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Abstract We apply the generalised Komar method pro-
posed in [arXiv:2208.05494] to Taub-NUT-AdS spacetime
in the theory of Einstein gravity plus a cosmological con-
stant. Based on a generalised closed 2-form, we derive the
total mass and NUT charge of the Taub-NUT-AdS space-
time. Together with other thermodynamic quantities calcu-
lated through standard method, we conform the first law and
Smarr relation. Then, we consider charged AdS NUT space-
times in Einstein–Maxwell theory with a cosmological con-
stant, and show that the generalised Komar method works,
too. We obtain all the thermodynamic quantities, and the first
law and Smarr relation are checked to be satisfied automati-
cally.

1 Introduction

Taub-NUT spacetime, constructed in the middle of last cen-
tury [1,2], is one of the the simplest generalization of the
Schwarzschild metric. It adds a time bundle, parameterized
by the NUT parameter n, over the round two-sphere, there-
fore preserving the SU (2) ∼ SO(3) isometry group of the
Schwarzschild metric. Despite its simplicity, (much simpler
than the Kerr metric,) the physical interpretation of the Taub-
NUT metric has been controversial. The metric is not asymp-
totic to Minkowski, but to locally flat spacetime instead.
In addition, it contains two more Killing horizons at the
south and north poles respectively, giving rise to a global
string-like singularity, which is called Misner string [3]. For
these reasons, people’s interest in the Taub-NUT metric is
largely in the Euclidean signature, where, for appropriate
parameter choice, it belongs to a class of Gibbons–Hawking
gravitational instantons [4], which play an important role
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of Wheeler’s spacetime foam proposal of quantum gravity
[5,6].

However, the Taub-NUT spacetime in Lorentzian signa-
ture has remained tantalizing. The NUT parameter is a contin-
uous parameter, and hence its deviation from the Minkowski
spacetime in the asymptotic infinity region can be arbitrarily
small. Therefore astrophysical observations can only con-
strain its upper bound, but cannot completely rule it out. The
Misner string singularity can be rendered by imposing a peri-
odic condition on the time coordinate such that the Misner
string becomes a pure gauge and hence nonphysical [3], but
naked closed time-like curve is certainly undesirable. It was
shown that it is not necessary to impose the time periodic con-
dition, since the Taub-NUT spacetime is geodesically com-
plete even at the presence of the misner string [7,8]. In this
work, we shall therefore not impose the periodic condition
on time, but treat the time coordinate as real line, and thus
the Misner strings remain physical. However, the absence of
Minkowski asymptotic region and the existence of Misner
string however imply that we cannot use the ADM formal-
ism to calculate the mass (or energy), which is an important
parameter of any spacetime.

It is thus an important topic to determine the energy and
understand the physical meaning of the NUT parameter. The
NUT parameter n is sometimes controversially viewed as a
magnetic dual of the mass parameter m [9–11]. The Taub-
NUT spacetime has an event horizon, as in the case of the
Schwarzschild black hole; it is therefore called Taub-NUT
black hole. One expects there should be a black hole thermo-
dynamic first law, which involves not only the mass, temper-
ature and entropy, but also the NUT charge and its thermo-
dynamic potential. The Wald formalism implies that there
must be a first-order differential relation involving TdS,
but it does not tell how to read off independently the mass,
NUT charge and its thermodynamic potential [12,13]. Vari-
ous results have been proposed, but the answer is not unique
[14–21,28]. In [22–27], more than one conserved charges
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associated with NUT parameter n were introduced. Many
proposals treated the mass parameter m as the total mass
of the spacetime [29–32]; however, for non-vanishing n, the
value of m can be arbitrarily negative and yet event horizon
exists. Even for the AdS spacetime, it is well known that the
mass can be negative in the asymptotic AdS spacetime, but
it must satisfy the Breitenlohner-Freedman bound [33]. A
definition of mass that allows an arbitrarily negative value is
clearly unsatisfactory.

These two problems were resolved by a new proposal for
Taub-NUT spacetime in Einstein gravity theories without
cosmological constant [34]. All the thermodynamic quanti-
ties can be calculated independently from the the first law,
and yet the first law is satisfied. In this paper, we generalize
the proposal of [34] to include a negative cosmological con-
stant, so that the resulting spacetime is asymptotic to locally
(anti-de Sitter) spacetime with Misner string. The spacetime
can be called Taub-NUT-AdS black hole. The motivation is
threefold. One is that the spacetime metric exists and is suffi-
ciently simple and hence it is worth some effort to understand
it. Another motivation is to test whether the proposal of [34]
is applicable for the asymptotically locally AdS spacetime.
The third is related to the AdS/CFT correspondence. The CFT
dual of the Misner string that exists in the bulk is certainly
an intriguing, but it requires us to determine the mass of the
Taub-NUT-AdS black hole, which is related to the conformal
dimension of the dual physical operator.

In Sect. 2, we consider Taub-NUT-AdS solutions in Ein-
stein gravity plus a cosmological constant. We generalised
the closed Komar form of pure Einstein gravity, and then find
that the method works for Einstein gravity with a cosmolog-
ical constant. All the thermodynamic variables are derived
and the first law is checked to be satisfied. In Sect. 3, we go a
step further to consider charged Taub-NUT-AdS spacetime in
Einstein–Maxwell theory with a cosmological constant, and
not surprisingly, we find the method works, too. We conclude
our results in Sect. 4.

2 Taub-NUT-AdS

We consider Taub-NUT solution in Einstein gravity theory
with cosmological constant in four dimensional spacetime,
the Lagrangian is simple

L = √
g(R − 2�), (1)

and the Taub-NUT-AdS solution is given by [7,35]

ds2
(4)

= − f (dt + 2n cos θdφ)2

+dr2

f
+ (r2 + n2)(dθ2 + sin θ2dφ2), (2)

with

f = r2 − 2mr − n2

r2 + n2 − 3n4 − 6n2r2 − r4

l2(r2 + n2)
. (3)

Hereafter, we set � = − 3
l2

. The solution has two integration
constants, mass parameter m and NUT parameter n, l is a
constant which is related to the cosmological constant �.
When the NUT parameter n vanishes, the solution goes back
to Schwarzschild-AdS black hole.

The Taub-NUT-AdS black hole has an event horizon at
r+, which is the largest root of f (r) = 0. Note that such
a positive root exists for arbitrarily negative m, when the
parameter n is non-vanishing. The temperature and entropy
can be obtained through the standard method, given by

T = 1

4πr+

(
1 + 3(r2+ + n2)

l2

)
, S = π(r2+ + n2). (4)

However, it is far trickier to determine the rest of the ther-
modynamic variables. The metric is not asymptotic to the
AdS spacetime owing to the NUT parameter n. Therefore,
we cannot use the ADM procedure to determine the mass.
The Wald formalism provides a first-order relation among
the integration constants and the horizon data, but by itself
without additional input, it cannot parse the parameters and
define definitely the thermodynamic valuables.

We therefore adopt the Komar integration method associ-
ated with a Killing vector to derive the conserved quantities.
For example, for the time like Killing vector ξ = ∂t , we
can define Komar 2-form Q[∂t ] = ∗dξ . For Einstein pure
gravity, Q[∂t ] is a close 2-form, satisfying dQ[∂t ] = 0. It
therefore contains a “conserved charge” that can be read off
by integrating over any closed surface encircling the source,
analogous to read off the electric charge from the Gauss the-
orem using the Stoke’s theorem, namely namely

M ∼
∫

�

Q[∂t ], (5)

When matter is involved, we no longer have simply dQ[∂t ] =
0. (Note the similarity of this to vacuum Maxwell equa-
tion d∗d A = 0 and the corresponding charge formula
Q ∼ ∫

�
∗d A.) The closure of the Komar 2-form requires

us to generalize to include the matter contribution. In many
examples of Einstein gravity, with minimally coupled matter,
the matter’s back reaction to the metric falls off faster than
the graviton mode, we can therefore still use the unmodi-
fied Komar 2-form Q[∂t ] = ∗dξ to calculate the mass, as
long as we push the surface � in (5) to asymptotic infin-
ity, i.e. r → ∞. This provide the most convenient way to
calculate the mass in for asymptotic Minkowsky geometry.

When the spacetime involves Misner geometry, the appli-
cation of the Stoke’s theorem becomes subtler, since the
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boundaries of regular spacetime now include the infinitesi-
mal tubes that encompass the Misner string that extend from
north (south) pole to asymptotic infinity, in addition to the
spherically boundary at r → ∞. Thus � in (5) consists not
only the asymptotic 2-sphere, but also the tubes. Since the
tubes are non local, extending from the north (south) poles
to asymptotic infinity, the matter contribution that ensure the
closure, dQ[∂t ] = 0, cannot be ignore. Thus when we apply
the Komar integration over Taub-NUT geometry, we have
to generalize the usual Komar integration: (1) Contribution
from the matter fields, including the cosmological constant,
should be carefully included. (2) The contribution from the
infinitesimal tubes associated with the Misner string has to
be included. The technique detail was developed in [34], and
we shall not repeat here.

One important property of the Taub-NUT geometry is that
there is a symmetry or correspondence between the radial
and latitude coordinates (r, u = cos θ). It was shown that the
mass from (5) can be understood that for appropriate gauge
choice, the Komar 2-form can be written as Q[∂t ] ∼ M�(2),
where �(2) is the radially-independent surface 2-form that
depends only on θ and longitudinal φ. This leads to consider
an alternative gauge choice such thatQ[∂t ] ∼ QN �̃(2), where
�̃(2) is θ independent surface that depends only on φ and r ,
running from horizon to asymptotic infinity. This naturally
leads to an additional charge, called NUT charge QN by

QN ∼
∫

�̃

Q[∂t ], (6)

where �̃ can be any latitudinal θ -independent surface. Thus
both mass and NUT charge (M, Q) are derived from the
same closed Komar 2-formQ[ξ ] associated with the timelike
Killing vector ξ = ∂t . Note that in the case of black holes
with no Misner strings, one simply gets QN = 0.

An additional justification for this approach was by the
comparison between the null Killing vector on the horizon
and degenerate Killing vectors at the north and south poles
in Kerr-Taub-NUT metrics. They are

ξ = ∂t + 	∂φ, l± = ∂φ ∓ 2n∂t . (7)

This, together with the symmetry of the coordinates r ↔
cos θ in the Kerr-Taub-NUT metric strongly suggests the cor-
respondence:

t ↔ φ, 	 ↔ n. (8)

In other words, the NUT charge is analogous to the angular
momentum, but derived from timelike Killing vector. Specif-
ically, if we view the angular momentum J as the radially-
conserved quantity from the generalized Komar integration

ofQ[∂φ] at constant t-slice, then QN is the θ -conserved quan-
tity fromQ[∂t ] at constant φ-slice. It is important to note that,
a priori, the thermodynamic quantities we derived through
Komar integration and the degenerate Killing vectors may
not necessarily satisfy the first law, but it turns out that they
do.

We now apply the above method to the Taub-NUT-AdS
spacetime, the key task is to find the closed form. Owing the
cosmological constant �, for ξ = ∂t , we have

−d∗dξ = −2�∗ξ . (9)

We can see d∗dξ is proportional to cosmological constant,
and vanishes for pure Einstein gravity where � = 0. Thus
when there are cosmological constant, the closed 2-form
Q[ξ ] is not simply −∗dξ , but needs to be modified. To find
this modification, we note

−∗dξ = V (r)	(2) +U (r)dr ∧ (dt + 2n cos θdφ),

	(2) = sin θdθ ∧ dφ, (10)

with U, V are

V = (r2 + n2) f ′, U = 2n f

r2 + n2 . (11)

Thus

−d ∗ dξ = (V ′ + 2nU ) sin θdr ∧ dθ ∧ dφ

= −2�
(
n2 + r2

)
sin θdr ∧ dθ ∧ dφ. (12)

Assuming there exists such a 2-form ω, whose Hodge dual
takes the similar form as ∗dξ , the symmetry dictates that the
modification must take the form

∗ω = Ṽ (r)	(2) + Ũ (r)dr ∧ (dt + 2n cos θdφ), (13)

so that the combination of ∗(−dξ + ω) is closed, namely

d∗(−dξ + ω) = 0. (14)

Therefore, we must have

(Ṽ + V )′ + 2n(Ũ +U ) = Ṽ ′ + 2nŨ − 2�(r2 + n2) = 0.

(15)

We can now define the generalized Komar 2-form associated
with ξ = ∂t :

Q[∂t ] = ∗(−dξ + ω)

= (V + Ṽ )	(2) + (U + Ũ )dr ∧ (dt + 2n cos θdφ).

(16)
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It is worth pointing out that the (Ũ , Ṽ ) can not be uniquely
fixed through the above condition. It is easily seen that a 2-
formλ, which satisfiesd∗λ = 0, can be added intoQ, without
changing the closure condition. As is shown in [21,37], a
proper gauge choice is required to produce the consistent
mass.

To read off the conserved quantities from the closed
Komar 2-form Q[∂t ], we note that Q[∂t ] = Q1 +Q2, namely

Q1 = (U + Ũ )dr ∧ dt,

Q2 = (V + Ṽ )	(2) + 2n(U + Ũ )dr ∧ cos θdφ, (17)

with dQ1 = 0 = dQ2. In other words, the constant t-slice
of Q[∂t ] gives rise to Q2 and constant φ-slice gives rise to
Q1. It is now clear that Q1 part gives rise to the θ -conserved
NUT charge (6). By choosing an appropriate gauge, Q2 part
gives the r -independent mass (5), since we have

Q2 =
(
V + Ṽ − 2n

∫ r

r+
(U + Ũ )

)
	2 + dλ, (18)

for appropriate λ. The closure of the 2-form ensures that
the coefficient of 	2 is independent of the radial variable r ,
giving rise to an r -conserved quantity.

In the above integration over the 2-form, the integration
over Killing directions of (φ, t) is trivial. The nontrivial part
is the integration over the 1-form associated with the coordi-
nate (r, θ).

Now, back to the specific Taub-NUT-AdS case, the inte-
gration of U is divergent, thus, our strategy for the choice of
Ũ is that the divergent term of U can be cancelled by Ũ and
furthermore, no additional contributions from Ũ emerges.
This leads to

Ũ = (−2n
f (r)

r
)′. (19)

Note that the function f (r)/r vanishes on the horizon. The
Ṽ is thus given by

Ṽ = 4n2 f

r
− 6

l2
(
r3

3
+ n2r). (20)

The NUT charge, as the θ -conserved quantity, can be calcu-
lated from the constant φ-slice. We find

QN =
∫ ∞

r+
(U + Ũ )dr = n

r+
(1 + 3(n2 − r2+)

l2
). (21)

Note that for the metric to be absent from Misner strings, one
needs to impose a periodic condition and the integration

∫
dt

gives a finite value. For Taub-NUT-AdS black holes, the time
is taken to be a real number; therefore, QN can be interpreted
as a growth rate quantity.

For constant t slice, the Komar 2-form reduces to Q2,
which yields the r -conserved quantity, namely the total mass
of the Taub-NUT-AdS spacetime

M =
∫
dφ

8π

( ∫ π

0
(V (r) + Ṽ (r)) sin θdθ

−
∫ r

r+
2n cos θ(U (r ′) + Ũ (r ′))

∣∣∣θ=π

θ=0
dr ′)

= m + n2

r+
(1 + 3(n2 − r2+)

l2
). (22)

We therefore have the mass and NUT-charge relation:

M = m + 2�N QN . (23)

When letting n → 0, the mass returns to the result of
Schwarzschild mass, which gives a strong support for the
correctness of our method.

In the literature, some people advocate that the mass is
M = m via the conformal completion or holographic ten-
sor, but in this situation the mass can be negative due to the
mass parameterm can be arbitrarily negative while still main-
taining the event horizon. At the first looking, the mass we
derived through generalised Komar integration (22) can be
negative for large r+ due to the −r2+ term. However, if we
eliminate the m by using f (r+) = 0, we get

M = 3n4 + r4+
2l2r+

+ n2 + r2+
2r+

, (24)

which is obviously nonnegative.
In the AdS case, the form of the Killing vector on the

south and north pole are not changed, thus the NUT potential
remains the same as that of Einstein gravity

�N = n

2
. (25)

At this stage, the first law can be checked and turns out to be
satisfied

δM = T δS + �N δQN . (26)

The first law can also be generalised by taking the cosmo-
logical constant � as a thermodynamic quantity P = 3

8πl2
,

and the corresponding thermodynamic volume is

V = 4π

3
r3+(1 + 3n2

r2+
). (27)

Interestingly, the thermodynamical volume is the same as
that in [36].

The first law is then given by

δM = T δS + �N δQN + V δP. (28)
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As shown in [34], the Smarr relation can be obtained by
using dQ = 0

1

8π

∫
�

Q[ξ ] = 1

4

[
(V + Ṽ )|∞r+ +

∫ ∞

r+
2n(U (r ′) + Ũ (r ′))dr ′]

= 1

4

[
V |∞r+ +

∫ ∞

r+
(2nU (r ′) + 2�(r ′2 + n2))dr ′] = 0.

(29)

The second line is obtained by using the integrability condi-
tion (15), and it is worth pointing out that it is not necessary
to make a definite choice for (Ũ , Ṽ ) to get the Smarr formula
from dQ = 0. Explicitly, in the infinity we get

V +
∫

2n(U (r) + 2�(r2 + n2))dr)|r→∞ = 2m, (30)

whilst, on the horizon

(V +
∫

2n(U (r ′) + 2�(r ′2 + n2))dr ′)|r+
= 4T S − 4PV − 4�N QN . (31)

Then putting them together, we get the exact form of Smarr
relation of Taub-NUT-AdS spacetime

M = 2(T S − PV ), (32)

the NUT charge and potential don’t contribute directly to the
Smarr formula as the same as that in Einstein gravity. The
Gibbs free energy is

F = M − T S − �N QN = m

2
− 1

2l2
(
3n2r+ + r3+

)
, (33)

which is consistent with Euclidean action [36].
So far, we consider the Taub-NUT solution with sym-

metrically distributed Misner strings. Our method can easily
be generalised to the asymmetric case. The solution with
asymmetric Misner strings can be obtained through a linear
coordinate transformation

t → t − 2nαφ, φ → φ, (34)

where the parameter α is a real constant. Then the Killing
vectors at the north and south pole change to

l± = ∂φ ∓ 4�±
N ∂t , �±

n = 1

2
n(1 ± α). (35)

And thus the distribution of Misner strings affect the NUT
potential, too. When α = 0, the Misner strings are symmetric
and the north and south poles are in the equal foot. When
α = 1, the Misner string only emerges at the south pole,
whilst α = −1 disappears at the south pole.

Though, the NUT potential has a direct contribution from
α, the rest thermodynamical quantities, mass, NUT charge,

temperature and entropy are not modified by α. The first law
becomes

δM = T δS + �+
N δQ+

N + �−
N δQ−

N , (36)

where the NUT charge at south and north poles are the same

Q±
N = n

2r+
(1 + 3(n2 − r2+)

l2
). (37)

Since Q±
N are the same, the parameter α in the last two terms

�+
N δQ+

N +�−
N δQ−

N of the first law will cancel out, and α will
not appear in the first law. Note that there is a factor 2 in the
denominator of NUT charges. When α = 0, the south and
north poles have the same NUT potential �±

N = �N , thus the
south and north pole NUT charges can be recognized as the
same class, and they can be summed as a whole NUT charge
Q+

N + Q−
N = QN , then we recover results of the symmetric

distributed Misner strings.

3 Dyonic Taub-NUT-AdS

In this section we generalise the method to charged case in
theory of Einstein-Maxwell gravity with a cosmological con-
stant

L = √
g(R − 2� − F2), (38)

where F = d A. The solution is

ds2
(4)

= − f (dt+2n cos θdφ)2+dr2

f
+(r2+n2)(dθ2+sin θdφ2),

(39)

with

f = r2 − 2mr − n2 + e2 + g2

r2 + n2 − 3n4 − 6n2r2 − r4

l2(r2 + n2)
, (40)

and the Maxwell field is

A = −g cos θdφ + (gn + er)(dt + 2n cos θdφ)

r2 + n2 . (41)

The corresponding dual filed is F̃ = dB = ∗F with gauge
potential B given by

B = e cos θdφ − (en − gr)(dt + 2n cos θdφ)

r2 + n2 . (42)

Beyond the mass and NUT parameters (m, n), there exist two
additional integration parameters (e, g) which correspond to
the electric and magnetic charges. The spacetime has an event
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horizon at r = r+, with r+ as the largest root of f (r) = 0.
There exist two other Killing horizons, too, the associated
Killing vectors are the same as the neutral case (7). Thus, we
have the same NUT potential

�N = n

2
. (43)

The temperature and entropy of the charged NUTy space-
time can be obtained through the standard method as before,
and they are given by

T = 1

4πr+
(1+ 3(r2+ + n2)

l2
− e2 + g2

r2+ + n2
), S = π(r2+ +n2).

(44)

Turn to the thermodynamics of the charged NUTy space-
time, we first need to obtain the closed 2-form Q. Without
cosmological constant, the combination in Einstein-Maxwell
theory,

− ∗ dξ − ∗FAλA
λ − ∗F̃ BλB

λ (45)

is closed [34], where ξ is a Killing vector. Again, due to the
inclusion of the cosmological constant, the above combina-
tion is not closed anymore, and thus an additional term is
required as before. Fortunately, the recipe is the same as the
case in the previous section, too. We find that

Q[ξ ] = − ∗ dξ − ∗FAλA
λ − ∗F̃ BλB

λ + ∗ω (46)

is closed, with

∗ω = Ṽ (r)	(2) + Ũ (r)dr ∧ (dt + 2n cos θdφ), (47)

and Ũ ,Ṽ are under constraint

Ṽ ′ + 2nŨ − 2�(r2 + n2) = 0. (48)

It is worth mentioning that the above expression is derived
by using equation of motions and the constraint (Ũ , Ṽ ) is
the same as that of the previous section. Therefore, they are
again given by (19) and (20), since the metric of the dyonic
solution takes the same form as the neutral one.

With the generalised Komar 2-form Q of (46), we follow
the same procedure and obtain the mass and NUT charge

M =
∫
dφ

8π

( ∫ π

0
(V (r, θ) + Ṽ (r, θ))dθ

−
∫ r

r+
2n cos θ(U (r ′, θ) + Ũ (r ′, θ))

∣∣∣θ=π

θ=0
dr ′)

= m + n2

r+
(1 − 3(r2+ − n2)

l2
− e2 + g2

r2+ + n2
),

QN = n

r+
(
1 − 3(r2 − n2)

l2
− e2 + g2

r2+ + n2

)
. (49)

It can be verified that the relation (23) between the mass and
NUT charge continues to holds.

The equation of motion of the 2-form Maxwell field
strength and its Bianchi identity are d∗F = 0 and dF = 0
respectively. We can therefore extract the conserved quanti-
ties exactly the same one as we have done with the general-
ized Komar 2-form Q[ξ ]. This leads to the standard electro-
magnetic charges, as well as NUT-induced charges, follow-
ing the prescription of [34]. We find that the electromagnetic
charges are

Qe = −1

2

( ∫ π

0
F̃θφ(r, θ ′)dθ ′ −

∫ r

r+
F̃rφ(r ′, θ)

∣∣θ=π

θ=0 dr
′)

= −1

2
Bφ(r+)

∣∣θ=π

θ=0

= e + 2n
gr+ − en

r2+ + n2
,

Qg = 1

2
(

∫ π

0
Fθφ(r, θ ′)dθ ′ −

∫ r

r+
Frφ(r ′, θ)

∣∣θ=π

θ=0 dr
′)

= 1

2
Aφ(r+)

∣∣θ=π

θ=0

= g − 2n
er+ + gn

r2+ + n2
. (50)

Their electric and magnetic potential are defined by

�e = ξμAμ

∣∣r+∞ = er+ + gn

r2+ + n2
, �g = ξμBμ

∣∣r+∞ = gr+ − en

r2+ + n2
.

(51)

Similar to NUT charge, we can also define NUT-induced
electric and magnetic charges through d∗F = 0 and dF = 0
at the south and north poles

QeN =
∫ ∞

r+
F̃tr dr = 1

2
Bt

∣∣r+∞ = gr+ − en

n2 + r2+
,

QgN =
∫ ∞

r+
Ftrdr = 1

2
At (r+)

∣∣r+∞ = er+ + gn

n2 + r2+
, (52)

and the corresponding potential are defined through the anal-
ogous method of defining the electric and magnetic potentials

�eN = 1

4
lμ(Aμ(θ = 0) + Aμ(θ = π))

∣∣r+∞ = −n(er+ + gn)

n2 + r2+
,

�gN = −1

4
lμ(Bμ(θ = 0) + Bμ(θ = π))

∣∣r+∞ = n(gr+ − en)

n2 + r2+
.

(53)

At this stage, we derived all the thermodynamical quanti-
ties and they are summarized as follow.

T = 1

4πr+
(1 + 3(r2+ + n2)

l2
− e2 + g2

r2+ + n2
), S = π(r2+ + n2),
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M = m + n2

r+
(1 − 3(r2+ − n2)

l2
− e2 + g2

r2+ + n2
),

QN = n

r+
(1 − 3(r2+ − n2)

l2
− e2 + g2

r2+ + n2
), �N = n

2
,

QeN = gr+ − en

r2+ + n2
, �eN = −n(er+ + gn)

r2+ + n2
,

QgN = er+ + gn

r2+ + n2
, �gN = n(gr+ − en)

r2+ + n2
,

Qe = e + 2nQeN , �e = (er+ + gn)

r2+ + n2
,

Qg = g − 2nQgN , �g = (gr+ − en)

r2+ + n2
. (54)

When setting l → ∞, these quantities turn back to the result
of Einstein–Maxwell case without cosmological constant as
expected.

It is worth pointing out that all the thermodynamic quan-
tities were obtained independently without making a refer-
encing to the first law. Therefore, a priori, there is no obvious
reason that they would satisfy the first law. However, it can
be verified that the first law is nevertheless satisfied, namely

δM = T δS + �N δQN + �eδQe + �gδQg

+�eN δQeN + �gN δQgN . (55)

Again, when we treat the cosmological constant as a ther-
modynamical variable, the corresponding thermodynamical
volume can also be derived,

P = 3

8πl2
, V = 4π

3
r3+(1 + 3n2

r2 ). (56)

And the generalised first law is

δM = T δS + V δP + �N δQN + �eδQe

+�gδQg + �eN δQeN + �gN δQgN . (57)

From dQ = 0, we can derive the Smarr relation

M = 2(T S − PV ) + �eQe + �gQg. (58)

The Free energy can be evaluated through the Euclidean
action G = I/β, with β is the inverse of the temperature,
β = 1/T . The full action is given by

I = 1

16π

∫
M
d4x

√
g
(
R + 6

l2
− F2)

+ 1

8π

∫
∂M

d3x
√
h
(K − 2

l
− l

2
R(h)

)
, (59)

where, h is determinant of the induced metric,K is the extrin-
sic curvature and R(h) is the boundary Ricci scalar. Substi-
tuting the solution into the whole action, we can obtain the
free energy

G = m

2
− r+(3n2 + r2+)

2l2

−r+
(
(e2 − g2)(r2+ − n2) + 4egnr+

)
2(r2+ + n2)2

. (60)

This result is consistent with our newly derived thermody-
namical quantities

F = M − T S − �N QN − �eQe − �eN QeN . (61)

Finally, it can be easily checked that the first law has elec-
tromagnetic duality under

e → g, g → −e. (62)

As in the previous section, the method can be easily general-
ized to asymmetric distributed Misner strings, and the results
are similar.

4 Conclusions

Though the Taub-NUT-AdS solution exists for years, the
thermodynamical properties has not been totally understood.
Many works has been done on the first law of Taub-NUT
spacetimes, but there still lack in uniquely deriving the NUT
charge. Recently, a systematic way of defining and calcu-
lating the NUT charge and the total mass of the Taub-NUT
spacetime has been proposed. In this paper, we apply this
method to Taub-NUT-AdS spacetime in Einstein gravity plus
cosmological constants. A key ingredient of this method is to
get a closed 2-form Q. For, pure Einstein gravity, the closed
2-form is just the derivative of Killing vector − ∗ dξ , how-
ever, it is no longer closed for Einstein gravity plus cosmo-
logical constant. To solve this problem, we construct a gener-
alised closed 2-form by introducing an additional term. Then
starting with this generalised 2-form, we obtain the NUT
charge and total mass of Taub-NUT-AdS spacetime. From
our approach to calculate the NUT charge QN , we would
like to think that in the (r, θ, t, φ) coordinates, the Misner
strings carry the NUT charges, distributed along the Minser
strings at north and south poles from r+ to asymptotic infin-
ity. They also contribute to the mass by M = m + 2�N QN ,
such that it is non-negative even though the quantitym can be
arbitrarily negative. Note that the event horizon r+ > 0 can
exist for arbitrarily negative m, associated with the conden-
sation of the massless graviton, it is the Misner string’s addi-
tional contribution to the energy that makes the total mass or
energy positive. Together with the entropy and temperature
which can be derived through standard method, the first law
is checked to be satisfied. The Smarr relation can be obtained
through the closure of the generalised 2-form as usual, and
it is consistent with the first law. All these indicate that our
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global analysis that leads to the independent derivation of all
the thermodynamic variables are correct.

Then, we turn to the Einstein–Maxwell theory with a cos-
mological constant. The same problem, that the usual closed
2-form in Einstein–Maxwell without cosmological constant
is no longer closed, emerges. Fortunately, the recipe for
this problem is similar, too. Especially, the expression of
the additional term needed to construct the new generalised
2-form has the same expression, when written in terms of
metric functions. With this generalised closed 2-form, we
derive the NUT charge and total mass of the spacetime. Since
Maxwell’s equation of motion and Bianchi identity, ∗F(2) and
F(2) are closed, too. We can calculate electric and magnetic
charges through the 2-forms, analogous to the NUT charge,
the NUT-induced charges can also be derived. Finally, we
present all the thermodynamic quantities, the first law and
Smarr relation of the spacetime are indeed satisfied. We cal-
culate the free energy of the system by using the derived
thermodynamic variables and the results are consistent with
that of Euclidean action.

We mainly studied the thermodynamics of the Taub-NUT-
AdS spacetimes, it will have fruitful applications in holog-
raphy, since although the asymptotic region is locally AdS,
we expect that the AdS/CFT correspondence still applies.
As we mentioned in the introduction, the mass of the bulk
spacetime is dual to conformal dimension of the boundary
operator. To treat m as mass, which can be arbitrarily nega-
tive, will certainly not be satisfactory. Our properly derived
mass, which is positive definite, resolve this issue. In the holo-
graphic approach [38,39] the Lloyd’s complexity bound, the
mass of the bulk spacetime gives this upper bound, therefore,
it must be positive. Our proper definition of NUT charge is
the first step towards understanding its physical dual in the
corresponding CFT.
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