be considered as a
dynamic parameter depending on the spacetime fabric, i.e.,
� = �(r), which acts as a repulsive pressure. Nevertheless,
the existence of DE is even now in an illusive stage.

As a consequence, several scientists have put forward a
number of new concepts to overcome this DE-related unac-
ceptable odd situation. Time and again they have proposed
an alternative gravity theory in the place of GR which could
comprehensively describe the accelerating expansion of the
late-time universe. As a result, we have obtained a proper
gravitational substitute for the dark energy scenario as far as
consequential theoretical prediction and observational evi-
dence are concerned. In all these theories, the modification
has been attempted via the Einstein–Hilbert action with suit-
able changes which are expected to make evolutionary fea-
tures of the universe physically viable. Therefore, beginning
with Buchdahl [13] and followed by Nojiri et al. [14], Car-
roll et al. [15], and Cognola et al. [16], a plethora of modified
theories have arisen in the gravitational arena to couple the
theory with the observational status of both the early- and
late-time universe [17]. In the late-time acceleration phase
of the universe, f (R) gravity, the scalar curvature R took on
the controlling role in the Einstein–Hilbert action to explore
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and describe the spacetime expansion in a justified manner.
Later on, f (R, T ) gravity theory was suggested by Harko et
al. [18], assuming that it will be responsible for the shift in
the geometrical part of the Einstein–Hilbert action.

Basically, this theory originated to consider the Lagrangian
as a function of both R and T , where the latter is the trace of
the energy–momentum tensor, with ample applications in the
fields of astrophysics and cosmology [19–44]. A few basic
aspects of f (R, T ) gravity theory, which have been described
in the review work [45], are as follows: (i) the trace of the
energy–momentum tensor T and the Ricci scalar R have deep
intrinsic properties related to the matter Lagrangian, (ii) T
can also be made to account for heat conduction and viscos-
ity, and (iii) the quantum field effect and the resultant particle
creation phenomena are also attributable overall to f (R, T )

gravity theory. Subsequently, several other variants have been
introduced by modifying the geometric term of the action,
e.g., f (G) gravity [46,47], where G is the Gauss–Bonnet
scalar. There is another variant of f (R) gravity theory in
the form of f (R,G) gravity theory, where G, which stands
for the Gauss–Bonnet invariant, can describe the inflationary
and late-time acceleration phases [18,49–62]. It is especially
worth noting that f (R) gravity fails to support the solar sys-
tem tests [63,64]. In this context, other anisotropic solutions
for compact star models in different aspects including f (T )

gravity can be found in Refs. [65–69].
In connection to f (Q) gravity, there have been sev-

eral applications in both the astrophysical and cosmological
realms, e.g., f (Q) extended symmetric teleparallel theory to
account for bouncing cosmology [70], the presence of bulk
viscosity effects in the cosmological fluid [71], a gravita-
tional modification class via non-metricity [72], the function
of bulk viscosity [73], traversable wormholes with normal
matter [74], for spherically symmetric and stationary metric-
affine spacetimes [75], reconstruction formalism of the
Dirac–Born–Infeld (DBI)-essence scalar field model [76],
and periodic cosmic transit behavior of the accelerated uni-
verse [77]. Moreover, Errehymy et al. [78] recently inves-
tigated the characteristics of electrically charged strange-
type compact stars under f (Q) symmetric teleparallel grav-
ity, whereas cosmic acceleration and dark energy on the
basis of homogeneous and isotropic Friedmann–Laîmatre–
Robertson–Walker (FLRW) geometry were studied by Kous-
sour et al. [79].

Another modified gravity theory, namely f (T ) [80,81],
seems very promising to describe several cosmological and
astrophysical problems ([82] and other references therein).
This theory, where T acts as an arbitrary function of the
torsion scalar, can reasonably (i) provide a theoretical inter-
pretation of the late-time acceleration of the universe, (ii)
accommodate the regular thermal expanding history includ-
ing the radiation- and cold dark matter-dominated phases,
(iii) achieve the inflationary phase via non-singular bounces

which helps, and (iv) investigate the feature of cosmic
microwave background observations. Our present investiga-
tion is therefore based on this theory, which we would like to
apply for understanding various physical situations in con-
nection to compact stars, in particular pulsars.

In the present investigation, with the model being treated
for compact stars, we are considering pressure anisotropy.
This means that the radial pressure differs from the transverse
pressure and hence will produce unequal principal stresses.
However, Dev and Gleiser [83] showed that the equality of
the transverse components of the pressure ensures the spher-
ical symmetry of the model. Now, there may be several rea-
sonable physical phenomena behind the origin and develop-
ment of anisotropy in the interior or core structure of a com-
pact star. These include (i) exotic phase transition at extreme
density [84], (ii) the presence of a type II superconductor
inside the compact stars [85], (iii) pion condensation [86],
(iv) type 3A superfluid [87], a (v) strong magnetic field [89],
and (vi) a scalar field in a boson star that may give rise to
anisotropy [90]. Long ago, Ruderman [88] argued that local
anisotropy in compact stars is due to the solid core, which
was later proposed in a definitive manner by Herrera and
Santos [91].

With respect to this connection, we would also like to
mention here that the pressure anisotropy might have a sig-
nificant role in the structural formation of a compact star,
and thus its internal features will be dependent on anisotropy
in various ways. Keeping this aspect in mind, Karmarkar et
al. [92] argued that the numerical value of the compactness
parameter (i.e., 2M

R , where M and R are the mass and radius
of the star, respectively) may approach unity for anisotropic
stars. Interestingly, for anisotropic stars, Ivanov [93] specifi-
cally demonstrated that the upper limit of the surface redshift
becomes 3.842 and 5.211 when the transverse components of
the pressure satisfy the strong and the dominant energy con-
ditions, respectively. To account for the numerical feature of
the pressure anisotropy, Mak and Harko [94,95] verified that
it must be greatest at the surface and zero at the center of the
compact physical object.

We have already mentioned the reasons for choosing
f (T ) gravity as our motivation for carrying out investiga-
tions in the field of compact stellar models. Under a system
with an anisotropic fluid in the framework of f (T ) gravity,
the present investigation therefore aims to explore physically
viable compact stars so that the model parameters under suit-
able and permissible constraints can provide acceptable fea-
tures which should have admittance with the observational
signatures. More clearly, in the present work our main moti-
vation is to study the spherically symmetric object under
this modified gravity associated with anisotropy in two cat-
egories: (i) to examine the behavior of physical attributes
of the configuration of compact stars and (ii) to both com-
pare and constrain the theoretical model parameters with the
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available dataset from the observational evidence. At this
point, we should mention that, like f (T ) gravity, one spe-
cial advantage in f (Q) gravity is that a second-order differ-
ential equation arises instead of a fourth-order differential
equation in f (R) gravity and has several similar features to
f (T ) gravity.

At this juncture we would like to mention that in the
present work we have assumed “static” compact stars where
we match the interior solution to the exterior Schwarzschild
solution that is compatible with the system, which clearly
means that we have not used the so-called rotation as appli-
cable to the Kerr metric. It is important to add here that in
Subsection 7.2, “Mass and predicted radii of observed pul-
sars,” we present several pulsars category-wise, but those
are treated under static/slow rotation effects only follow-
ing Refs. [96–103] as available in the literature. While pul-
sars exhibit dynamic features such as magnetic fields and
rapid/fast rotation, our assumption of pulsars as static or
slowly rotating neutron stars is a simplifying approxima-
tion frequently employed in astrophysical models [104–107].
This approach simplifies mathematical calculations and the-
oretical analyses, enabling us to establish a foundational
framework for our study without incorporating the complex-
ities associated with pulsar rotation. In addition, this simpli-
fication does not alter the fundamental nature of pulsars, as
the structural changes or instabilities induced by the cracking
phenomenon occur on timescales significantly longer than
the rotation period of pulsars, thereby justifying the consider-
ation of rotation effects as negligible for the specific analysis
and treating pulsars as static.

The outline of the present work is as follows: In Sect. 2
we review the field equations for f (T ) gravity. The exact
solutions to the Einstein field equations under f (T ) grav-
ity are presented in Sect. 3, whereas the boundary condi-
tion is imposed to obtain the expressions for the constants
in Sect. 4. In Sect. 5 we perform a physical analysis of the
f (T ) model, with special attention to cases regarding (5.1)
the physical behavior of density and pressures, and (5.2)
the energy condition. In Sect. 6, the stability and equilib-
rium conditions of the anisotropic solution are analyzed in
the following subsections: (6.1) Herrera cracking concept,
(6.2) Adiabatic index, (6.3) Zel’dovich–Harrison–Novikov
condition, and (6.4) stable equilibrium under the Tolman–
Oppenheimer–Volkoff (TOV) equation. In Sect. 7 we exhibit
the mass–radius profile for the stellar object with respect to
(7.1) compactness and surface redshifts and (7.2) mass and
predicted radii of stellar objects. The last section (Sect. 8) is
dedicated to some concluding remarks.

2 Review of the field equations for f (T ) gravity

The starting point is the line element of a manifold expressed
as

ds2 = gbadx
bdxa = ζklθ

k
b θ ladx

bdxa, (1)

with

dxa = eaηθη, θη = eη
adx

a and ζba = diag[1,−1,−1,−1],
where the Greek indices represent the tetrad field θaη , and the
Latin indices are associated with the spacetime coordinates.
The metric determinant has a square root, i.e., e = √−g =
det[eba].

The Weitzenböck antisymmetric connections can be stated
as long as the torsion is nonzero and the Riemann tensor
remains zero

Γ
η
ba = eη

l ∂be
l
a . (2)

The torsion and con-torsion tensors are represented by the
following expressions:

T l
ab = Γ l

ab − Γ l
ba = elk

(
∂ae

k
b − ∂be

k
a

)
, (3)

Kab
l = −1

2

(
T ab
l − T ba

l − T ab
l

)
. (4)

The two tensors described previously, Eqs. (3) and (4), are
merged to create a novel tensor as

Sabl = 1

2

(
δal T

nb
n + Kab

l − T na
n δbl

)
. (5)

Now, we may represent the torsion scalar as

T = T l
abS

ab
l . (6)

To derive the action for modified gravity f (T ), one may
simply replace R with T , similarly to the revised gravita-
tional action in connection to f (R) theory, as

S =
∫

dx4e
[ 1

16π
f (T ) + LMatter ]. (7)

In the context of natural (i.e., geometrized) units, where
G = c = 1, the variable f denotes a function that depends
on the torsion scalar T , whereas LMatter represents the
Lagrangian density. For clarity, we would like to state at this
beginning stage that in the present work, the two symbols are
employed as follows: T is the torsion, while T is the trace
of the energy–momentum tensor, to overcome any confusion
throughout the manuscript.

To obtain the system of equations for motion, we vary Eq.
(7) with respect to the tetrad field as
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ean S
ib
a ∂nT fT T + e−1

(
eean S

ib
a

)
fT + einT

a
ik S

bk
a fT

−1

4
ebn f = −4πeanT

b
a . (8)

The energy–momentum tensor for the Lagrangian den-
sity Lmatter is represented by the energy–momentum ten-
sor T b

a . Nevertheless, the following symbols are used to
symbolize the derivatives of the function f : fT = ∂ f

∂T

and fT T = ∂2 f
∂T 2 . For an anisotropic fluid distribution, the

energy–momentum tensor is defined as

T b
a = (ρ + Pt )Aa A

b − Ptδ
b
a + (Pr − Pt )BaB

b, (9)

where the four-speed and radial four vectors are represented
by Ab = elδ0

b and Bb = ebδ1
b , respectively. The sym-

bols ρ, Pr and Pt represent the effective energy density, the
radial effective pressure, and the tangential effective pres-
sure, respectively.

The equation of motion in f (T ) gravity may be expressed
in an alternative form using the covariant derivative formal-
ism

Gba fT + Slab∇lT fT T + T

2

(
f

T
− fT

)
gba

= 1

16π
Tba, (10)

where the Einstein tensor is denoted as Gba .
Now, Eq. (8) may be restated within the framework of

general relativity (GR) and f (R) field equations as follows:

Gba = 1

16π fT

(
Tba + T [T ]

ba

)
, (11)

where torsion tensorT [T ]
ba includes corrections derived from

the torsion scalar

T
[T ]
ba = −1

64π

(
4Slab∇l fT T +

(
R fT

−Slab∇l fT T + T
)
gba

)
. (12)

We note that Eq. (10) clearly yields the equations of gen-
eral relativity for a linear f (T ), specifically when f (T ) =
T .

Now, let us direct our attention to the internal structure of
the spherically symmetric static fluid distribution. The met-
ric of this distribution is determined by the following line
element:

ds2 = −eΩdt2 + eΨ dr2 + r2dθ2 + r2 sin2 θ dΩ2. (13)

The two metric potentials that are dependent only on the
radial coordinate, r , are represented by the symbols Ω and
Ψ . Additionally, we establish the energy–momentum ten-
sor for a self-gravitating system with anisotropy in (3+1)-

dimensions as follows:

T b
a = diag (−ρ, Pr , Pt , Pt ) , (14)

with

T b
a = 0, i f a �= b. (15)

The pressure anisotropy is defined as the difference
between the radial pressure Pr and the tangential pressure
Pt , and its value is controlled by the metric potentials Ω and
Ψ . The tetrad matrix for the metric in Eq. (9) is given by
[
eba

]
= diag

[
eΩ/2, eΨ/2, r, r sin θ

]
, (16)

whereas the determinant of this tensor is given as

e = det
[
eba

]
= e(Ω+Ψ )/2 r2 sin θ. (17)

The torsion scalar, along with its derivative, is defined in
terms of the radial coordinate r as

T (r) = 2e−Ψ

r2

[
r Ω ′ + 1

]
, (18)

T ′(r) = e−Ψ

r

[
Ω ′′ − 1

r2 −
(

Ω ′ + 1

r

)(
Ψ ′ + 1

r

) ]
,

(19)

where the derivative with respect to the radial coordinates is
shown by the prime symbol ()′.

By substituting the previously described tetrad field (16)
and inserting the torsion scalar and its derivative into Eq.
(8), one may formally derive the equations of motion for an
anisotropic fluid in f (T ) gravity as

8πρ = fT
[ 1

r2 + 1

r
e−Ψ

(
Ψ ′ + Ω ′) − T (r)

]
+ f

2
,

(20)

8π Pr = fT
[

− 1

r2 + T (r)
]

− f

2
, (21)

8π Pt = fT
[
e−Ψ

((
Ω ′

4
+ 1

2r

) (
Ω ′ − Ψ ′) + Ω ′′

2

)

+T (r)

2

]
− f

2
. (22)

The previously described field equations obviously result
in the equivalent field equations in general relativity for
f (T ) = T , as shown by Eqs. (20)–(22). In the con-
text of f (T ) gravity, an additional non-diagonal quantity
is acquired in the following manner:

cotθ

2r2 T ′ fT T = 0. (23)

This is distinct from the situation of general relativity. The
possibilities that arise from Eq. (23) may be categorized as
follows: (a) when T ′ = 0, and (b) when fT T = 0. In the
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second case, we obtain a linear functional form of f (T )

using the following method:

f (T ) = αT + γ. (24)

The variables α and γ represent integration constants. The
aforementioned linear function has been successfully used in
different situations involving f (T ) gravity. Our objective is
to find the solution to the f (T ) gravity field equations (20)–
(22) using the functional form (24). Therefore, the final form
of the field Eqs. (20)–(22) under Eq. (24) becomes

ρ = 1

16πr2 [2α + 2e−Ψ α(rΨ ′ − 1) − r2γ ], (25)

Pr = 1

16πr2 [−2α + 2e−Ψ α(rΩ ′ + 1) + r2γ ], (26)

Pt = e−Ψ

32πr
[2eΨ rγ + α(2 + rΩ ′)(Ω ′ − Ψ ′)+2rαΩ ′′].

(27)

3 New exact solution in f (T ) gravity

The f (T ) gravity system (26)–(27) contains five
unknowns, namely, ρ, Pr , Pt , Ψ , and Ω . We need to find
the exact solution for this system by solving the pressure
anisotropy equation, which can be given as

α e−Ψ
[
(2Ω ′′ + Ω ′2)r2 − 2Ω ′r − Ψ ′r(Ω ′r + 2)

+4(eΨ − 1)
] = 32πr2Δ. (28)

Due to the presence of three unknowns in the pressure
anisotropy Eq. (28), it is necessary to have two conditions in
order to solve the differential equation. For this reason, we
choose a physically viable ansatz for the potential Ψ (r) of
the form

Ψ (r) = ln
[1 − 2Nr2

1 + Nr2

]
, (29)

where N is a constant with dimension l−2.
According to the above Eq. (29), as r → 0, we find that

eΨ → 1. This means that the metric potential eΨ is physi-
cally acceptable since it does not contain any singularities at
the center of the physical system. Furthermore, this metric
function gives a decreasing density (see upper left panel of
Fig. 1).

The metric function (29) was used previously by Baskey
et al. [108] in the context of GR. By plugging Eq. (29) into
Eq. (28), we get

α
[
2Ω ′′r

(
1 − 2N 2r4 − Nr2

)
+ Ω ′2(r − 2N 2r5 − Nr3)

+Ω ′ ×
(

4N 2r4 + 8Nr2 − 2
)

+ 24N 2r3
]

= 32πrΔ
(

1 − 2Nr2
)2

. (30)

The solution of the above differential equation depends
on the suitable expression for the anisotropic factor Δ, so we
first choose the anisotropy factor Δ expression as follows:

Δ(r) = 3αN 2r2

4π(1 − 2Nr2)2 . (31)

From Eq. (31), it is evident that the value of Δ becomes
zero at the center r = 0, and thereafter increases as the value
of r increases. By substituting the value of Δ into Eq. (30),
we obtain

−2Ω ′′r
(
2N 2r4 + Nr2 − 1

) + Ω ′2 (
−2N 2r5 − Nr3 + r

)

+Ω ′ (4N 2r4 + 8Nr2 − 2
) = 0. (32)

Now we use the transformation Ω = 2 ln � to covert the
differential Eq. (32) in its simplest form as

�′ (2N 2r4 + 4Nr2 − 1
)

− �′′r
(

2N 2r4+Nr2−1
)

= 0.

(33)

After solving the above differential Eq. (33), we obtain

�(r) = A

2N

(√
1 − Nr2 − 2N 2r4 −

9 tan−1
(√

6−2
√
Nr2+1√

2−4Nr2

)

(√
6Nr2 + 6 − 3

)2

×
(

2
√

2Nr2 − 4
√

3Nr2 + 3 + 5
√

2
))

+ B. (34)

The expressions for density and pressures are given as

8πρ =
3αN

(
2Nr2 − 3

)

(
1 − 2Nr2

)2 − γ

2
, (35)

8π Pr = γ

2
+ αN

(
3

1 − 2Nr2 + 4A
√
Nr2 + 1

Pr1

√
1 − 2Nr2

)
, (36)

8π Pt = 1

2�(r)
(
1 − 2Nr2

)2

[
16αAN3r6

√
1 − Nr2 − 2N2r4

+ 4γ N2

× r4�(r) + 4αA√
1 − 2Nr2

√
Nr2 + 1

+ N

(
− 4γ r2�(r)

+ 6α�(r) − 12αAr2
√

1 − 2Nr2
√
Nr2 + 1

)
+ γ �(r)

]
, (37)

where

Pr1 = A
√
Nr2 + 1

√
1 − 2Nr2 − tan−1

(√
6 − 2

√
Nr2 + 1√

2 − 4Nr2

)

×3
√

2A + 2BN .
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4 Boundary condition

When considering the linear functional form of f (T ) grav-
ity theory, the exterior Schwarzschild–de Sitter solution may
provide the most suitable exterior spacetime, as

ds2 = −
(

1 − 2M

r
− �

3
r2

)
dt2 + dr2

(
1 − 2M

r − �
3 r2

)

+r2(dθ2 + sin2 θdφ2). (38)

Let M represent the total mass of the object at the boundary
r = R. It is given by the relation M = m(R)/α. Additionally,
� is equal to α/2γ . The application of the first and second
fundamental forms yields the following outcome:
(

1 − 2M

R
− �

3
R2

)
= eΩ(R), (39)

(
1 − 2M

R
− �

3
R2

)
= e−Ψ (R), (40)

Pr (R) = 0. (41)

These boundary conditions are the most appropriate for
the joining of two spacetimes at the surface r = R. By using
Eq. (41), we determine

A =
2N

√
N R2 + 1

(√
6N R2 + 6 − 3

)2

(
1 − 2N R2

) [
2NF1(R)

(√
6N R2 + 6 − 3

)2 + F2(R)

] ,

(42)

B = F1(R)
2N

√
N R2 + 1

(√
6N R2 + 6 − 3

)2

(
1 − 2N R2

)
[2NF1(R) + F2(R)]

, (43)

M = R3
(
γ + 18αN − 2γ N R2

)

12α
(
2N R2 − 1

) , (44)

where

F1(R) = −1

2N
√

1 − 2N R2
(
γ + 6αN − 2γ N R2

)
[

3
√

2 − 4N R2

× tan−1

(√
6 − 2

√
N R2 + 1√

2 − 4N R2

)
(−γ − 6αN+2γ N R2)

−
√
N R2 + 1

(
2N R2 − 1

) (
γ + 14αN − 2γ N R2)

]
,

(45)

F2(R) =
√
N R2 + 1

√
1 − 2N R2

(√
6N R2 + 6 − 3

)2

− 9
(

2
√

2N R2 − 4
√

3N R2 + 3 + 5
√

2
)

× tan−1

(√
6 − 2

√
N R2 + 1√

2 − 4N R2

)
. (46)

5 Physical analysis of the f (T ) model

5.1 Physical behavior of density and pressures

For the stability requirement of a model, the density ρ, radial
pressure Pr , and transverse pressure Pt should all be positive
inside the physical configuration and should decrease out-
ward monotonically. We note that Fig. 1 supports the pos-
itive and monotonically decreasing behavior of the model
variables. One interesting point here is that Fig. 1 shows that
the transverse force is always higher than the radial force
throughout the internal structure. It readily implies the repul-
sive nature of the anisotropic force, which in turn indicates
that the model is highly stable due to the repulsive force.

Another intricate feature is specifically revealed from the
transverse pressure profile of Fig. 1,in that, unlike the radial
pressure, it does not vanish on the surface of the spherical
object. This feature indicates the existence of an ergo-sphere,
and hence there is an appearance of the bulging in the equato-
rial region which is expected due to the pressure anisotropy.
In other words, this effect is suggestive of a hypersurface
such that the observer can look at the event away from the
bounding surface of the physical configuration.

On the other hand, we calculate the Zel’dovich condition,
which can be defined by a pressure–density ratio as

Ψi (r) = Pi (r)

ρ(r)
. (47)

In the above expression, the index i = {r, t} denotes
the radial and tangential components. According to the
Zel’dovich criterion, the energy density must dominate over
the pressure throughout the stellar configuration for a phys-
ically viable model, i.e., Ψi (r) must fall between 0 and 1.
One can note from Fig. 2 that the Zel’dovich criterion is con-
firmed.

5.2 Energy condition

In the context of f (T ) gravity, energy conditions may be
described as local inequalities that establish a relationship
between energy densityρ and pressures (Pr , Pt ) under certain
restrictions. In order for a structure to be physically viable,
it must meet certain energy parameters throughout the inte-
rior of the star. The calculation of energy conditions centers
primarily on the null energy condition (NEC), weak energy
condition (WEC), strong energy condition (SEC), dominant
energy condition (DEC), and trace energy condition (TEC).
These conditions are described as follows:

NEC : ρ(r) + Pr (r) ≥ 0, ρ(r) + Pt (r) ≥ 0,

WEC : ρ(r) ≥ 0, ρ(r) + Pr (r) ≥ 0, ρ(r) + Pt (r) ≥ 0,

DEC : ρ(r) − |Pr (r)| ≥ 0, ρ(r) − |Pt (r)| ≥ 0,
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Fig. 1 The behavior of the density (ρ), radial pressure (Pr ), tangential pressures (Pt ), and anisotropy (Δ = Pt − Pr ) against the radial coordinates
r for the values of free parameters N = −0.0031 km−2 and γ = 0.0002

Fig. 2 The behavior of the pressure–density ratios (Pr/ρ) & (Pt/ρ) against the radial coordinates r for the values of free parameters N =
−0.0031 km−2, R = 11.6 km. and γ = 0.0002

SEC : ρ(r) + Pr (r) + 2Pt (r) ≥ 0,

TEC : ρ(r) − Pr (r) − 2Pt (r) ≥ 0. (48)

Because of the density and pressures that are positive,
NEC and WEC must be fulfilled. In Figs. 3 and 4, we have
visually shown the DEC, SEC, and TEC. We have determined
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Fig. 3 The behavior of energy conditions (ρ − Pr ) and (ρ − Pt ) for similar values as used in Fig. 2

Fig. 4 The behavior of energy condition (ρ − Pr − 2Pt ) for similar
values as used in Fig. 3

that the proposed solutions satisfy these energy criteria con-
currently.

6 Analysis of the stability and equilibrium conditions of
the anisotropic solution

6.1 Herrera cracking concept

One essential test in investigating the instability of anisotropic
stellar configurations is to examine whether the model
encounters overturning or cracking. The fundamental con-
cept is that on either side of the fracture point, the fluid con-
stituents undergo acceleration relative to one another. The
phenomenon of cracking with a self-gravitating anisotropic
compact star configuration was first investigated by Her-
rera [111]. The presence of cracking indicates that in order
for a star model to be considered valid, the radial sound speed

must adhere to the causality criterion, which states that v2
r

& v2
t must be less than or equal to 1 (assuming c = 1 and

v2
i = dPi

dρ
). Le Chatelier’s principle implies that the speed of

sounds, denoted as vr and vt , is expected to have a positive
value, i.e., in an alternative form v2

i = dPi
dρ

≥ 0 [112,113].
Hence, the expression for the radial sound speed is now

provided as

v2
r =

[(
2Nr2 − 1

)3
(

− 12
B2

A2 N
2
(√

6Nr2 − 3
√
Nr2 + 1+√

6
)

− 6
B

A
N

√
1 − 2Nr2

(
2Nr2 + 3

) (√
6Nr2 + 6 − 3

)

− 9
(√

1 − 2Nr2
(
2Nr2 + 3

) (
3
√

2 − 2
√

3Nr2 + 3
)

− 4
B

A
N

(
2
√

3Nr2 − 3
√

2Nr2 + 2 + 2
√

3
) )

× tan−1

(√
6 − 2

√
Nr2 + 1√

2 − 4Nr2

)
+ v1(r)

)]/
v2(r),

(49)

v2
t =

[
24

B2

A2 N
2
(

4
√

6N 3r6 + 12N 2r4
(

6
√

6 − 5
√
Nr2 + 1

)

+ 3Nr2
(

59
√

6 − 100
√
Nr2 + 1

)
− 267

√
Nr2 + 1

+ 109
√

6
)

+ Ψd1(r) + (
16N 3r6 − 24N 2r4 − 6Nr2 + 7

)

×
(

4
√

6N 3r6 + 12N 2r4(6
√

6 − 5
√
Nr2 + 1

) + 3Nr2

×
(

59
√

6 − 100
√
Nr2 + 1

)
− 267

√
Nr2 + 1 + 109

√
6

)]

/[
3Ψd2(r)

√
Nr2 + 1

(
2Nr2 − 5

) (√
6Nr2 + 6 − 3

) ]
,

(50)

where v1(r) and v2(r) are given in the appendix.
The verification of the causality criterion for our model

is shown in Fig. 5. We note that to assess Herrera’s cracking
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Fig. 5 The behavior of the radial and tangential velocities (v2
r ) & (v2

t ) against the radial coordinates r for the values of free parameters N =
−0.0031 km−2 and γ = 0.0002

Fig. 6 The stability factor (v2
t − v2

r ) against the radial coordinates r
for the values of free parameters N = −0.0031 km−2 and γ = 0.0002

concept on the stability of compact objects, Abreu et al. [114]
introduced a range to identify possibly stable or unstable
anisotropic compact structures. According to their research,
a model may be considered theoretically stable if it satisfies
the inequality −1 ≤ v2

t − v2
r < 0, as long as there is no

change in sign of v2
t − v2

r inside the radius of the star. Given
that the condition −1 ≤ v2

t − v2
r < 0 is satisfied by our

model, as seen in Fig. 6, we can infer that the model satisfies
Herrera’s cracking idea.

6.2 Adiabatic index

The stability of an object may also be evaluated using the
adiabatic index as a simple test. The adiabatic index for a
given energy density may be used to characterize the nature
of the equation of state. Thus, the adiabatic index determines
the stability of both non-relativistic and relativistic compact

objects. The adiabatic index for relativistic anisotropic struc-
tures can be defined as the ratio of two specific temperatures:

Γ = Pr + ρ

Pr
v2
r . (51)

Bondi [115] proposed that the stability criteria for a star
model to be stable should be Γ > 4/3 for the Newtonian
sphere and Γ = 4/3 for neutral equilibrium. Heintzmann
and Hillebrandt [117] determined that the adiabatic index
needed for a stellar system to be in equilibrium was Γ >

4/3 by taking into account that the matter is anisotropic.
Subsequently, Chan et al. [116] made some modifications
for the relativistic fluid situation, which are stated as

Γ <
4

3

(
1 + Δ

r |(Pr )|′ + 1

4

ρPrr

|(Pr )|′
)

. (52)

Here, anisotropy is represented by the first component on
the right side of Eq. (52), and the relativistic corrections to the
Newtonian ideal fluid are represented by the second term. We
have presented only the values of Γ in the radial direction,
which consistently exceed 4/3 across the star model (Fig. 7).

6.3 Zel’dovich–Harrison–Novikov condition

A compact structure is deemed stable when the mass of the
configuration increases as the core density increases. Math-
ematically, every stable structure must satisfy the condition
dMρ0
dρ0

> 0. The stability requirement is referred to as the
Zel’dovich–Harrison–Novikov condition [118,119]. While
this condition is essential, it is not sufficient. For our solu-
tion, the central density

8πρ0 = −9α − γ

2
, (53)
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Fig. 7 The behavior of the adiabatic index (Γ ) against the radial coor-
dinates r for the values of free parameters N = −0.0031 km−2 and
γ = 0.0002

M(ρ0) = R3
(
16πρ0

(
9α − γ R2

) − γ 2R2
)

12α
(
9α + 16πρ0R2 + γ R2

) , (54)

dM

dρ0
= 108παR3

(
9α + 16πρ0R2 + γ R2

)2 . (55)

Figure 8 shows that the derivative of M with respect to ρ0

exhibits a positive value, i.e., the mass increases with central
density ρ0. This observation suggests that the anisotropic
models developed possess stability.

6.4 Stable equilibrium under the TOV equation

The hydrostatic equilibrium of a star is examined using the
Tolman–Oppenheimer–Volkoff equation [120,121], com-
monly referred to as the the TOV equation, which stipulates
that for a model to be considered viable, it must exhibit stable
equilibrium against three distinct forces: gravitational force,

hydrostatic force, and anisotropic force. Mathematically, the
sum of these forces must remain zero across the whole star.
The TOV equation describes the internal composition of a
compact star object with spherical symmetry. In the context
of anisotropy, it is expressed as

− Ω ′

2
(ρ + Pr ) − dPr

dr
+ 2(Pt − Pr )

r
= 0. (56)

Alternatively, Eq. (56) may be expressed as follows:

Fg + Fh + Fa = 0, (57)

where Fg represents the gravitational force, and Fh and Fa
represent the hydrostatic force and anisotropic force, respec-
tively, which can be written as

Fg = −Ω ′

2
(ρ + Pr ), Fh = −dPr

dr
, Fa = 2(Pt − Pr )

r
.

(58)

Figure 9 illustrates the evolution of different forces with
respect to the radial coordinate. It is evident that the gravi-
tational force is dominant and negative in nature. This force
is counterbalanced by the combined influence of hydrostatic
forces and anisotropic forces to maintain equilibrium within
the system.

7 Mass–radius profile for the self-bound pulsar objects

7.1 Compactness and surface redshifts

The non-collapsing nature of a stellar object is essentially
determined by its mass and radius relation, which is known
as the compactness factor (u = m/r ). The compactness
factor (u) for a non-collapsing star must be less than 8/9
for the isotropic fluid system in standard GR. Furthermore,

Fig. 8 The stability analysis of the model via M − ρ0 and dM/dρ0 − ρ0 curves for similar values as used in Fig. 5
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Fig. 9 The behavior of different forces against the radial coordinates r for the values of free parameters N = −0.0031 km−2 and γ = 0.0002 with
different values of α. Top left panel for α = 0.8, top right panel for α = 1.0, Bottom left panel for α = 1.2, and bottom right panel for α = 1.4

Andreasson–Böhmer [122] derived the upper bound of the
mass–radius limit in the presence of a positive cosmological
constant value

M

R
<

2

9
− �R2

3
+ 2

9

√
1 + 3�R2. (59)

Obviously, the inequality (59) reduces to the Buchdahl
limit when � = 0. However, in the present study, � = γ

2α
;

then the final form of inequality (59) reduces to

M

R
<

2

9
− γ R2

6α
+ 2

9

√
1 + 3γ R2

2α
. (60)

Furthermore, the effective mass in f (T ) gravity can be
calculated by the formula

Meff = 1

2α

∫ R

0

(
ρ + γ

2

)
r2dr = R

2

[
1 − e−λ(R)

]
. (61)

Then the gravitational surface redshift can be calculated
by the formula

zs = e−Ω(R)/2 − 1 = (1 − 2u)−1/2 − 1, where, u = Meff

R
.

(62)

The upper bound of the mass–radius relation of the
observed compact objects can be visualized from Fig. 10,
which shows that the compactness relation is satisfied. How-
ever, the surface redshift is obtained using the formula (62),
and its value is zs = 0.773978 for all α and γ . This obtained
value follows the upper bound given by Ivanov [124] and
Böhmer–Harko [123].

7.2 Mass and predicted radii of observed pulsars

The mass–radius relationship, which is essential to the cur-
rent model’s physical validity, is examined in this section.
The behavior of the M–R curves for different values of α cor-
responding to two different surface densities, ρs = 2.7×1014
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Fig. 10 The mass profile and predicted radii via the M–R diagram for N = −0.0031 km−2 and γ = 0.0002 with surface density 2.7×1014gm/cc
(left panel) and surface density 4.8 × 1014gm/cc (right panel)

Table 1 M–R curve and prediction of radii for different values of α with surface density of 2.7 × 1014 g/cc

Objects M/M� Predicted R (km)

α = 0.35 α = 0.40 α = 0.45 α = 0.50 α = 0.55

PSR J1614-2230 1.97 ± 0.04 – – 11.87+0.02
−0.01 12.62+0.01

−0.01 13.25+0.01
−0.01

PSR J0952-0607 2.35 ± 0.17 – – 11.28+0.44− 12.53+0.06
−0.12 13.26+0.01

−0.02

GW190814 2.5 − 2.67 – – – 12.37+0.07
−0.14 13.22+0.02

−0.03

Table 2 M–R curve and prediction of radii for different values of α with surface density of 4.8 × 1014g/cc

Objects M/M� Predicted R (km)

α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

PSR J1614-2230 1.97 ± 0.04 – – 12.01+0.01
−0.12 12.83+0.01

−0.01 13.53+0.01
−0.01

PSR J0952-0607 2.35 ± 0.17 – – 11.53+0.34− 12.75+0.06
−0.08 13.54+0.01

−0.02

GW190814 2.5 − 2.67 – – – 12.62+0.05
−0.10 13.52+0.01

−0.03

gm/cm3 and ρs = 4.8 × 1014 gm/cm3, are shown in Fig. 10.
These plots show three stellar candidates whose determined
masses are known. We also use the M–R curves to calculate
the radii of those known stars. Based on the chosen param-
eters {N , γ, R}, the expected radii are provided in Tables
1 and 2. Regarding the increasing values of α, the tendency
indicates an increasing tendency in the variation of maxi-
mum mass and its associated radius. As a result, the increas-
ing maximum measured masses for various stars are linked to
the increase in the torsion parameter α in the f (T ) function,
demonstrating a direct effect on the maximum mass. Tables
1 and 2 also show that when surface densities increase, a sig-
nificant decrease is seen in both maximum mass and radius,
while maintaining constant values for all other parameters.
On the other hand, changes in surface densities, with all other

parameters held constant, result in only small adjustments to
the M/R compactification factor, which remains under the
Anderson–Böhmer limit [122].

Furthermore, to ensure the physical validity of our model,
we arbitrarily consider observational data for three observed
pulsar candidates (namely, PSR J1614-2230, PSR J0952-
0607, and GW190814). The numerical values of the pre-
dicted radius of stellar candidates for these compact stars are
as follows:

• Lower mass category: For PSR J1614-2230 (1.97M�)
11.87+0.02

−0.01 for α = 0.45; 12.62+0.01
−0.01 for α = 0.50;

13.25+0.01
−0.01 for α = 0.55; 12.01+0.01

−0.12 for α = 0.80;

12.83+0.01
−0.01 for α = 0.90; 13.53+0.01

−0.01 for α = 1.00.
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• Intermediate mass category: For PSR J0952-0607
(2.35M�) 11.28+0.44− for α = 0.45; 12.53+0.06

−0.12 for α =
0.50; 13.26+0.01

−0.02 for α = 0.55; 11.53+0.34− for α = 0.80;

12.75+0.06
−0.08 for α = 0.90; 13.54+0.01

−0.02 for α = 1.00.
• Higher mass category: For GW190814 (2.5−2.67M�)

12.37+0.07
−0.14 for α = 0.50; 13.22+0.02

−0.03 for α = 0.55;

12.62+0.05
−0.12 for α = 0.90; 13.52+0.01

−0.03 for α = 1.00.

In this connection it is worth mentioning that Astashenok
et al. [109] conducted a theoretical analysis suggesting
extended gravity theories to account for the high mass
(2.67M�) of a dense star seen during the compact binary
merger event GW190814 detected using gravitational waves.
Nashed and Capozziello [110] discovered that involving
anisotropy and charge within teleparallel gravity leads to a
higher mass, which was calculated from the M–R relation.
The results indicate that the maximum mass is 2.78M� for
the neutral scenario and 3M� for the charged scenario. In
the present case, we also observed the maximum mass of
the star beyond the 3M� when the surface density was on
the of order 1014gm/cm3 for the higher torsion parameter.
This implies that an anisotropic solution in teleparallel grav-
ity is more suitable for modeling of a massive compact object
in lower mass − gap. It is interesting to note that Bhar et
al. [125] discussed the mass− gap concept while constrain-
ing physical parameters for maximum allowable mass under
the framework of f (Q) gravity theory.

8 Conclusion

In the present work, we propose a unique solution set for
compact stars under f (T ) gravity where we put observa-
tional constraints on the model parameters. The outcome of
the investigation is profound in the sense that we note sev-
eral interesting features of the compact stars which are not
only physically acceptable but also observationally indica-
tive based on the connected data range as can be observed
in the data tables and graphical plots. All these attributes
are successfully passed through several physically stringent
tests, including (i) analysis of the f (T ) model (via physi-
cal behavior of density and pressures, and energy condition),
(ii) analysis of the stability and equilibrium conditions of the
anisotropic solution (via the Herrera cracking concept, adia-
batic index, Zel’dovich–Harrison–Novikov condition, stable
equilibrium under three forces), and (iii) mass–radius profile
for the stellar object (via compactness and surface redshifts,
mass and predicted radii of stellar objects). We have exhib-
ited via all the graphical plots (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9,
10) the expected behavior of the model parameters which are
interesting and physically viable.

A few salient features in connection to the internal and
external profiles of the compact stars under consideration
can be put forward as follows:

• Compact binary merger event GW190814: In the present
study, we observe the maximum mass of the star beyond the
3M� when the surface density is on the order of 1014gm/cm3

for the higher torsion parameter, which implies that the
anisotropic solution in teleparallel gravity is more suitable for
modeling of massive compact objects in lower mass − gap.

• We have demonstrated the internal structure of the com-
pact stars in connection to the recent studies on the X-ray
pulsars PSR J1614-2230, PSR J0952-0607, and GW190814.
In our work, the M–R graphs (Fig. 10) demonstrate high sen-
sitivity to stiffness, and thus the proposed model provides a
satisfactory physical scenario with respect to the observa-
tional signature is concerned.

As a final comment, even after performing the aforemen-
tioned thorough investigation which reveals interesting fea-
tures under f (T ) gravity due to an extensive comparative
study, we feel an extreme need for data analysis. The data
which are nowadays available in copious amounts due to
several space-based and ground-based telescopes can pro-
vide more delicate limits on the physical parameters involved
in the model. Therefore, a future project can be taken into
account to consider a data analytic procedure as a confir-
matory platform of the presented model. Moreover, one can
consider the tidal effect due to anisotropy involved in the
physical system, slow rotation effect, and moment of iner-
tia of the compact stars. Regarding computing the moment
of inertia to obtain a holistic sense of physical viability in
connection to the slow rotation of the compact stars, the fol-
lowing works may be worth mentioning [126–130].

Acknowledgements The author SKM is thankful for continuous sup-
port and encouragement from the administration of the University of
Nizwa. SR is thankful to the Inter-University Centre for Astronomy and
Astrophysics (IUCAA), Pune, India, for providing a Visiting Associate-
ship under which a part of this work was carried out, and also gratefully
acknowledges the facilities under ICARD, Pune, at CCASS, GLA Uni-
versity, Mathura. G. Mustafa is very thankful to Prof. Gao Xianlong
from the Department of Physics, Zhejiang Normal University, for his
kind support and help during this research. Further, G. Mustafa acknowl-
edges grant No. ZC304022919 to support his Postdoctoral Fellowship
at Zhejiang Normal University, PR China.

Data Availability Statement This manuscript has no associated data.
[Author’s comment: There are no observational data related to this arti-
cle. The necessary calculations and graphic discussion can be made
available on request.]

Code Availability Statement This manuscript has no associated
code/software. [Author’s comment: We use the Mathematica and
Python software for numerical computation and graphical analysis of
this problem. No other code/software was generated or analysed during
the current study.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

123



603 Page 14 of 16 Eur. Phys. J. C (2024) 84 :603

distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix

where

v1(r) =
(

14N 2r4 + Nr2 − 4
)

×
(√

6Nr2 − 3
√
Nr2 + 1 + √

6
)

−54
(√

6Nr2 − 3
√
Nr2 + 1 + √

6
)

× tan−1

(√
6 − 2

√
Nr2 + 1√

2 − 4Nr2

)2

,

v2(r) =
[

3
(

1 − 2Nr2
)2 √

Nr2 + 1
(

2Nr2 − 5
)

×
(√

6Nr2 + 6 − 3
)

×
(

2B

A
N +

√
Nr2 + 1

√
1 − 2Nr2

−3
√

2 tan−1

(√
6 − 2

√
Nr2 + 1√

2 − 4Nr2

) )2]
,

Ψd2(r) =
[

2
B

A
N

(
2Nr2 − 2

√
6Nr2 + 6 + 5

)
+

(
2Nr2

×
(√

Nr2 + 1 − √
6
)

+ 5
√
Nr2 + 1 − 2

√
6
)

×
√

1 − 2Nr2 − 3
(

2
√

2Nr2 − 4
√

3Nr2 + 3

+5
√

2
)

tan−1

(√
6 − 2

√
Nr2 + 1√

2 − 4Nr2

) ]2

.

Ψd1(r) = 6
B

A
N

(
2Nr2 + 5

) (
4N 2r4

(√
6Nr2 + 6 − 15

)

+4Nr2
(

17
√

6Nr2 + 6 − 75
)

+109
√

6Nr2 + 6 − 267
)√

1 − 2Nr2

+9

(√
1 − 2Nr2

(
2Nr2 + 5

)

×
(

4N 2r4
(

15
√

2 − 2
√

3Nr2 + 3
)

+4Nr2
(

75
√

2 − 34
√

3Nr2 + 3
)

−218
√

3Nr2 + 3 + 267
√

2
)

−8
B

A
N

[
8
√

3N 3r6 + 12N 2r4

×
(

12
√

3 − 5
√

2Nr2 + 2
)

+ 6Nr2

×
(

59
√

3 − 50
√

2Nr2 + 2
)

−267
√

2Nr2 + 2 + 218
√

3
])

× tan−1

(√
6 − 2

√
Nr2 + 1√

2 − 4Nr2

)

+108
[
4
√

6N 3r6 + 12N 2r4

×
(

6
√

6 − 5
√
Nr2 + 1

)

+3Nr2
(

59
√

6 − 100
√
Nr2 + 1

)

−267
√
Nr2 + 1 + 109

√
6
]

× tan−1

(√
6 − 2

√
Nr2 + 1√

2 − 4Nr2

)2

,

References

1. A.G. Riess et al., Astron. J. 116, 1009 (1998)
2. S. Perlmutter et al., Nature 391, 51 (1998)
3. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)
4. C.L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1 (2003)
5. A.G. Riess et al., Astrophys. J. 607, 665 (2004)
6. D.N. Spergel et al., Astrophys. J. 148, 175 (2003)
7. D.N. Spergel et al., Astrophys. J. 170, 377 (2007)
8. M. Tegmark et al., [SDSS], Cosmological parameters from SDSS

and WMAP. Phys. Rev. D 69, 103501 (2004)
9. P.A.R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014)

10. Y. Wang, M. Dai, Phys. Rev. D 94, 083521 (2016)
11. M.M. Zhao, D.Z. He, J.F. Zhang, X. Zhang, Phys. Rev. D 96(4),

043520 (2017)
12. W.J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148 (2010)
13. H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)
14. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)
15. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D

70, 043528 (2004)
16. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, Phys.

Rev. D 73, 084007 (2006)
17. K. Bamba, Cosmological Issues in f (T ) Gravity Theory.

arXiv:1504.04457 [gr-qc]
18. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84,

024020 (2011)
19. A.K. Yadav, F. Rahaman, S. Ray, S. Int, J. Theor. Phys. 50, 871

(2011)
20. A.K. Yadav, Astrophys. Space Sci. 335, 565 (2011)
21. M.J.S. Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012)
22. R. Myrzakulov, Eur. Phys. J. C 72, 2203 (2012)
23. F.G. Alvarenga, A. de la Cruz-Dombriz, M.J.S. Houndjo, M.E.

Rodrigues, D. Sáez-Gómez, Phys. Rev. D 87, 103526 (2013)
24. M. Zubair, S. Waheed, Y. Ahmad, Eur. Phys. J. C 76, 444 (2016)
25. P.H.R.S. Moraes, R.A.C. Correa, R.V. Lobato, JCAP 07, 029

(2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1504.04457


Eur. Phys. J. C (2024) 84 :603 Page 15 of 16 603

26. A. Das, F. Rahaman, B.K. Guha, S. Ray, Eur. Phys. J. C 76, 654
(2016)

27. M.E.S. Alves, P.H.R.S. Moraes, J.C.N. de Araujo, M. Malheiro,
Phys. Rev. D 94, 024032 (2016)

28. A.K. Yadav, Astrophys. Space Sci. 361, 276 (2016)
29. Z. Yousaf, K. Bamba, M.Z.U.H. Bhatti, Phys. Rev. D 93, 124048

(2016)
30. A. Das, S. Ghosh, B.K. Guha, S. Das, F. Rahaman, S. Ray, Phys.

Rev. D 95, 124011 (2017)
31. D. Deb, F. Rahaman, S. Ray, B.K. Guha, Phys. Rev. D 97, 084026

(2018)
32. D. Deb, S.V. Ketov, S.K. Maurya, M. Khlopov, P.H.R.S. Moraes,

S. Ray, Mon. Not. R. Astron. Soc. 485, 5652 (2018)
33. L.K. Sharma, A.K. Yadav, P.K. Sahoo, B.K. Singh, Res. Phys. 10,

738 (2018)
34. R. Nagpal, S,K.J. Pacif, J.K. Singh, K. Bamba, A. Beesham, Eur.

Phys. J. C 78, 946
35. L.K. Sharma, A.K. Yadav, B.K. Singh, New Astron. 79, 101396

(2020)
36. L.K. Sharma, B.K. Singh, A.K. Yadav, Int. J. Geom. Methods

Mod. Phys. 17, 2050111 (2020)
37. D. Deb, S.V. Ketov, M. Khlopov, S. Ray, J. Cosmol. Astropart.

Phys. 10, 070 (2019)
38. D. Deb, F. Rahaman, S. Ray, B.K. Guha, J. Cosmol. Astropart.

Phys. 03, 044 (2019)
39. S. Biswas, S. Ghosh, B.K. Guha, F. Rahaman, S. Ray, Ann. Phys.

401, 1 (2019)
40. S. Biswas, D. Shee, S. Ray, B.K. Guha, Eur. Phys. J. C 80, 175

(2020)
41. A.K. Yadav, L.K. Sharma, B.K. Singh, P.K. Sahoo, New Astron.

78, 101382 (2020)
42. S. Biswas, D. Deb, S. Ray, B.K. Guha, Ann. Phys. 428, 168429

(2021)
43. S.K. Tripathy, B. Mishra, M. Khlopov, S. Ray, Int. J. Mod. Phys.

D 30, 214000 (2021)
44. S.K. Maurya, F. Tello-Ortiz, S. Ray, Phys. Dark Univ. 31, 100753

(2021)
45. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys.

Space Sci. 342, 155 (2012)
46. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J.

C 67, 295 (2010)
47. M.E. Rodrigues, M.J.S. Houndjo, D. Mommeni, R. Myrzakulov,

Can. J. Phys. 92, 173 (2014)
48. S.D. Odintsov, V.K. Oikonomou, S. Banerjee, Nucl. Phys. B 938,

935 (2019)
49. S. Nojiri, S.D. Odintsov, O.G. Gorbunova, J. Phys. A 39, 6627

(2006)
50. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)
51. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)
52. B. Li, J.D. Barrow, D.F. Mota, Phys. Rev. D 76, 044027 (2007)
53. E. Elizalde, R. Myrzakulov, V.V. Obukhov, D. Saez-Gomez, Class.

Quantum Gravity 27, 095007 (2010)
54. N.M. Garcia, F.S.N. Lobo, J.P. Mimoso, T. Harko, J. Phys. Conf.

Ser. 314, 012056 (2011)
55. K. Bamba, A.N. Makarenko, A.N. Myagky, S.D. Odintsov, Phys.

Lett. B 732, 349 (2014)
56. K. Izumi, Phys. Rev. D 90, 044037 (2014)
57. A. Escofet, E. Elizalde, Mod. Phys. Lett. A 31, 1650108 (2016)
58. V.K. Oikonomou, Phys. Rev. D 92, 124027 (2015)
59. V.K. Oikonomou, Astrophys. Space Sci. 361, 211 (2016)
60. A.N. Makarenko, Int. J. Geom. Methods Mod. Phys. 13, 1630006

(2016)
61. A.N. Makarenko, A.N. Myagky, Int. J. Geom. Methods Mod.

Phys. 14, 1750148 (2017)
62. K. Kleidis, V.K. Oikonomou, Int. J. Geom. Methods Mod. Phys.

15, 1850064 (2017)

63. A.L. Erickcek, T.L. Smith, M. Kamionkowski, Phys. Rev. D 74,
121501 (2006)

64. S. Capozziello, A. Stabile, A. Troisi, Phys. Rev. D 76, 104019
(2007)

65. M. Zubair et al., Chin. Phys. C 45, 085102 (2021)
66. M. Zubair, A. Ditta, S. Waheed, Eur. Phys. J. Plus 136, 508 (2021)
67. M. Zubair, Eur. Phys. J. C 82, 984 (2022)
68. J. Solanki, J.L. Said, Eur. Phys. J. C 82, 35 (2022)
69. J.C.N. de Araujo, H.G.M. Fortes, Eur. Phys. J. C 83, 1168 (2023)
70. F. Bajardi, D. Vernieri, S. Capozziello, Eur. Phys. J. Plus 135, 912

(2020)
71. S. Mandal, A. Parida, P.K. Sahoo, Universe 8, 240 (2022)
72. F.K. Anagnostopoulos, S. Basilakos, E.N. Saridakis, Phys. Lett.

B 822, 136634 (2021)
73. R. Solanki, S.K.J. Pacif, A. Parida, P.K. Sahoo, Phys. Dark Univ.

32, 100820 (2021)
74. U.K.S. Shweta, A.K. Mishra, Int. J. Geom. Methods Mod. Phys.

19, 2250019 (2022)
75. F. D’Ambrosio, S.D.B. Fell, L. Heisenberg, S. Kuhn, Phys. Rev.

D 105, 024042 (2022)
76. A. Kar, S. Sadhukhan, U. Debnath, Mod. Phys. Lett. A 37,

2250183 (2022)
77. P. Sahoo, A. De, T.H. Loo, P.K. Sahoo, Commun. Theor. Phys.

74, 125402 (2021)
78. A. Errehymy, A. Ditta, G. Mustafa, S.K. Maurya, A.H. Abdel-Aty,

Eur. Phys. J. Plus 137, 1311 (2022)
79. M. Koussour, S. Arora, D.J. Gagoi, M. Bennai, P.K. Sahoo, Nucl.

Phys. B 990, 116158 (2023)
80. G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009)
81. C.G. Böhmer, A. Mussa, N. Tamanini, Class. Quantum Gravity

28, 245020 (2011)
82. Y.-F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, Rep.

Prog. Phys. 79, 106901 (2016)
83. K. Dev, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002)
84. A.I. Sokolov, JETP 79, 1137 (1980)
85. P.B. Jones, Astrophys. Space Sci. 33, 215 (1975)
86. R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972) (Erratum Phys.

Rev. Lett. 29, 823 (1972))
87. R. Kippenhahn, A. Weigert, Stellar Structure and Evolution

(Springer, Berlin, 1990)
88. M.A. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)
89. F. Weber,Pulsars as Astrophysical Observatories for Nuclear and

Particle Physics (IOP Publishing, Bristol, 1999)
90. S.L. Liebling, C. Palenzuela, Living Rev. Relativ. 15, 6 (2012)
91. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)
92. S. Karmarkar et al., Pramana, J. Phys. 68, 881 (2007)
93. B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)
94. M.K. Mak, T. Harko, Phys. Rev. D 70, 024010 (2004)
95. M.K. Mak, T. Harko, Int. J. Mod. Phys. D. 13, 149 (2004)
96. K.V. Staykov, S.S. Yazadjiev, Static and Slowly Rotating Neutron

Stars in R2 Gravity, 3rd National Congress on Physical Sciences,
29 Sep.–2 Oct. 2016, Sofia

97. K.V. Staykov, D.D. Doneva, S.S. Yazadjiev, K.D. Kokkotas, Neu-
tron and strange stars in R-squared gravity, The Fourteenth Marcel
Grossmann Meeting, pp. 1557–1562 (2017)

98. K. Destounis, K.D. Kokkotas, Gen. Relativ. Gravit. 55, 123 (2023)
99. H. Sotani, K.D. Kokkotas, N. Stergioulas, A&A 676, A65 (2023)

100. H. Sotani, K.D. Kokkotas, Phys. Rev. D 95, 044032 (2017)
101. H. Sotani, K.D. Kokkotas, Phys. Rev. D 97, 124034 (2018)
102. J.L. Blázquez-Salcedo, Z.A. Motahar, D.D. Doneva, F.S. Khoo, J.

Kunz, S. Mojica, K.V. Staykov, S.S. Yazadjiev, Eur. Phys. J. Plus
134, 46 (2019)

103. K.V. Staykov, D.D. Doneva, S.S. Yazadjiev, Eur. Phys. J. C 75,
607 (2015)

104. R. Belvedere, J.A. Rueda, R. Ruffini, Astrophys. J. 799, 23 (2015)
105. V.K. Oikonomou, Class. Quantum Gravity 40, 085005 (2023)

123



603 Page 16 of 16 Eur. Phys. J. C (2024) 84 :603

106. V.K. Oikonomou, Class. Quantum Gravity 38, 175005 (2021)
107. W. Sun, D. Wen, J. Wang, Phys. Rev. D 102, 023039 (2020)
108. L. Baskey, S. Ray, S. Das, S. Majumder, A. Das, Eur. Phys. J. C

83, 307 (2023)
109. A.V. Astashenok, S. Capozziello, S.D. Odintsov, V.K.

Oikonomou, Phys. Lett. B 811, 135910 (2020)
110. G.G.L. Nashed, S. Capozziello, Eur. Phys. J. C 80, 969 (2020)
111. L. Herrera, Phys. Lett. A 165, 206–210 (1992)
112. D. Pavon, B. Wang, Gen. Relativ. Gravit. 41, 1–5 (2009)
113. B.E. Panah, H.L. Liu, White dwarfs in massive gravity.

arXiv:1805.10650 [gr-qc]
114. H. Abreu et al., Class. Quantum Gravity 24, 4631 (2007)
115. H. Bondi, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 281,

39 (1964)
116. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265,

533 (1993)
117. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 24, 51 (1975)
118. B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravita-

tional Theory and Gravitational Collapse (University of Chicago
Press, Chicago, 1965)

119. Ya..B.. Zeldovich, I.D. Novikov, Relativistic Astrophysics Stars
andRelativity, vol. 1 (University of Chicago Press, Chicago, 1971)

120. R.C. Tolman, Phys. Rev. 55, 364 (1939)

121. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)
122. H. Andreasson, C.G. Böhmer, A. Mussa, Class. Quantum Gravity

29, 095012 (2012)
123. G. Böhmer, T. Harko, Class. Quantum Gravity 23, 6479 (2006)
124. B.V. Ivanov, Phys. Rev. D 65, 104001 (2002)
125. P. Bhar, A. Errehymy, S. Ray, Eur. Phys. J. C 83, 1151 (2023)
126. M. Bejger, P. Haensel, Astron. Astrophys. 396, 917 (2002). Arxiv:

astro-ph/0209151
127. K.V. Staykov, D.D. Doneva, S.S. Yazadjiev, K.D. Kokko-

tas, Slowly rotating neutron and strange stars in R2 gravity.
arXiv:1407.2180
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