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Abstract In this work, we study the perturbative generation
of the gauge invariant effective action for the non-Abelian
gauge field in a (2 + 1)-dimensional spacetime. We present
a detailed analysis of the two, three and four-point func-
tions in order to determine the non-Abelian Chern–Simons
terms (parity odd) and Yang–Mills terms (parity even). More-
over, these terms are supplemented by the higher-derivative
corrections which resulted in the Alekseev–Arbuzov–Baikov
effective action (parity even) plus the higher-derivative (HD)
corrections to the Chern–Simons terms (parity odd). In order
to highlight some features about the perturbative generation
of the effective action, we present a discussion based on the
dimensional analysis, which allows us to establish the gen-
eral structure of the permissible terms to guarantee the gauge
invariance of the higher-derivative parts.

1 Introduction

Undoubtedly, lower dimensional field theory models always
have received considerable attention due to the plethora of
rich phenomena they describe as well as serving as labo-
ratories where we can learn useful things about the well-
recognized four-dimensional problems, ranging from solv-
able models in two dimensions, to planar physics and con-
densed matter in three dimensions.

One can observe that the area of lower dimensional field
theory models had its beginning with the proposals of the
Thirring [1] and Schwinger [2] models as exact solvable
models in (1 + 1) dimensions. This class of models also
displays the important feature of bosonization [3], which has
also been applied in different contexts [4–6]. One can also
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note the interest in two-dimensional gravitational solvable
models of black holes [7].

On the other hand, in condensed matter physics [8–10],
three-dimensional models had its dawn in the 1980’s in the
description of planar phenomena, especially, mass generation
in topological models [11–14], quantum Hall effect [15–18],
topological insulators [19], among others. Moreover, in pla-
nar physics, mainly due to the presence of parity violation
which is responsible to generate a gauge invariant mass term
for the photon, interesting features are present in the photon’s
dynamics.

A powerful tool and important element in uncovering
modifications to quantum field dynamics is the effective
action [20–25]. For the case of the (Abelian and non-Abelian)
gauge field a good amount of attention was the subject of sev-
eral studies, in which the dynamical generation of the effec-
tive action by the radiative correction was considered at zero
temperature (T = 0) framework [14,15,26–28] as well as
at finite temperature case [29–32]. Going beyond the lead-
ing order, we obtain the higher-derivative corrections to the
Chern–Simons term, which are known to modify the physical
propagating modes. These contributions appear in the pertur-

bative expansion of the effective action in terms of ( p2

m2 ) in the
large fermion mass limit (m � p), which were considered in
the full Abelian action [14,33], also in the noncommutative
framework [26].

Interestingly, the presence of higher derivative terms
change the physical behavior of three dimensional field the-
ories. In the case of topologically massive gravity, the addi-
tional (ghost) degree of freedom is eaten by the conformal
invariance [12]. On the other hand, in the case of (higher
derivative) extended Chern–Simons theory, it is no longer
sensitive to “large” gauge aspects present in the CS model, it
is no longer topological but depends explicitly on the back-
ground geometry [14].
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Although many aspects of the three-dimensional Yang–
Mills Chern–Simons theory are well established [34–36], we
wish to explore the issue of dynamical generation of higher-
derivative terms and couplings to the Yang–Mills Chern–
Simons theory. We follow the effective action approach
because all of the generated terms are well-defined and gauge
invariant. In the parity even sector, it is expected to obtain
the known Alekseev–Arbuzov–Baikov terms [23,37], while
in the parity odd sector we should get the usual Deser–Jackiw
term [14] plus corrections to the (novel) cubic self-coupling.

Hence, our goal is to examine the perturbative generation
of higher-derivative terms in the three-dimensional Yang–
Mills Chern–Simons theory. Moreover, in order to clarify
some aspects about the effective action, we consider two
types of matter fields, fermionic and scalar fields. We start
our study by considering the interaction between the gauge
and fermionic fields in Sect. 2, in which we evaluate the
higher-derivative terms up to the 4-point function contribu-
tions to the effective action, which have parity odd and parity
even sectors. Furthermore, in Sect. 3, we consider the effec-
tive action arising from the coupling between the gauge and
scalar fields, which does not present parity odd terms due to
the coupled scalar field. Also,we shall see that the parity-even
terms have different coefficients than the fermionic counter-
part. In Sect. 4, we discuss, by means of complementarity,
the general structure of higher-derivative terms allowed by
gauge invariance using a dimensional analysis procedure,
both parity-even and parity-odd sectors are examined. We
present our final remarks and perspectives in Sect. 5.

2 Fermionic matter coupled to the non-Abelian gauge
field

In this section, we consider the fermionic matter minimally
coupled to an external non-Abelian gauge field. The relevant
action is described by the following

SF =
∫

d3x �̄
(
i /D − m

)
�, (2.1)

where Dμ = ∂μ − igGa
μT

a is the covariant derivative. Also,
Ga

μ are the gauge fields and T a are the SU (N ) generators.
The one-loop effective action �eff for the gauge field is read-
ily obtained by integrating out the fermionic fields as below

ei�eff [G] =
∫

Dψ̄Dψ ei SF . (2.2)

Applying the usual grassmann Gaussian functional integra-
tion formulas, the 1PI effective action can formally be written
as a perturbative series1

1 It should be realized the presence of a normalization factor here in
order to satisfy �eff [0] = 1, but we omit it for the simplicity of notation.

�eff [G] = −iTr ln
(
i /D − m

)

= −
N2−1∑
a=1

∞∑
n=1

gn

n
Tr

[( 1

i /∂ − m

)
/GaT a

]n
, (2.3)

here, the trace Tr is a sum over both Dirac (Tr ) and color (tr)
indices2

Also, the effective action (2.3) is equivalent to the follow-
ing form

�eff [G] =
∞∑
n=1

∫
d3x1 . . .

∫
d3xn Gμ1

a1
(x1) . . . Gμn

an (xn)

×�a1...an
μ1...μn

(x1, . . . , xn) , (2.4)

in which �
a1...an
μ1...μn (x1, . . . , xn) represents the n-point func-

tion of the non-Abelian gauge field with the minimal coupling
to the fermionic matter. From a diagrammatic point of view,
it includes the one-loop graphs contributing to the gauge field
n-point functions which are considered as

�eff [G] = Seff [G] + Seff [GG]
+Seff [GGG] + Seff [GGGG] + · · · . (2.5)

In order to examine the terms of interest in the effective
action (the Chern–Simons and Yang–Mills terms, as well
as its higher-derivative corrections), we shall now proceed in
evaluating explicitly the one-loop contributions of (2.4) for
two, three and four-point function of the gauge field. Here,
we remark that the first term of the series (2.4), correspond-
ing to the one-point function (tadpole contribution), vanishes
due to the traceless property of the SU (N ) generators i.e.
Seff [G] = 0. After this, we set N = 3 in our detailed analy-
sis which yields the one-loop effective action for the gluons.

2.1 GG-term contribution

Let us start with the n = 2 contribution of the series
(2.4) which corresponds to the free part of the gluon effec-
tive action. The Feynman amplitude of the one-loop graph,
depicted in Fig. 1, is explicitly given by the following expres-
sion

�ab
μν(p) = −g2

∫
d3k

(2π)3

Tr
[
γμ(/k + /p + m)γν(/k + m)

]
(k2 − m2)((k + p)2 − m2)

×tr
(
T aT b

)
. (2.6)

2 For the first time, Dyson realized that the number of diagrams of n-th
order typically increases as n!, which suggested that the perturbation
series is divergent [38]. A useful mathematical technique for handling
the divergent series is the Borel summation to improve the convergence
of the series. Moreover, as we know, interchanging the order of a double
sum is permissible when the double summation converges absolutely,
but, here is not the case. Nevertheless, we use a suitable regularization
method to allow us for interchanging the double summation [39–41].
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Fig. 1 Fermionic one-loop
graph contributing to GG-term

With help of the trace identities in 1 + 2 dimensions [12]

Tr(γ μγ ν) = 2ημν, Tr(γ μγ νγ ρ) = 2iεμνρ,

Tr(γ μγ νγ ργ σ ) = 2(ημνηρσ − ημρηνσ ημσ ηνρ), (2.7)

and tr(T aT b) = 1
2δab, as well as dimensional regularization,

in the low-energy limit, p2 � m2, we have

�ab
μν(p) = g2δab

[
i

24πm

(
pμ pν − p2ημν

)
− 1

8π
εμνρ p

ρ + O(m−2)

]
,

(2.8)

which clearly satisfies the Ward identity pμ�ab
μν(p) = 0.

It should be noted that the first term (parity even, orders
m−1,m−3,...) leads to the kinetic term of the Yang–Mills
action, while the second term (parity odd, orders m0,m−2,...)
leads to the kinetic term of the non-Abelian Chern–Simons
action.

Moreover, we can cast the expression (2.8) in terms of the
effective action

SYM
eff [GG] = − ig2

48πm

∫
d3xGa

μ(x)
(−�ημν +∂μ∂ν

)
Ga

ν (x),

(2.9)

SCS
eff [GG] = ig2

16π

∫
d3xεμνρGa

μ(x)∂νG
a
ρ(x). (2.10)

In the next to leading order, which includes the higher-
derivative corrections to the GG-term, we find the HD con-
tributions to the kinetic parts of YM and CS terms as below

�ab
μν(p)

∣∣∣
HD-CS

= g2δab

96πm2 εμρν p
ρ p2 + O(m−4), (2.11)

�ab
μν(p)

∣∣∣
HD-YM

= − ig2δab

240πm3

(
p2ημν − pμ pν

)
p2+O(m−5).

(2.12)

Here, we observe the presence of an additional p2 (or �)
factor in the effective action. This is an expected structure,
because it preserves the symmetries of the theory.

2.2 GGG-term contribution

Based on the perturbative expansion (2.4), there are two
diagrams contributing to the three-point function, these are
depicted in Fig. 2. The relevant amplitude is given by

Fig. 2 Fermionic one-loop graphs contributing to GGG-term

�abc
μνσ

∣∣∣
(a+b)

= g3
∫

d3k

(2π)3

Tr
[
γμ (/k − /s + m) γν (/k + m) γσ (/k + /r + m)

]
(k2 − m2)((k + r)2 − m2)((k − s)2 − m2)

×
[
tr

(
T aT bT c

)
− tr

(
T aT cT b

)]
. (2.13)

According to the properties of SU(3) generators

tr
(
T aT bT c

)
= 1

4
(dabc + i f abc), (2.14)

in which f abc and dabc are the anti-symmetric and symmetric
parts of the structure constants, respectively.

Using the trace of Dirac matrices properties and dimen-
sional regularization to compute the momentum integrals, we
obtain

�abc
μνσ

∣∣∣
(a+b)

= −g3 f abc

24πm

[
ημσ (r − p)ν + ημν (p − s)σ

+ησν (s − r)μ
] + ig3

8π
f abcεμνσ + O(m−2).

(2.15)

The first part (parity even) of Eq. (2.15) is exactly the ver-
tex coefficient of three gluons in the Yang–Mills theory and
the second part (parity odd) is related to the non-Abelian
Chern–Simons action, which are proportional to m−1 and
m0, respectively.

By considering (2.10) and the parity odd part of (2.15),
we observe that both contributions are of order m0. Thus,
by combining them, we have the functional action for the
ordinary non-Abelian Chern–Simons theory

�CS
eff

∣∣∣O(m0)
∝ g2

m0

∫
d3x εμνσ

×
[
Ga

μ(x)∂νG
a
σ (x) + ig

3
f abcGa

μ(x)Gb
ν(x)G

c
σ (x)

]
,

(2.16)
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or equivalently

�CS
eff

∣∣∣O(m0)
∝ 2g2

m0

∫
d3x εμνσ tr

[
Gμ(x)∂νGσ (x)

+2g

3
Gμ(x)Gν(x)Gσ (x)

]
, (2.17)

which is invariant under the infinitesimal gauge transforma-
tions, δGμ = ∂μλ − i[Gμ, λ].

It is remarkable that in the Abelian case the amplitude of
the graphs contributing to the photon’s 3-point function in
(2.13) cancel each other, and hence, the charge conjugation
(C) symmetry of QED is also preserved at one-loop level,
the Furry’s theorem. In QED, this theorem is satisfied at any
order through the following identity

〈�∣∣T [ jμ1(x1) · · · jμ2n+1(x2n+1)]
∣∣�〉 = 0. (2.18)

The proof of this identity is easily shown by inserting the
charge conjugation operator C as C†C = 1, as well as using
the fact that C jμC† = − jμ and the (vacuum state) invariance
C

∣∣�〉 = ∣∣�〉. On the other hand, in the non-Abelian case, as
we observe in (2.15), the relevant amplitude for the vacuum
expectation value of 3 currents does not vanish. In fact, the
main reason for this non-vanishing amplitude refers to the
properties of the symmetric group generators. To illuminate
this point, we remember the behaviour of the SU (3) current,
Jaμ = ψ̄γμT aψ under the charge conjugation (C) in a usual
SU (3) gauge theory [42], as below
(
Jaμ

)C = ψ̄(x)γμ(−T a)tψ(x), (2.19)

here, (T a)t is the transpose of T a . As we observe, the gener-
ators T a are replaced by (−T a)t in the conjugate represen-
tation which satisfy the following commutation relation
[
(−T a)t , (−T b)t

] = i f abc(−T c)t , (2.20)

which is a closed algebra. The generators T 1, T 3, T 4, T 6 and
T 8 are symmetric, whereas T 2, T 5 and T 7 are antisymmetric
[42]. Thus, the relation (2.19) can be revised as

(
Jaμ

)C =
−ξ(a)Jaμ(x), in which

ξ(a) =
{+1, a = 1, 3, 4, 6, 8;

−1, a = 2, 5, 7.
(2.21)

Therefore, in order to make a C-invariant interaction term
Sint = g

∫
d3x Jaμ(x)Gμa(x), it is a sufficient condition

to consider that (Gμ)C = −Ga
μ(x)(T a)t or

(
Ga

μ

)C =
−ξ(a)Ga

μ(x).
Now, if we consider the anti-symmetric generators, i.e.

ξ(a) = ξ(b) = ξ(c) = −1, we arrive at

〈�∣∣T [
Jaμ(x)Jbν (y)J cρ (z)

]∣∣�〉 �= 0, (2.22)

which is in contrast to the abelian case. However, in the case
of symmetric generators, i.e. ξ(a) = ξ(b) = ξ(c) = 1, the
amplitude (3.18) vanishes. As a result, we can conclude that

Furry’s theorem is not fully satisfied in a non-abelian gauge
theory.

Moreover, it is interesting to observe that the induced
non-Abelian Chern–Simons action (2.17) under charge-
conjugation transformation (Gμ)C = −Ga

μ(x)(T a)t behaves
as below

�CS
eff

∣∣∣C

O(m0)
∝ 2g2

m0

∫
d3x εμνσ

[
Ga

μ(x)∂νG
b
σ (x) tr

(
T bT a)t

−2g

3
Ga

μ(x)Gb
ν(x)G

c
σ (x) tr

(
T cT bT a)t].

(2.23)

Using tr(A) = tr(At ) and the trace identities of SU(3) gen-
erators as well as the antisymmetric property of εμνσ , it is
easy to show that (�CS

eff )
C = �CS

eff and hence the non-Abelian
Chern–Simons action is C-invariant. In order to complete our
discussion, we remind that under parity transformation

Ga
0(t, 	x) −→ Ga

0(t,−	x), Ga
i (t, 	x) −→ −Ga

i (t,−	x),
(2.24)

the CS action is parity odd (�CS
eff )

P = −�CS
eff . Eventually,

we conclude that the non-Abelian Chern–Simons action is
CP-odd.

In the next to leading order, the HD contributions to the
the parity even part is obtained as

�abc
μνσ

∣∣∣
HD-YM

= − g3 f abc

1280πm3

×
{
ηνσ

[
r2(3r − s) + s2(r − 3s) + 8(r.s)(r − s)

]
μ

− ημσ

[
r2(7r + 6s) + s2(9r + 8s) + 6(r.s)(2r + 3s)

]
ν

+ ημν

[
r2(13r + 9s) + s2(11r − 2s) + 4(r.s)(7r + 3s)

]
σ

+ · · ·
}

+ O(m−5), (2.25)

while to the parity odd it reads

�abc
μνσ

∣∣∣
HD-CS

= ig3 f abc

192πm2

[
p2εμνσ − 2pμ pβενσβ

− 4pαsβηνσ εμαβ − 2sαsνεμασ + 2pμs
βενβσ

+ 2pαsνεμασ + 4(p.s)εμνσ − 2pαsβημνεβσα + · · ·
]

+ O(m−4), (2.26)

which are proportional to m−3 and m−2, respectively. Here,
“· · · ” indicates terms which are other tensorial combinations
contributing to both parts in the next to leading order, but
are omitted for simplicity of notation. We shall examine in
Sect. 4 the (gauge invariant) general structure of such terms
by means of dimensional analysis.
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Fig. 3 Fermionic one-loop
graph contributing to
GGGG-term

2.3 GGGG-term contribution

The S-matrix expansion for the 4-point function includes
24 permutations of the external gluon legs. Hence, we first
compute the amplitude of the one of these graphs (given by
Fig. 3) and then perform the corresponding permutations.
Hence, the total amplitude is formally written as

�abcd
μνρσ =

24∑
i=1

�abcd
μνρσ

∣∣∣
(i)

, (2.27)

and the general diagram can be cast as

�abcd
μνρσ

∣∣∣
(1)

= −g4
∫

d3k

(2π)3

Tr
[
γμ (/k + m) γν (/k + /s + m) γρ (/k + /r + /s + m) γσ

(
/k − /p + m

)]
[
k2 − m2

] [
(k + s)2 − m2

] [
(k + s + r)2 − m2

] [
(k − p)2 − m2

]

×
[ 1

12
δabδcd + 1

8
dabedcde + i

8
dabe f cde + i

8
f abedcde − 1

8
f abe f cde

]
, (2.28)

in which we have used the following identity [43]

tr
(
T aT bT cT d

)
= 1

12
δabδcd + 1

8
dabedcde + i

8
dabe f cde

+ i

8
f abedcde − 1

8
f abe f cde. (2.29)

Moreover, solving the momentum integration and consider-
ing the low-energy limit, we obtain

�abcd
μνρσ

∣∣∣
(1)

= − ig4

96πm

[2

3
δabδcd + dabedcde + idabe f cde

+ i f abedcde − f abe f cde
]

×
(
ημνηρσ − 2ημρηνσ + ημσ ηνρ

)
+ O(m−2).

(2.30)

Unlike the low-energy amplitudes of GG and GGG terms,
there are no parity odd contributions (order m0) in (2.30).
Actually, the leading term of the GGGG term in (2.30) is
at order of m−1 (parity even) which is a Yang–Mills term.
Nonetheless, although this amplitude does not produce any
Chern–Simons term at order of m0, it contributes to the
higher-derivative extension of the Chern–Simons action at
order m−2.

Hence, performing the 24 permutations in the result (2.30),
we arrive at the expression

�abcd
μνρσ = − ig4

8πm

[
f bce f dae

(
ημρηνσ − ημνηρσ

)

+ f bae f dce
(
ημρ ηνσ − ημσ ηνρ

)
+ f cae f dbe

(
ημνηρσ − ημσ ηνρ

)]
. (2.31)

This result is precisely the vertex coefficient of the four-gluon
interaction term in the Yang–Mills theory, which is consistent
with our expectation.

Finally, collecting the 1/m terms (parity even) of (2.9),
(2.15) and (2.31), we obtain the Yang–Mills action

�YM
eff

∣∣∣O(m−1)
∝ g2

m

∫
d3x tr

[
FμνF

μν
]
. (2.32)

in which Fμν = ∂μAν −∂ν Aμ+ig[Aμ, Aν] is the usual field
strength tensor. Besides, it is worth to mention that in three

dimensions the ratio g2

m is a dimensionless quantity. Here an
important comment is in order. The mass dimension of the
coupling constant in three dimensions is [g] = 1

2 so we can

define a dimensionless coupling as λ = g2

�
, in which � is

the energy scale. Now, if we take the IR limit, i.e. � → 0,
the coupling λ grows largely and hence the theory in IR is
strongly coupled, but UV finite.

It is important to emphasize that the effective action of
Yang– Mills (2.32) is Lorentz invariant and SU(3) gauge
invariant under the transformation U = eiθ

aT a
, where the

field strength tensor has the following transformation Fμν →
UFμνU−1.

Furthermore, based on the above discussion, it is read-
ily obtained that the induced YM action (2.32) is invari-
ant under charge conjugation and parity transformations and
hence Yang–Mills action, unlike the CS action, is CP-even.

One interesting remark about the GGGG term is that in
the Abelian case, one can show that the low-energy 4-photon
amplitude in three dimensions is given by:

�μνρσ
∣∣∣QED

(1)
= − ig4

6πm

(
ημνηρσ − 2ημρηνσ + ημσ ηνρ

)
.

(2.33)
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So that, applying the 24 permutations, we conclude that

�μνρσ
∣∣∣

QED
=

24∑
i=1

�abcd
μνρσ

∣∣∣
(i)

= 0. (2.34)

as we expected, no self-interaction term is generated to the
gauge field in the Abelian regime [21].

Moreover, in the next to leading order, the HD contribu-
tions to the YM and CS parts for the GGGG diagram given
in Fig. 3 are found as

�abcd
μνρσ

∣∣∣HD-YM

(a,1)
= − ig4

256πm3

{ (
ημνηρσ + ημσ ηνρ

)

×
(
− 2

5
p2 − 16

5
s2 − 2

5
r2+ 4

5
(r.s)+ 4

5
(p.s)+ 11

5
(p.r)

)

+ημρηνσ

( 2

3
p2 + 16

3
s2 + 2

3
r2 − 4

3
(r.s) − 4

3
(p.s)

−4 (p.r)
)
+ · · ·

}

×
(

2

3
δabδcd + dabedcde + idabe f cde + i f abedcde

− f abe f cde
)

+ O(m−5) (2.35)

�abcd
μνρσ

∣∣∣HD-CS

(a,1)
= 3g4

128πm2

{
− 1

12
sμενρσ + 1

6
rσ εμνρ + 1

6
pρεμνσ

− 1

12
sαηνρεμασ − 1

6
pαημνερσα + · · ·

}

×
(

2

3
δabδcd + dabedcde + idabe f cde + i f abedcde

− f abe f cde
)

+ O(m−4), (2.36)

which are proportional to m−3 and m−2, respectively. Here,
again “· · · ” indicates that there are many other tensorial com-
binations contributing to both parts, YM and CS, in the next
to leading order. As one can easily realize, the next to leading
order result for the GGGG term has a very complicated form
so we omit the final result obtained after performing the 24
permutations.

Actually, the higher-derivative parity even terms (2.12),
(2.25) and (2.35) are part of the Alekseev–Arbuzov–Baikov
(AAB) effective action [37]

LAAB ∝ tr
(
DμF

μνDσ Fσν

) + tr
(
DλF

μνDλFμν

)
−g tr

(
FμνF

νλFλαηαμ
)
. (2.37)

One can observe that to generate the remaining terms of the
AAB action (2.37) it is necessary to consider contributions
up to n = 6 in the series (2.4) to engender the GGGGGG
terms.

3 Scalar matter coupled to the non-Abelian gauge field

In order to highlight some interesting aspects about the pro-
cess of generating the effective action for the gauge field, we

Fig. 4 The relevant Feynman vertices

consider now the case of a non-Abelian gauge field coupled
to the scalar fields (which possesses further couplings). This
case can be thought as the effective description of the interac-
tion, for instance, among gluons and squarks. The effective
action follows from the path integral of the charged scalar
fields

ei�eff [G] =
∫

D�†D� e−i
∫
d3x �†

(|D|2+m2
)
�, (3.1)

which, at one-loop order, results in the gluon’s effective
action by integrating out the scalar fields

i�eff [G]
= tr ln

[
− (

∂μ + igGa
μT

a) (
∂μ − igGμbT b

)
+ m2

]
.

(3.2)

Moreover, the above effective action can be cast into the
following perturbative form

�eff [G] =
∞∑
n=1

∫
d3x1 . . .

∫
d3xn Gμ1

a1
(x1) . . . Gμn

an (xn) �a1 ...an
μ1 ...μn

(x1, . . . , xn) ,

(3.3)

in which �
a1...an
μ1...μn (x1, . . . , xn) represents the n-point func-

tion of the non-Abelian gauge field minimally coupled to the
scalar matter. From a diagrammatic point of view, it includes
the one-loop graphs contributing to the gauge field n-point
functions which can be understood as

�eff [G] = Seff [G] + Seff [GG]
+Seff [GGG] + Seff [GGGG] + · · · . (3.4)

Similarly to the previous discussion for the case of fermionic
field in the Sect. 2, we have that the tadpole contribution
vanishes Seff [G] = 0. Hence, in the next step, we shall start
with analysis of Seff [GG] term. The relevant Feynman rules
for the interaction of the scalar matter with a non-Abelian
external gauge field, depicted in Fig. 4, are readily found as
below [44,45]

Di j = iδi j

p2 − m2 , �
μ,a
i j = −ig(k + q)μT a

i j ,

�
μν,ab
i j = ig2ημν

(
δabδi j

3
+ dabcT c

i j

)
.
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3.1 GG-term contribution

The amplitude related with the one-loop contributions to the
two-point function of the gluon can be obtained from the
above Feynman rules. There are two diagrams contributing
to the GG-term at this order, which are depicted in Fig. 5.
The respective Feynman amplitudes are written as

�ab
μν(p) |(a) = g2

∫
d3k

(2π)3

(2k − p)μ (2k − p)ν tr
(
T aT b

)
(
k2 − m2

) (
(k − p)2 − m2

) , (3.5)

�ab
μν(p) |(b) = −g2

∫
d3k

(2π)3

ημν

(
δab + dabctr (T c)

)
(
k2 − m2

) . (3.6)

These expressions can be simplified by computing the traces
using tr

(
T aT b

) = 1
2δab and tr(T a) = 0, so that we arrive at

�ab
μν(p)|(a) = g2δab

2

∫
d3k

(2π)3

(2k − p)μ (2k − p)ν(
k2 − m2

) (
(k − p)2 − m2

) , (3.7)

�ab
μν(p)|(b) = −g2δab

∫
d3k

(2π)3

ημν

(
(k − p)2 − m2

)
(
k2 − m2

) (
(k − p)2 − m2

) .

(3.8)

The computation of the momentum integral is straightfor-
ward using dimensional regularization. After some algebraic
calculation, we consider the low-energy limit, p2 � m2,
resulting into

�ab
μν(p) = ig2δab

16πm

(
pμ pν − ημν p

2
)

+ O(m−3), (3.9)

which satisfies the Ward identity pμ�ab
μν(p) = 0. One should

observe the presence of parity even (Yang–Mills) terms only
in the expression (3.9). The parity odd terms are absent in
this case due to the nature of the scalar fields. Moreover, in
the next to leading order, the higher-derivative corrections to
the kinetic part of YM term read as

�ab
μν(p)

∣∣∣
HD-YM

= ig2δab

192πm3

(
pμ pν − ημν p

2) p2 + O(m−5),

(3.10)

actually, this contribution has the same structure as (2.12)
(obtained for fermionic matter), differing by a sign (bosonic
loop instead of a fermionic loop) and also a numeric factor.
Finally, we can cast the contribution (3.9) of the effective
action as

iSeff [GG]
= − ig2δab

16πm

∫
d3x

(
∂νG

μ
a (x)∂νGb

μ(x) − ∂νG
μ
a (x)∂μG

ν
b(x)

)
.

(3.11)

We observe that this expression corresponds to the kinetic
term of the Yang–Mills action for the gauge field, which is
corrected by the HD term (3.10).

Fig. 5 Scalar one-loop graphs contributing to GG-term

3.2 GGG-term contribution

For the case of the amplitude related with the gluon three-
point function there are three diagrams contributing in the
scalar QCD, this is due the presence of a quartic vertex. The
corresponding graphs are depicted in Fig. 6. Hence, using
the respective Feynman rules, we can cast the diagrams (a)
and (b) as

�abc
μνσ

∣∣∣
(a)+(b)

= ig3 f abc

2

×
∫

d3k

(2π)3

(2k − p)μ (2k − p + r)ν (2k + r)σ(
k2 − m2

) (
(k + r)2 − m2

) (
(k − p)2 − m2

) ,

(3.12)

while the amplitude for the diagram (c) is

�abc
μνσ

∣∣∣
(c)

= −g3dabc

2

×
∫

d3k

(2π)3

ησν (2k − p)μ(
k2 − m2

) (
(k − p)2 − m2

) .

(3.13)

It is easy to show that �abc
μνσ

∣∣∣
(c)

= 0, as we would expect.3

Therefore, the total amplitude is simply given by

�abc
μνσ = ig3 f abc

2

×
∫

d3k

(2π)3

(2k − p)μ (2k − p + r)ν (2k + r)σ(
k2 − m2

) (
(k + r)2 − m2

) (
(k − p)2 − m2

) .

(3.14)

Gluons carry color charges and hence they are not eigenstates
of the charge conjugation and one cannot expect for Furry’s
theorem to hold [42,46,47]. Therefore, the contribution of
the three-point function amplitude is non-zero.

Since the amplitude (3.14) is finite, the loop integral is
straightforward using the dimensional regularization, and in
the low-energy limit p2, r2, s2 � m2, it reads

�abc
μνσ = − g3 f abc

48πm

[
ημσ (r − p)ν + ημν (p − s)σ + ησν (s − r)μ

] + O(m−3).

(3.15)

3 As we know, the GGG-term corresponds to the 3-gluon vertex that
includes only the anti-symmetric part of the structure constant f abc.
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Fig. 6 Scalar one-loop graphs contributing to GGG-term

We notice that the Eq. (3.15) corresponds exactly to the stan-
dard 3-gluon interaction term in the Yang–Mills theory. Here,
we notice that in the Abelian version, the total amplitude of
these 3 graphs vanishes and the charge conjugation is a sym-
metry of the scalar QED at one-loop order. Moreover, the
identity (2.18) is again satisfied in the scalar QED. Now, we
intend to discuss Furry’s theorem in the non-Abelian scalar
case and understand why the total amplitude of 3-point func-
tion does not vanish. For the scalar matter coupled to the
non-Abelian gauge field, the relevant current is given by

J a
μ = i

(
�†T a(∂μ�) − (∂μ�†)T a�

)
. (3.16)

By considering the behavior of (3.16) under the charge con-
jugation transformation and that �C = �†, we have

(J a
μ

)C = i
(
�†(−T a)t (∂μ�) − (∂μ�†)(−T a)t�

)
. (3.17)

Moreover, comparing the relations (3.16) and (3.17), we real-
ize that the generators T a are replaced by (−T a)t in the con-
jugate representation. Hence, it is easy to see that all the afore-
mentioned discussion in the fermionic sector works exactly
here and thus for the case of anti-symmetric generators, we
find

〈�∣∣T [J a
μ(x)J b

ν(y)J c
ρ (z)

]∣∣�〉 �= 0. (3.18)

While that, for the symmetric generators, the amplitude van-
ishes and therefore Furry’s theorem is not satisfied in this
case.

In the next to leading order, the HD contribution to the
3-gluon vertex of the YM part is readily obtained as

�abc
μνσ

∣∣∣
HD-YM

= − g3 f abc

960πm3

×
{
ημσ

[
r2 (p + r) − p2 (p + 3r) + 6 (p.r) (r − p)

]
ν

− ηνσ

[
r2 (4r − 14p) + p2 (p + 14r) + (p.r) (6p + 4r)

]
μ

+ ημν

[
r2 (14p + 3r) + p2 (2p − 14r)

+ (p.r) (4p + 6r)
]
σ

}
+ O(m−5). (3.19)

After some algebra, the cubic part (3.15) of the induced effec-
tive action for the gluon is cast as

iSeff [GGG] = − ig3 f abc

16πm

∫
d3x Gν

b(x)G
μ
c (x)

(
∂νGμ,a(x) − ∂μGν,a(x)

)
.

(3.20)

We observe that the gluon’s amplitude (3.20) in the scalar
QCD is parity even, and no Chern–Simons terms are gener-
ated (as the two-point function).

3.3 GGGG-term contribution

According to the S-matrix expansion at the order of g4, the
four-point function contains three types of Feynman dia-
grams, as depicted in Fig. 7, and we have 24 different per-
mutations (due to the external gauge field legs). Hence, the
full contribution can be formally written as

�abdc
μνρσ =

24∑
i=1

(
�abdc

μνρσ

∣∣∣
(a,i)

+ �abdc
μνρσ

∣∣∣
(b,i)

+ �abdc
μνρσ

∣∣∣
(c,i)

)
.

(3.21)

The amplitude of each one of the graphs (a), (b) and (c) can
be computed as

�abdc
μνρσ

∣∣∣
(a,1)

= g4
∫

d3k

(2π)3

(2k − p)μ (2k + s)ν (2k + 2s + t)ρ (2k + s + t − p)σ Tr
(
T aT bT dT c

)
[
k2 − m2

] [
(k + s)2 − m2

] [
(k + s + t)2 − m2

] [
(k − p)2 − m2

] , (3.22a)

�abdc
μνρσ

∣∣∣
(b,1)

= g4
∫

d3k

(2π)3

ημνηρσ[
k2 − m2

] [
(k + r + t)2 − m2

]

×
(

1

3
δabδdc + 1

2
dabeddce

)
, (3.22b)

�abdc
μνρσ

∣∣∣
(c,1)

= −g4
∫

d3k

(2π)3

(2k − p)μ (2k + s)ν ηρσ[
(p − k)2 − m2

] [
(k + s)2 − m2

] [
k2 − m2

]

×
(

1

6
δabδcd + i

4
f abedcde + 1

4
dabedcde

)
, (3.22c)

where Tr
(
T aT bT dT c

)
is given by (2.29). Now, solving the

integration by means of dimensional regularization and per-
forming long algebraic computations in the low-energy limit
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Fig. 7 Scalar one-loop graphs contributing to GGGG-term

p2, s2, t2, r2 � m2, we arrive at

�abdc
μνρσ

∣∣∣
(a,1)

= ig4

96πm

(
ημνηρσ + ημρηνσ + ημσ ηνρ

)

×
(

2

3
δabδdc + dabeddce + idabe f dce

+i f abeddce − f abe f dce
)

, (3.23a)

�abdc
μνρσ

∣∣∣
(b,1)

= ig4

48πm
ημνηρσ

(
2δabδdc + 3dabeddce

)
,

(3.23b)

�abdc
μνρσ

∣∣∣
(c,1)

= − ig4

32πm
ημνηρσ

×
(

2

3
δabδcd + i f abedcde + dabedcde

)
. (3.23c)

Moreover, when applying 24 permutations to the results
(3.23a), (3.23b) and (3.23c), we obtain

�abdc
μνρσ

∣∣∣
(a)

= ig4

12πm

[ (
2

3
δabδcd + 2

3
δacδdb

+2

3
δbcδad + dabeddce + dbdedace + dadedbce

)

×
(
ημν ηρσ + ημρηνσ + ημσ ηνρ

)]
, (3.24a)

�abdc
μνρσ

∣∣∣
(b)

= ig4

6πm

[
ημνηρσ

(
2δabδcd + 3dabedcde

)

+ ημρησν

(
2δadδcb + 3dadedcbe

)

+ ημσ ηνρ

(
2δacδbd + 3dacedbde

)]
, (3.24b)

�abdc
μνρσ

∣∣∣
(c)

= − ig4

12πm

[
ημνηρσ

(
2δabδcd + 3dabedcde

)

+ ημρησν

(
2δadδcb + 3dadedcbe

)

+ ημσ ηνρ

(
2δacδbd + 3dacedbde

)]
. (3.24c)

A complementary remark is that in the above computations
some features related to the structure constants of the SU(3)
group have been used [43], for instance

f ace f bde − f abe f cde = 2

3

(
δabδcd − δacδbd

)

+ dabedcde − dacedbde, (3.25)

dabedcde + dacedbde + dadedbce

= 1

3

(
δabδcd + δacδbd + δadδbc

)
. (3.26)

Therefore, gathering the contributions Eqs. (3.24a), (3.24b)
and (3.24c), the total amplitude corresponding to the 4-point
function is as follows

�abdc
μνρσ = − ig4

192πm

[
f ace f bde

(
ημνηρσ − ημρηνσ

)

+ f ade f bce
(
ημνηρσ − ημσ ηνρ

)
+ f abe f dce

(
ημρηνσ − ημσ ηνρ

)]
. (3.27)

As a complementary check of the above analysis, we consider
the Abelian counterpart of the 4-point function

�μνρσ
∣∣∣SQED

(a+b+c,1)
= ie4

24πm

(
ημρηνσ − 2ημνηρσ + ημσ ηνρ

)
,

(3.28)

which vanishes when the 24 permutations are considered

�μνρσ
∣∣∣
SQED

= 0, (3.29)

as we expected. Besides, in the next to leading order, the
HD contributions to the 4-gluon YM part, arising from the
general graphs, are found to be

�abdc
μνρσ

∣∣∣(a,1)

HD-YM
= ig4

7680πm3

(
ημνηρσ + ημρηνσ + ημσ ηνρ

)

×
(

− 5p2 + 4s2 − 5t2 + 3(s.t) + 35(p.s) + 30(p.t)
)

×
(

2

3
δabδdc + dabeddce + idabe f dce

+i f abeddce − f abe f dce
)

+ O(m−5), (3.30a)

�abdc
μνρσ

∣∣∣(b,1)

HD-YM
= ig4

1152πm3 ημνηρσ

(
2δabδdc + 3dabeddce

)

×
(
r2 + t2 + 2(r.t)

)
+ O(m−5), (3.30b)

�abdc
μνρσ

∣∣∣(c,1)

HD-YM
= − ig4

384πm3 ημνηρσ

×
(

2

3
δabδcd + i f abedcde + dabedcde

)

×
(
s2 + p2 − (p.s)

)
+ O(m−5). (3.30c)

Hence, the first amplitude of the HD contribution reads as

�abdc
μνρσ

∣∣∣(a+b+c,1)

HD-YM
= ig4

960πm3

[
ημνηρσ

{
δabδdc

(
−25

12
p2 − 4

3
s2

+5

4
t2 + 5

3
r2 + 1

4
(s.t) + 55

12
(p.s) + 5

2
(p.t) + 10

3
(r.t)

)

+dabeddce
(

−25

8
p2 − 2s2 + 15

8
t2 + 5

2
r2 + 3

8
(s.t)
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+55

8
(p.s) + 15

4
(p.t) + 5 (r.t)

)

+i f abeddce
(

−25

8
p2 − 2s2 − 5

8
t2 + 3

8
(s.t)

+55

8
(p.s) + 15

4
(p.t)

) }

+
(
−5p2 + 4s2 − 5t2 + 3 (s.t) + 35 (p.s) + 30 (p.t)

)

×
{
ημνηρσ

(
i

8
dabe f dce − 1

8
f abe f dce

)

+ (
ημρηνσ + ημσ ηνρ

) (
1

12
δabδdc + 1

8
dabeddce

+ i

8
dabe f dce + i

8
f abeddce − 1

8
f abe f dce

) }]
+ O(m−5).

(3.31)

Needless to say that the total amplitude obtained from the 24
permutations is an absurdly long expression, being omitted
in the discussion.

The Eq. (3.27) would generate a four gluon interaction
term at order O(m−1) in the Yang–Mills effective action of
the type

iSeff [GGGG] = − ig4

32πm

×
∫

d3x f abe f dceGa
μ(x)Gb

ν(x)G
d,μ(x) Gc,ν (x).

(3.32)

Finally, we can collect the leading O(m−1) contributions
from the one-loop order parts related to the two, three and
four-point functions, Eqs. (3.11), (3.20) and (3.32), respec-
tively, so that we can write the complete expression of the
Yang–Mills action as

�YM
eff

∣∣∣O(m−1)
= − ig2

32πm

∫
d3x Fa

μνF
a,μν, (3.33)

which is invariant under the Lorentz and SU(3) gauge trans-
formations. Naturally, the coefficients of (3.33) differ from
those of (2.32) due to the nature of the coupled matter fields.
We can observe that the HD terms for the case of scalar matter
fields discussed above also generate the AAB action (2.37).

4 The gauge invariance of the higher-derivative terms

In order to shed some light on the general structure of
the higher-derivative terms appearing in Yang–Mills–Chern–
Simons action we shall apply the dimensional analysis proce-
dure to investigate the gauge invariance of these terms. This
procedure is rather interesting because it focuses on the gauge
invariant contributions. Hence, in order to have a clear and
careful discussion, we concentrate on the higher-derivative
parts of the Chern–Simons and Yang–Mills terms separately
below.

• Higher-derivative Chern–Simons terms
One should realize that since we are working in a (2+1)-
dim. spacetime, the allowed terms in the Lagrangian den-
sity must have mass dimension 3. Hence, one can see that
the mass dimension of the gauge and fermionic fields in
three dimensions is given by [G] = 1

2 and [ψ] = 1,
respectively (see Eq. (2.1)). Thus, the mass dimension of
the coupling constant would be [g] = 1

2 . For the sake of
simplicity in our discussion, we introduce Gμ ≡ −igGμ

that leads to [G] = 1.
The kinetic term of the ordinary CS term, arising from the
leading term of the two-point function in (2.8), is propor-
tional to G∂G with mass dimension 3. We easily observe
that another possible contribution (involving the gauge
field) with mass dimension 3 is given by GGG, which
exactly appears as a parity-odd piece of the leading term
in the analysis of the three-point function in (2.15).
It is remarkable that these two types of odd-parity terms
with mass dimension 3 are both at order m0 and a special
linear combination of them leads to the standard non-
Abelian Chern–Simons action (2.16) which is invariant
under the infinitesimal gauge transformation.

In order to determine the gauge invariant higher-
derivative corrections to the CS action, we must gather all
the contributions at the same order of the fermion mass
m. These contributions can arise from different n-point
functions so that if we miss even one of them at any order
of m, the gauge invariance is lost at that order. To high-
light this point, we consider the next to the leading order
terms present in the two-point function in (2.11) with odd
parity, resulting in the dominant HD contribution to the
kinetic term of CS at order of m−2. The structure of this
term in the action would be as G∂�G with mass dimen-
sion of 5, compensating the coefficient m−2, and thus
resulting in a mass dimension 3 term.

Moreover, to determine the full gauge-invariant HD
contributions to the CS action at orderm−2 it is necessary
to consider all the possible combinations of G and ∂ with
mass dimension of 5. Due to the expansion of our results

in powers of
(

�
m2

)�

, in general, the higher-derivative

terms that may appear in �(2) at order of m−2� should
have a structure like this G∂��G with mass dimension
3 + 2�. For example, the case of � = 0 corresponds to
the leading term m0

�
∣∣
m0 = a0�

(2)
0 + b0�

(3)
0 , (4.1)

which corresponds to the ordinary non-Abelian CS action
with �

(2)
0 ∝ G∂G and �

(3)
0 ∝ GGG, given in (2.10)

and (2.15), respectively. Also, the values of a0 = 1 and
b0 = 2

3 are obtained via explicit analysis as given in
(2.16). Furthermore, in the next to leading order � = 1,
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we have that

�
∣∣
m−2 = a2�

(2)
2 + b2�

(3)
2 + c2�

(4)
2 + d2�

(5)
2 , (4.2)

in which

�
(2)
2 ∝ G∂�G, �

(3)
2 ∝ GG�G, �

(4)
2 ∝ ∂GGGG,

�
(5)
2 ∝ GGGGG, (4.3)

where the coefficients a2, . . . , d2 are determined through
the explicit computation.

We should remark, however, that the terms present in
(4.3) should be contracted with the Levi-Cività tensor
εμνρ and/or the metric ηρσ in order to construct Lorentz
scalar objects, implying thus in many different tensorial
forms contributing to the above construction. The explicit
tensorial forms of �

(2)
2 , �

(3)
2 , �

(4)
2 are provided in our

detailed results (2.11), (2.26) and (2.36), respectively.
As we explained above, although we have not com-

puted �
(5)
2 , it must be included to secure the gauge invari-

ance of the full HD corrections to the CS action (in the
next to leading order m−2). Furthermore, we realize that
the HD-CS action at this order includes new parity-odd
self-interaction terms with four and five gluon legs.

As a conclusion, the present analysis demonstrates that
in order to construct a gauge-invariant HD-CS action at
order of m−2�, it is necessary to consider all the rele-
vant contributions coming from 2, 3, · · · , (3+2�)-point
functions.

• Higher-derivative Yang–Mills terms
Proceeding now to the analysis of the parity even con-

tributions, we see that the YM part are of order m−1,
while the HD corrections are of order m−3. Hence, we
observe that YM part should receive contributions of
leading order of terms with mass dimension 4, while the
HD part at the next to leading order corresponds to the
terms with mass dimension 6.

The kinetic term of the ordinary YM term, arising from
the leading term of two-point function at in (2.8), is pro-
portional to ∂G∂G with mass dimension 4. Other com-
binations with mass dimension 4 at order of m−1 are
∂GGG and GGGG. Indeed, these three parts are parity-
even pieces of the 2, 3 and 4-point function which sum
yields the standard Yang–Mills action.

For the generic higher-derivative terms in �(2) at
order m−(2�+1), we have that the general structure reads
∂G∂��G with mass dimension of 4 + 2�. For example,
the case of � = 0 corresponds to the leading term m−1

�
∣∣
m−1 = a1�

(2)
1 + b1�

(3)
1 + c1�

(4)
1 , (4.4)

which leads to the usual YM theory with �
(2)
1 ∝ ∂G∂G,

�
(3)
1 ∝ ∂GGG and �

(4)
1 ∝ GGGG. Also, the coefficients

a1, b1 and c1 are found via our detailed computation. In
the next to leading order � = 1, we obtain

�
∣∣
m−3 = a3�

(2)
3 + b3�

(3)
3 + c3�

(4)
3 + d3�

(5)
3 + e3�

(6)
3 ,

(4.5)

in which the invariants are

�
(2)
3 ∝ ∂G∂�G, �

(3)
3 ∝ ∂G�GG, �

(4)
3 ∝ �GGGG,

�
(5)
3 ∝ ∂GGGGG, �

(6)
3 ∝ GGGGGG. (4.6)

The tensorial form of �
(2)
3 , �(3)

3 and �
(4)
3 are found in the

fermionic case through (2.12), (2.25) and (2.35), as well
as in the scalar case through (3.10), (3.19) and (3.31),
respectively. Although, we have not calculated the con-
tributions �

(5)
3 and �

(6)
3 , they must be included in order

to guarantee the gauge invariance of the HD corrections
to YM action in the next to leading order m−3. Besides,
it is notable that the HD-YM action at this order includes
the new parity-even self-interaction terms with five and
six gluon legs (the AAB effective action (2.37)).

Finally, in order to make a gauge-invariant HD-YM
action at order of m−(2�+1), it is necessary to consider all
of the relevant contributions coming from 2, 3, . . . , (4 +
2�)-point function.

A complementary remark about the generation of the CS
and YM terms can be achieved by examining the contribution
arising from the momentum integrals in the low-momentum
limit:

• In the analysis of fermionic matter, we have the trace of
an odd and even number of gamma matrices appearing
in the Feynman amplitudes for the n-point functions.

• Moreover, the trace of an odd (even) number of gamma
matrices is accompanied by an odd (even) power of
fermion masses (m,m3,m5, ...) [(m0,m2,m4, ...)], which
engender the Chern–Simons terms with odd parity
(Yang–Mills terms with even parity).

• In the second part, when the scalar matter is considered,
there is no trace of gamma matrices, thus no parity odd
terms, so that we are left only with Yang–Mills terms.

• The presence of such mass terms can be justified as the
following: after performing the Feynman integrals in the
low-energy limit, the Chern–Simons terms are produced
by terms of order O(m−2�) while the Yang–Mills terms
are produced at orderO(m−(2�+1)). This observation can
be explicitly understood if we examine some of the stan-
dard Feynman integrals appearing in throughout of our
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analysis:

I4 =
∫

d3q

(2π)3

q4

(q2 − �)n
� 1

�

(
n− 3

2 −2
) , (4.7)

I2 =
∫

d3q

(2π)3

q2

(q2 − �)n
� 1

�

(
n− 3

2 −1
) , (4.8)

I0 =
∫

d3q

(2π)3

1

(q2 − �)n
� 1

�

(
n− 3

2

) , (4.9)

in which � = �(p1, p2, ...) is a function of the external
momenta, Feynman parameters and the fermion/scalar
mass. Now, we introduce a generic form of the type
� = Q2 + m2 to separate the contributions of the
mass term from the momenta represented generically as
Q = Q(p1, p2, ...). Therefore, in the low momenta limit,
we find

I4 � m
−2

(
n− 3

2 −2
)

= m−2(n−3)+1, (4.10)

I2 � m
−2

(
n− 3

2 −1
)

= m−2(n−2)+1, (4.11)

I0 � m
−2

(
n− 3

2 −0
)

= m−2(n−1)+1. (4.12)

As we see, all the low-energy integrals are proportional
to an odd power of mass. Taking this observation into
account as well as the second comment, the naive and
simple form of the Feynman amplitude reads

1

m2s+1

[
Am2k+1 Tr(γ μ1···γ μ2k+1

︸ ︷︷ ︸
CS−terms

) + Bm2k T r(γ μ1···γ μ2k
)︸ ︷︷ ︸

YM−terms

]
,

(4.13)

where A = A(p1, p2, ...) and B = B(p1, p2, ...) are
functions of the momenta. Finally, we can explicitly
observe that the mass coefficients of the CS and YM
terms are m−2(s−k) and m−(2(s−k)+1), respectively.

We summarize the conclusions of the above discussion
about the perturbative generation of the CS and YM effective
action in the table below.

Order of expansion Induced action Spinor QCD Scalar QCD

O(m0) Chern–Simons � ×
O(m−1) Yang–Mills � �
O(m−2) HD Chern–Simons � ×
O(m−3) HD Yang–Mills � �
.
.
.

.

.

.
.
.
.

.

.

.

O(m−2�) HD Chern–Simons � ×
O(m−(2�+1)) HD Yang–Mills � �

5 Concluding remarks

In this work, we have examined the perturbative generation
of the effective action for the non-Abelian gauge field in a
(2 + 1)-dimensional spacetime. We have computed the two,
three and four point functions in order to determine the non-
Abelian Chern–Simons terms (parity odd) and Yang–Mills
terms (parity even). These terms were supplemented by the
higher-derivative corrections which resulted in the Alekseev–
Arbuzov–Baikov effective action (parity even) plus the HD
corrections to the Chern–Simons terms (parity odd). In order
to highlight some features about the perturbative generation
of the HD terms we have considered a discussion based on
the dimensional analysis and gauge invariance, which allows
to establish the general structure of the permissible terms.

We started by considering the perturbative generation of
the non-Abelian Chern–Simons and Yang–Mills terms when
coupled to fermionic and scalar matter. The choice of work-
ing with fermoinic and bosonic matter sources is to highlight
subtle points involving the allowed terms in the effective
action: in the case of fermionic matter parity odd terms are
generated, while they are absent for the scalar fields. In one
hand, in the case of the Yang–Mills terms (parity even sector),
they have the same structure for both fields, differing only by
the numerical factors and a sign (fermionic and bosonic loop).
Also, the same observation is valid for the higher-derivative
terms, which correspond to the AAB effective action. On the
other hand, in the parity odd sector, only the fermionic field
engender the Chern–Simons terms and their HD corrections.

In order to have a better understanding of the general struc-
ture of the effective action and the allowed terms, we followed
an approach based on the dimensional analysis (mass dimen-
sion) and gauge invariance. The starting point was to realize
that the parity odd (CS) and parity even (YM) sectors are
generated at order O(m−2�) and O(m−(2�+1)) with � ≥ 0,
respectively. This observation follows from the analysis of
the Feynman integrals at the low-momenta limit. Moreover,
the number of terms is very high since each allowed term
should be contracted with the Levi-Cività tensor εμνρ and/or
the metric ηρσ in order to construct Lorentz scalar objects.
Although, one can obtain the general structure of the allowed
and necessary terms at each order of the effective action,
which guarantees the gauge invariance, the respective coef-
ficients are only determined via the explicit computation.
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