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Abstract The connection between bulk and boundary ther-
modynamics in Einstein–Maxwell theory is well established
using AdS/CFT correspondence. In the context of general
higher-derivative gravity coupled to a U(1) gauge field, we
examine the resemblance of the first law of thermodynamics
between bulk and boundary, followed by an extended phase
space description on both sides. Higher-derivative terms
related to different powers of the string theory parameter α′
emerged from a consistent truncation in the bulk supergravity
action. We demonstrate that one must include the fluctuation
of α′ in the bulk thermodynamics as a bookkeeping tool to
match the bulk first law and Smarr relation with the bound-
ary side. Consequently, the Euler relation and the boundary
first law are altered by adding two central charges (a,c). To
support our general conclusion, we consider the black hole
in Gauss–Bonnet gravity and the general four-derivative the-
ory. Finally, we examine the bulk and boundary aspects of
the extended phase space description for higher-derivative-
corrected black holes.

1 Introduction and summary

The thermodynamics of black holes in anti-de Sitter (AdS)
space have remained fascinating since the publication of
Hawking and Page’s seminal observations in [1]. Then, the
anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence, i.e., holographic duality, enhances our understanding
of the AdS black hole’s thermodynamics, where it is observed
that the thermodynamic properties of black holes could be
reinterpreted as a conformal field theory at finite tempera-
ture [2,3]. The thermal properties of Einstein–Maxwell AdS
theory, i.e., Reissner–Nordström (RN) black hole [4] in AdS
spacetime, show an intriguing phase space description, and
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at the same time, the thermal phase structure of the dual field
theory is fascinating via AdS/CFT correspondence [5,6].

The charged black hole thermodynamic phase structure in
AdS space is enhanced after treating the cosmological con-
stant �0 as the thermodynamic pressure P0 = −�0/8πGN

and its conjugate quantity as the thermodynamic volume.
Likewise, the phase space is comprehended as extended
phase space. The inclusion of the variation of the cosmo-
logical constant in the first law will complete the analogy of
the charged AdS black hole system as the van der Waals sys-
tem [7–14]. This new paradigm is dubbed black hole chem-
istry1 [13,14], and as the black hole provides a dual descrip-
tion of the field theory on the boundary in the context of
AdS/CFT correspondence, it is envisaged that the thermody-
namic variables and laws on both sides would line up. In [16–
20] (following the earlier work [21]), it is demonstrated that
the inclusion of the variation of Newton’s constant together
with the cosmological constant is needed as a bookkeeping
tool if one wants to construct the bulk first law and Smarr
relation consistent with boundary thermodynamics.

Let us describe the current situation regarding the first
law and the Smarr relation for charged AdS black holes with
two-derivative gravity before proceeding any further. The
extended first law of charged AdS black holes in a d + 1
dimensions, including the variation of the cosmological con-
stant �0 [7] and Newton’s constant GN [17–19], is

dM0 = T0

4GN
dA0 + �0dQ0 + �0

8πGN
d�0

− (M0 − �0Q0)
dGN

GN
, (1.1)

where M0 is the Arnowitt–Deser–Misner (ADM) mass of
the black hole, T0 is the Hawking temperature, A0 is the
area of the event horizon, Q0 is the electric charge, and its

1 A higher-dimensional origin of extended black hole thermodynamics,
i.e., black hole chemistry, is discussed in [15].
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conjugate quantity �0 is the electric potential.2 Additionally,
the cosmological constant’s conjugate quantity, �0, can be
understood geometrically as the proper volume weighted by
the Killing vector’s norm [7,22,23]

�0 =
∫

BH
|ξ | dV −

∫
AdS

|ξ | dV, (1.2)

where |ξ | is the norm of the Killing vector, and the integration
will take place over the constant-time hypersurface of the
black hole and pure AdS spacetime. The generalized Smarr
relation for d + 1-dimensional bulk is given by [24,25]

M0 = d − 1

d − 2

T0A0

4GN
+ �0Q0 − 1

d − 2

�0�0

4πGN
. (1.3)

In extended thermodynamics, the bulk pressure is identified
as the cosmological constant

P0 = − �0

8πGN
, with �0 = −d(d − 1)

2L2
0

, (1.4)

where L0 is the AdS curvature radius. Without considering
GN fluctuation, the first law (1.1) and generalized Smarr
relation (1.3) take the form

dM0 = T0dS0 + V0dP + �0dQ0, (1.5)

M0 = d − 1

d − 2
T0S0 + �0Q0 − 2

d − 2
P0V0. (1.6)

However, there is some disagreement regarding the bulk first
law, dual to the first law of thermodynamics, in boundary
field theory. Firstly, the energy of the boundary theory is
dual to the ADM mass M0 of the black hole, whereas in
extended thermodynamics, M0 is identified as the thermody-
namics enthalpy H rather than the internal energy of the black
hole [8,26]. Secondly, one can compute the asymptotic stress
tensor and the pressure of the boundary theory [27,28]. This
approach for evaluating the boundary pressure does not yield
the bulk pressure specified above, and the spatial volume of
the CFT V ∼ Ld−1

0 is not related to the thermodynamic vol-
ume V0 of the black holes, i.e., the conjugate quantity of �0.

As a result, the boundary’s first law is unable to be interpreted
precisely as the bulk first law (1.5).

It is possible to address the discrepancy in the thermody-
namics variable on both sides by choosing additional thermo-
dynamic variables. With this new set of thermal variables, we
can have a one-to-one map between the extended black hole
thermodynamics in bulk and the thermodynamics variable of
the boundary CFT. In the holographic dictionary, the Einstein
gravity with AdS curvature length L0 and effective New-
ton’s constant GN in d + 1 dimensions contains a dual cen-
tral charge of the CFT theory presented as c ∼ Ld−1

0 /GN ;

2 We will add a subscript zero with the physical quantities (e.g.,
M0, T0 . . . ) for the Einstein–Hilbert action, i.e., leading-order contri-
bution.

hence, the variation of cosmological constant �0 ∼ 1/L2
0

will lead to the variation of the central chargec of the bound-
ary CFT or the number of colours N in the dual gauge theory,
as well as the variation of Newton’s constant GN in the grav-
ity theory, i.e., the bulk thermodynamics as a “bookkeeping”
device [16–19]. The holographic interpretation of charged
AdS black holes is intriguing in this new paradigm where
Newton’s constant is the dynamics parameter. Central charge
criticality studies for non-linear electromagnetic black holes
[29,30], Gauss–Bonnet black holes [31,32], and other types
of black hole studies [33,34] have all shown that this transi-
tion is determined by the degrees of freedom of its dual field
theory in the large N limit.

As a consequence of the GN variation, the first law (1.1)
can be reformulated in the following manner:

dM0 = T0dS0 + �0

L0
d(L0Q0) − M0

d − 1

dLd−1
0

Ld−1

+
(
M0 − T0S0 − �0Q0

)d(Ld−1
0 /GN )

Ld−1
0 /GN

, (1.7)

so that it can be directly mapped to the first law of the bound-
ary theory [17–19]. Here, the first two terms are analogous
to the boundary first law, and Ld−1

0 is proportional to the
thermodynamic volume of the boundary theory. Thus, the
coefficient of the dLd−1

0 term is accordingly identified with
the pressure of the boundary theory, which satisfies the equa-
tion of state: M0 = E = (d − 1)pV. Finally, the last term in
the first law d(Ld−1

0 /GN )/(Ld−1
0 /GN ) is identified with the

variation of the central charge c, and its coefficient is a new
chemical potential μc.

3 This new chemical potential satisfies
the boundary Euler relation

E = M0 = T0S0 + �0Q0 + μcc. (1.8)

The discussion of the effect of higher-derivative terms
on the boundary first law provides an intriguing glimpse
into the thermodynamics of boundary field theory [20].
Thereafter, the charged black hole in the presence of these
higher-derivative terms and their holographic dual phases are
explored in [31,32]. Nevertheless, the anomalous contribu-
tion of higher-derivative terms to the first law of boundary
theory is absent. This work concentrates on answering these
questions and hence is divided into two parts: in the first part,
we have generalized the findings of [20] to a charged black
hole system, and in the second, we investigate how a black
hole charge affects the black hole thermodynamics in higher-
derivative theories and their holographic dual theory. In the
boundary theory, we investigate the influence of the black

3 In [35], an alternate formulation to write the holographic first law
is proposed, which is precisely dual to the first law of the extended
black hole thermodynamics by treating the conformal factor of the AdS
boundary as a thermodynamic parameter and allowing the AdS radius
and the CFT volume to vary independently.
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hole charge on the recently revealed phase behaviour [17–
19] of the dual to the higher-derivative-corrected charged
black hole.

Following similar techniques as [20], this paper estab-
lishes the connection between the bulk and the boundary
thermodynamics in a generic four-derivative theory of grav-
ity coupled to the U (1) gauge field in the presence of the
cosmological constant. Firstly, we present the general struc-
ture because the action of higher-derivative terms modifies
the geometry and charges of black holes, so the first law
of thermodynamics is also modified. Extending the connec-
tion over the supergravity limit may appear inconsequen-
tial due to higher-derivative modifications to all thermody-
namic variables. But one has to be careful because another
holographic computation of another central charge a as the
presence of higher-derivative terms and both central charges
can be expressed in the dimensionless quantities L3

0/GN and
α′/L2

0 in the gravitational side, which implies that the varia-
tion of the cosmological constant in bulk also induces a vari-
ation of multiple central charges at the boundary theory. To
disentangle the variation of c and a from the variation of N
and volume V, one needs to include the variation of α′ (along
with GN and L) in bulk as a bookkeeping device. We show
that by identifying the appropriate thermodynamic variables
as c+ and c−, the bulk first law is naturally interpreted as
the boundary first law, and the bulk Smarr relation generates
the generic Euler relation of the boundary theory. To support
our generic result, we put some examples of charged black
holes in the presence of higher-derivative theories, where one
is a charged Gauss–Bonnet AdS black hole, and another is a
charged AdS black hole in generic four-derivative gravity.

Next, we investigate the phase behaviour of the charged
black hole in the higher-derivative gravity theory after estab-
lishing a one-to-one correlation between bulk and boundary
thermal parameter space. The dimension of the thermody-
namic phase will grow due to the different chemical poten-
tials endowed in the phase structure of charged AdS black
holes with higher-derivative terms. After that, we study the
critical behaviour analysis of the corrected black holes, where
we compute the critical value of all the thermal quantities
including temperature, pressure, and central charge up to
O(α′)2. To investigate the critical phenomenon of the cor-
rected charged black hole, we examine the plot of the free
energy of black holes w.r.t. their respective Hawking temper-
ature in a canonical ensemble and examine the relevant phase
behaviours by varying the various parameters. Further prob-
ing the Gauss–Bonnet black hole’s extended phase space, we
study the chemical potentials’ μ± critical behaviour conju-
gate to the new variable c± in boundary field theory. We
note that μ+ behaves in a swallowtail format corresponding
to different phases in the boundary theory that is dual to a
small black hole, large black hole, and the unstable branch in
bulk. Furthermore, μ+ behaves in a manner similar to how

the chemical potential Aα′ emerges in the presence of higher
derivatives. Besides, we do the identical analysis for charged
black holes in generic four-derivative gravity.

Summarizing this investigation, we delve into the com-
plexities of the expanded thermodynamics associated with
the charged black hole, considering the effect of the higher-
derivative term (in particular, the four-derivative gravity).
However, the distinctive contribution of our study lies in
its emphasis on elucidating the holographic measurement of
the extended thermodynamic properties exhibited by charged
black holes within the context of higher-derivative theo-
ries. Our research seeks to unveil how the unique holo-
graphic facets manifest when higher-derivative terms are
introduced into the analysis of charged black hole thermody-
namics, thereby enriching our comprehension of the interplay
between gravitational physics and holography in this partic-
ular context. Additionally, we delve into an in-depth exami-
nation of the distinct phases of conformal field theory (CFT)
that correspond to the α′-corrected black hole in the bulk,
which entails a meticulous exploration of the intricate inter-
play between the properties of the black hole and the corre-
sponding features within the dual CFT. By scrutinizing these
various phases, we aim to unravel the nuanced relationships
and implications arising from the α′ corrections, shedding
light on the profound connections between the microscopic
and macroscopic descriptions of the gravitational system.

The structure of this paper is as follows. In Sect. 2, we
discuss the bulk first law and the Smarr relation of the
U (1) charged black hole in the presence of generic higher-
derivative terms. After that, in Sect. 3, we demonstrate how
to write the holographic dual of the bulk first law with higher-
derivative terms, i.e., we study the correspondence between
the bulk first law and the boundary first law. In Sect. 4, we
discuss a few examples to support our generic results, which
contain charged black hole Gauss–Bonnet gravity followed
by charged black holes in generic four-derivative gravity. In
Sect. 5, we discuss the phase structure of these black holes.
Eventually, with some final remarks and open questions, we
conclude our results in Sect. 6.

2 Extended thermodynamics of
higher-derivative-corrected black holes

In this section, we compute the Smarr relation and the first law
of black hole thermodynamics with higher-derivative terms.
In the throat limit [2], the effective d + 1-dimensional action
has the following approximate form

S = 1

16πGN

∫
dd+1x

√−g

(
R − 2�0 − 1

4
FμνF

μν

+
∑
n≥1

(
α′)n LHD

(
Rn+1, F2n+2

) )
, (2.1)
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where α′ is proportional to the square of the string length,
and LHD is the Lagrangian density entangling the broad
set of higher-derivative terms arising from the contraction
of the curvature tensor and electromagnetic field strength.
Such higher-derivative terms emerge in low-energy effective
action of different closed string theories, and the structures
of these higher-derivative terms are completely fixed for a
specific string theory.4 We assume that α′R � 1, where R
implies the curvature scale of the solution. The only parame-
ter which appears in front of these terms is different powers of
α′, as this is the only dimension full parameter in the theory.
In the supergravity limit α′ → 0, all the higher-derivative
terms drop out.

As α′R � 1, we perturbatively solve Einstein’s equation
and Maxwell’s equation for higher-derivative theories, and
as a result of those higher-derivative terms, all the thermal
quantities related to the black hole, including the black hole
temperature, entropy, ADM mass, and the chemical potential
conjugate to the electric charge of the black hole, receive cor-
rection; for detailed computation we refer to Sect. 4.2. Before
we construct the modified first law of thermodynamics for
higher-derivative theories, we first note that the action (2.1)
admits a vacuum AdS solution such that R = 20/L2, where
L is the effective AdS length [36,37]. For general higher-
derivative theory, the effective AdS length can be written as
L = L0L(α′/L2

0)
5 (for example, Eq. (4.30)) and the vacuum

metric form in asymptotic AdS geometry with L is

ds2 ∼
(

1 + r2

L2

)
dt2 +

(
1 + r2

L2

)−1

dr2 + r2d	2
3, (2.2)

where d	2
3 is the metric on the unit 3-sphere. As a result,

denoting the effective radius by L , the corrected cosmolog-
ical constant � can be defined as6

�0 −→ � = −d(d − 1)

2L2 . (2.3)

The black hole thermodynamic quantities are related to
each other by the Smarr relation. In the context of higher-
derivative theories, the Smarr relation is well studied, which
includes the Gauss–Bonnet black hole [38,39], f (R) gravity
theory [40], Lovelock gravity in AdS spacetime [21,41], the
quasitopological gravity [42], Einstein cubic gravity [43],

4 For example, the appearance of a curvature square term, e.g.,
Riemann2, in heterotic string theory is well known, and Riemann4

terms appear in superstring theories, whereas Riemann3 appears in
bosonic string theory.
5 Where L(α′/L2

0) depends on the form of the higher-derivative term
present in theory.
6 One can proceed with the modified definition of thermodynamics
pressure where P = −�/(8πGN ) instead of (1.4); then we have to
keep in mind that our asymptotic structure is modified accordingly, and
consequently, the thermodynamic quantities of thermodynamic volume,
etc. as discussed in Appendix A.

and other higher-curvature gravity theories [41,44]. The mass
of the black holes plays a central role in understanding the
thermodynamics and behaviour of black holes. Apparently,
in theories that involve higher derivatives, the mass of a black
hole can be described in a general way as follows:

M = M(A,GN , Q,�0, α
′). (2.4)

Taking the variation of both sides and incorporating the vari-
ation of gravitational constant GN and the variation of the
coupling constant of the higher-derivative term, the first law
turns out to be

dM = κ

8πGN
dA + �dQ + �

8πGN
d�0

−
(
M − �Q

)dGN

GN
+ Aα′

GN
dα′. (2.5)

Following the scaling argument from [7,14,21], the Smarr
relation in extended phase space (including P and V vari-
ables) with generic higher-derivative correction7 in (d + 1)

dimensions arranged in a straightforward form as

M = d − 1

d − 2

κA

8πGN
− 1

d − 2

��0

4πGN
+ � Q

+ 2

d − 2

Aα′

GN
α′. (2.6)

The quantity A appearing in the first term in the Smarr
relation is given by A = 4GSWald, where SWald is the
Wald entropy as defined in (4.9). We call this quantity
the “Wald area”. Later, we shall see that the horizon area
remains unchanged under higher-derivative corrections in
our parametrization. The Wald area equals the horizon
area in the α′ → 0 limit. Here, the new thermodynam-
ics variable Aα′ is the chemical potential conjugate to α′
[20,26,31,32,38–42], and the Aα′dα′ term in the first law
will disappear in the supergravity limit (α′ → 0). Another
important point to note here is that, unlike two-derivative
gravity, the variable � no longer has a geometrical meaning;
it is just a conjugate quantity corresponding to a cosmological
constant and is defined as the generalization of (1.2).

We can restore the first law and Smarr relation for the RN-
AdS black hole as given in (1.1) and (1.3), respectively, in
the limit α′ → 0. The first law and Smarr relation are com-
patible with [20,21] in the limit Q → 0. Next, by choosing
the appropriate boundary thermodynamic variables, we will
untangle the boundary first law from the bulk first law by
exploiting the AdS/CFT dictionary. In this setup, the bulk

7 In this article, we will add a subscript zero (e.g. M0, T0 . . .) to rep-
resent the physical quantities that receive some α′ corrections, while
the upper-case letters (M, T, S,�, Q, . . .) without any subscript will
denote the physical quantities which receive the α′ corrections.
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Smarr relation reduces to the generic Euler relation of bound-
ary CFT.

3 Holographic first law

The holographic interpretation of the extended black hole
has been unclear for many years, and multiple frames of
reference have been suggested [12,16,45,46], since it is not
straightforward to map the bulk first law to the boundary first
law. The mapping of the T dS or �dQ term is evident from
the beginning because one can map the Hawking tempera-
ture to the temperature of field theory, and the same goes
with the conserved charge of the bulk and boundary theory.
But the presence of the V dP term complicates the mapping
because, on the other side, the CFT volume is proportional
to ∼ Ld−1

0 , and the holographic CFT dual to Einstein gravity
has a dictionary c ∼ Ld−1

0 /GN . Thus the VdP term leads
to a degeneracy as it induces −p dV and μ dc terms in the
boundary first law, which are not self-reliant. As discussed
in Sect. 1, we need the variation of Newton’s constant to
disentangle this degeneracy. As discussed in footnote 3, an
alternative way to formulate the holographic first law is pro-
posed such that the dual to the first law of extended black
hole thermodynamics is derived by treating the conformal
factor of the AdS boundary as a thermodynamic parameter
and allowing the AdS radius and the CFT volume to vary
independently. The variation of the bulk cosmological con-
stant corresponds to changing the CFT central charge and the
CFT volume [35].

The presence of the higher-dimensional operators with
coupling constant α′ uplifts the conformal anomaly in the
boundary theory such that the O(c − a) is nonzero, where
the c and a are the anomaly coefficient known as the central
charges of the boundary conformal field theory. We can see
this from the computation of the expectation value of the CFT
stress tensor given as

〈
Tμ

μ

〉 = −aE4 −cI4, where E4 is the
Euler topological density, and I4 is the Weyl squared term.
Using the holographic renormalization procedure, we can
compute the anomaly coefficient by following [47,48], and
in the limit α′ → 0 we have c = a ∼ Ld−1

0 /GN . However,
these coefficients are not equivalent in the presence of the
higher-derivative correction; they disagree at O(α′/L2) and
the higher order of α′/L2 [48–50]. Thus, after incorporating
the higher-derivative coupling parameter α′ in the bulk first
law, we also need an additional parameter on the boundary
side. We present the inclusion of the other central charge a to
uncover the one-to-one map between the bulk and boundary
thermal parameters. However, instead of writing the first law
in terms of (c,a), we define a new set:

c± = c ± a

2
, (3.1)

and we compose the boundary first law in terms of the c±
basis such that in the limit α′ → 0, we get back the two
derivative results.

It is well established that for SU (N ) gauge theories with
conformal symmetry, the central charge scales as c ∼ N 2

at large N ; therefore, high-energy states satisfy E ∼ c
[3,17,51], and in finite though large N theories, the mul-
tiple central charges appear as the same scale c ∼ a
[48–50]. Hence, by definition, the internal energy of an
equilibrium state depends on extensive quantities, includ-
ing entropy S, volume V, and conserved charge Q̃. And
as mentioned above, for large N gauge theories, it further-
more depends on the (intensive) central charges c and a, i.e.,
E = E(S, V, Q,c+,c−) [17,18]. We can vary the energy
with respect to each quantity, which gives the first law of
thermodynamics

dE = T dS − pdV + �̃dQ̃ + μ+dc+ + μ−dc−, (3.2)

where the temperature T, pressure p,, chemical potential �̃

conjugate to Q̃, and the chemical potential μ± conjugate to
c± are defined as

T ≡
(

∂E

∂S

)
V,Q̃,c±

, p ≡ −
(

∂E

∂V
)
S,Q̃,c±

,

�̃ ≡
(

∂E

∂ Q̃

)
S,V,c±

, μ± ≡
(

∂E

∂c±

)
S,V,Q̃

. (3.3)

The thermal quantities are scaled as

[E] = [T ] = [μ+] = [μ−] = L−1; [V] = Ld−1

[S] = [Q̃] = [c+] = [c−] = L0. (3.4)

For high-energy states, the central charge, S, Q ∼ c±, scales
with the entropy and conserved quantities, corresponding to
the contribution from all degrees of freedom. Thus, scal-
ing of the energy function follows the scaling relation as
E(αS,V, α Q̃, αc+, αc−) = αE(S,V, Q̃,c+,c−), where
α is some dimensionless scaling parameter. Differentiating
with respect to α and putting α = 1 leads to the Euler equa-
tion

E = T S + �̃Q̃ + μ+c+ + μ−c−. (3.5)

Since the volume does not generally scale asc±, we discover
that pressure and volume are absent from this Euler equation.
As shown in [17,18], another scaling argument gives rise to
the equation of state for gauge theories

E = (d − 1)pV. (3.6)
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Now we will show how the bulk first law (2.5) and the bound-
ary first law (3.2) are related in generic higher-derivative the-
ories and how the Smarr relation (2.6) for a black hole reduces
to the Euler relation (3.5) for boundary gauge theory.

From the dimensional analysis, the generic form of c±
can be written as

c+ = Ld−1
0

128πGN
h+(α′/L2

0), and

c− = Ld−1
0

128πGN
h−(α′/L2

0), (3.7)

where h+ and h− are functions of dimensionless parameter
α′/L2

0 and depend on the nature of the higher-derivative terms
added in theory. In holographic theory, they also satisfy

h+(α′/L2
0) ∼ O(1) and

h−(α′/L2
0) ∼ O

(
α′

L2
0

)
α′ → 0. (3.8)

Varying equations (3.7), we find

dc±
c±

= dLd−1
0

Ld−1
0

− dGN

GN
+ h′±

h±
d

(
α′

L2
0

)
, (3.9)

and from (3.9), we replace dα′ and dGN in (2.5) in terms of
dc± in the bulk first law. We also use the Smarr relation(1.6)
to replace � in the first law. After simplification, the final
result is given by8

dM = T dS + �̃dQ̃ −
(

M

d − 1

)
dLd−1

0

Ld−1
0

+
(h′−

(
M − T S − �̃Q̃

)
− h−Aα′L2

0(
c+h′− − c−h′+

)
)

dc+

+
(h+Aα′L2

0 − h′+
(
M − ST − �̃Q̃

)
(
c+h′− − c−h′+

)
)

dc−.

(3.10)

The coefficient of dc± is denoted as the conjugate chemical
potentials μ± such that

μ+ =
⎛
⎝h′−

(
M − T S − �̃Q̃

)
− h−Aα′L2

0(
c+h′− − c−h′+

)
⎞
⎠ ,

μ− =
⎛
⎝h+Aα′L2

0 − h′+
(
M − ST − �̃Q̃

)
(
c+h′− − c−h′+

)
⎞
⎠ . (3.11)

8 The standard holographic dictionary is E = M, �̃ = �/L0, Q̃ =
QL0 for the CFT dwelling on the boundary of AdS spacetime with
AdS length L0.

Solving (3.11) for M = E satisfies the generic Euler rela-
tion. Alternatively, if we start with the boundary first law
(3.2) and insert the value of dc± from (3.9), and then use
the generic Euler relation to simplify the relation along with
−2dL0/L0 = d�0/�0, we get the first law as

dM = T d

(
A

4GN

)
+ �dQ − (M − �Q)

dGN

GN

+ Ld−1
0

GN

(
μ+h′+ + μ−h′−

)
dα′

+
(

8πGL2
0((d − 2)(M − �Q) − (d − 1)T S)

d(d − 1)

− 16πLd−1
0 α′(μ+h′+ + μ−h′−)

d(d − 1)

)
d�0

8πGN
. (3.12)

Thus the coefficient of dα′ is given by

Aα′ = Ld−3
0

128π

(
μ+h′+ + μ−h′−

)
, (3.13)

and identifying the coefficient of d�0/8πGN as � = −V
gives the generalized Smarr relation given in (2.6). Thus, we
see that the bulk first law (2.5) can be directly identified with
the extended first law of the boundary field theory (3.10), and
the generic Smarr relation (2.6) generates the Euler relation
(3.5). As a consistency check, we note that c+ = c and
c− = 0 in the limit α′ → 0, and we get back (1.1) and (1.3).

4 Higher-derivative thermodynamics: examples

Under a consistent truncation of string theory, higher-
derivative terms take a specific form and appear in the effec-
tive action of gravity theories. These terms significantly
impact black hole solutions and their thermodynamics. This
section shows two illustrations of charged black holes in
higher-derivative gravity in five dimensions. The first exam-
ple discusses the charged black hole thermodynamics asso-
ciated with the Gauss–Bonnet term. This term was first pre-
sented by Lovelock in [52] as a natural generalization of
Einstein’s theory of general relativity. In the second exam-
ple, we further generalized the four-derivative interaction’s
interfering curvature square term and electromagnetic field
strength, for example, terms such as Fμ

νFν
αFα

βFβ
μ and

Rμνρσ FμνFρσ , the complete higher-derivative Lagrangian
density illustrated in (4.22).

4.1 Example 1: Charged black holes in Gauss–Bonnet
gravity

This section discusses the electrically charged black hole in
Gauss–Bonnet gravity with the cosmological constant [53–
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57]. In contrast, the Gauss–Bonnet gravity is an extension
of Einstein’s gravity with the Euler topological term in the
domain of Lovelock gravity, whereas the Lovelock theory
contains the sum of extended Euler densities. In contrast, the
Lovelock gravity theory has some incredible features among
the gravity theories with higher-derivative curvature terms
[58]. Alternatively, Gauss–Bonnet gravity becomes inter-
esting because string theory anticipated such theories. The
Calabi–Yau threefold compactification of M-theory presents
the effective Einstein–Gauss–Bonnet theory with a suitable
choice of coefficient of the Gauss–Bonnet term correspond-
ing to Lovelock theory [59,60]. The one-loop effective action
of heterotic string theory in the Einstein frame exhibits
Gauss–Bonnet terms with the coupling constant of the form
α′eϕ [60–63] (where ϕ is a dynamical scalar field known as
the dilaton). The Maxwell–Gauss–Bonnet action (in the Ein-
stein frame) with the negative cosmological constant (�) in
five dimensions is given by

S = 1

16πGN

∫
M

d5x
√−g

[
R − 2�0 − 1

4
FμνF

μν

+α′(R2 − 4RμνR
μν + Rμνρσ R

μνρσ
)]

, (4.1)

where α′ is proportional to the square of string length and is
positive in heterotic string theory, and �0 = −6/L2

0, where
L0 is the AdS curvature length.9 The Gibbons–Hawking–
York (GHY) term is required for a well-defined variation
principle with respect to the metric; for the Gauss–Bonnet
correction, the GHY term has the following form:

S(1)
bdy = 1

8πGN

∫
d4y

√−γ

[
K+α′

(
−2

3
K 3+2KKabK

ab

− 4

3
KabK

bcKa
c − 4

(
Rab − 1

2
Rhab

)
Kab

)]
,

(4.2)

where Rab is the Ricci tensor at the boundary, K is the trace
of the second fundamental form, i.e., the extrinsic curva-
ture tensor, which is the measure of how the normal to the
hypersurface changes, and γab is the induced metric on the
hypersurface. A well-defined variational w.r.t. the gauge field

9 Here, L is the effective AdS length L = Leff. One can compute the
Leff from the asymptotic structure of the metric or the Ricci scalar,
where the effective AdS length is given by

L2 = L0

2

(
L0 +

√
L2

0 − 8α′
)

.

With the effective AdS length L and the AdS length L0, i.e., the uncor-
rected AdS length, we can present the boundary thermal quantities in
terms of either L or L0, given the convenience of simplified expression.

requires a boundary term given by

S(2)
bdy = 1

16πGN

∫
∂M

d4y
√−γ nμF

μν Aν, (4.3)

which is also known as the Hawking–Ross boundary term.

Black hole solution and thermodynamics quantities

An exact solution for the Gauss–Bonnet-corrected Einstein
equation can be obtained for spherically symmetric and sta-
tionary spacetime. An ansatz for the static and spherical sym-
metric metric is

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d	2

3, (4.4)

where 	3 is the line element of the unit sphere in three dimen-
sions, and f (r) is

f (r) = 1 + r2

4α′

(
1 −

√
1 − 8α′

L2
0

+ 8α′m
r4 − 8α′q2

r6

)
.

(4.5)

Here, m is related to the ADM mass M of the black hole, and
the parameter q is related to the total electric charge Q of the
black hole as

M = 3ω3

16πGN
m, Q =

√
3

GN

ω3q

4π
; ω3 = 2π2. (4.6)

As a consequence, one can compute the ADM mass of the
black hole at its outer horizon, r+, which has the following
form:

M = 3π

8GN

(
L2

0 + r2+
L2

0r
2+

+ α + q2

r2+

)
, (4.7)

and the Hawking temperature is given by

T = f ′(r+)

4π
= L2

0r
−2+

(
r4+ − q2

) + 2 r6+
2πL2

0r+(r2+ + 4α′)
. (4.8)

In the presence of these higher-derivative terms, the next
endeavour is to compute the correction to the Bekenstein–
Hawking entropy, which can be addressed by implementing
Wald’s entropy computational technique [64,65]

S = 2π

∫
S3

d3	
√−γ

∂L
∂Rαβγ δ

εαβεγ δ, (4.9)

where εμν is the binormal, and γ is the induced metric on
the horizon. The ∂L

∂Rαβγ δ εαβεγ δ is known as the Wald entropy
density of the black hole. For the Gauss–Bonnet AdS black
hole (4.1), the Wald entropy tensor will take the form

∂L
∂Rαβγ δ

= 1

16πGN

[
1

2

(
gαγ gβδ − gαδgβγ

)
+ α′(2Rαβγ δ

+ 2gβγ Rαδ + 2gαδRβγ − 2gαγ Rβδ − 2gβδRαγ
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+ R(gαγ gβδ − gαδgβγ )
)]

, (4.10)

and using an appropriate definition of the binormal tensor by
following [66], the Wald entropy of the Gauss–Bonnet AdS
black hole is

SW = ω3r3+
4GN

(
1 + 6α′

r2+

)
. (4.11)

Holographic first law and the chemical potential

In this section, we work with five-dimensional spacetime.
The particular justification for this is that we employ holo-
graphic renormalization to compute the anomaly coefficient,
which plays a crucial role in writing the holographic first law,
and the computation of these anomaly coefficients for generic
spacetime is highly challenging, which is beyond the scope
of this work, so we use a particular example of it [25,47,49].

As discussed in Sect. 2, the first law of thermodynamics
can be computed from the variation of the ADM mass of
the black hole. Thus, the first law for charged black holes in
Gauss–Bonnet theory takes the form

d M = T

4GN
dA + �dQ + �

8πGN
d�0 − (M − �Q)

dGN

GN

+ Aα′

GN
dα′, (4.12)

where we allow the variation of Newton’s constant GN along
with the cosmological constant � and Gauss–Bonnet param-
eter α′. The geometric volume � and the conjugate chemical
potential corresponding to the Gauss–Bonnet parameter is
Aα′ and is given by

� = −1

2
π2r4+, and (4.13)

Aα′ = 3π
(
L2

0

(
4q2 + 4r2+α′ − 3r4+

) − 8r6+
)

4L2
0r

2+
(
r2+ + 4α′) . (4.14)

To uncover the bulk first law in the terms of boundary vari-
ables, we compute the anomaly coefficients c and a in pres-
ence of the Gauss–Bonnet term in bulk theory by following
[25,47,49]. The anomaly coefficient is given by

c = L3
0

128πGN

(
1 − 7α′

L2
0

)
, and (4.15)

a = L3
0

128πGN

(
1 − 15α′

L2
0

)
. (4.16)

As discussed in Sect. 3, we can replace the variation of dGN

and dα′ in terms of the boundary variable as dc±, and as

a consequence, the first law of a Gauss–Bonnet AdS black
hole takes the form

dE = T dS + �̃dQ̃ − pdV + μ+dc+ + μ−dc−, (4.17)

where p = M/3V represents the field theory pressure with
boundary volume V ∝ L3

0, and μ± are the chemical poten-
tials conjugate to the new boundary variables depending on
the central charge of the boundary theory, where μ± can be
represented in term of black hole parameter10

μ+ = −16π2
(
L2

0

(
q2 − r4+

) (
r2+ + 12α′) + 12r6+α′ + r8+

)
L5

0

(
r2+ + 4α′) ,

(4.18)

and

μ− = 4π2

L5
0r

2+
(
r2+ + 4α′)

(
12q2

(
2L2 − 11α′)

+ r2+
(

24L2α′ − 11q2
)

+ r4+
(

132α′ − 18L2
)

− 37r6+
)

− 44π2r4+
(
r2+ − 12α′)

L5
0

(
r2+ + 4α′) , (4.19)

and they satisfy the Euler relation of the boundary theory as
presented in (3.5).

4.2 Example 2: Charged black holes in generic
four-derivative gravity

We start with a complete set of four-derivative corrections to
the Einstein–Maxwell action. In general, the four-derivative
gravity action is

Sbulk = − 1

16πGN

∫
d5x

√−g
(L2∂ + α′ L4∂

)
, (4.20)

where α′ is proportional to the square of the string length,
L2∂ is the standard Einstein–Maxwell Lagrangian with cos-
mological constant

L2∂ = R − 2�0 − 1

4
FμνF

μν, (4.21)

and L4∂ is the maximal potential contraction between gauge
field and curvature tensor

L4∂ = b1R
2+b2RμνR

μν+b3Rμνρσ R
μνρσ +b4Rμνρσ F

μνFρσ

+ b5
(
FμνF

μν
)2 + b6F

4 + b7RF
2 + b8R

μνFμρFν
ρ

+ b9∇μFνρ∇μFνρ + b10∇ρF
ρμ∇σ F

σ
μ

+ b11F
νρ

[∇μ,∇ν

]
Fμ

ρ . (4.22)

10 Here we write the expression of μ± in terms of L0; one can write it
in terms of L using the expression as shown in footnote 9.

123



Eur. Phys. J. C (2024) 84 :467 Page 9 of 19 467

However, many of these terms are ambiguous up to a field
re-definition [37,67–70], and terms involving ∇ρFμν can be
eliminated using the leading order Maxwell’s equation and
the Bianchi identities [71]. We can extract the ambiguous
terms from the Lagrangian density with the proper choice of
field re-definition. Thus, the Lagrangian density with higher-
derivative terms that we worked11 with are

L4∂ = α1Rμνρσ R
μνρσ + α2Rμνρσ F

μνFρσ

+ α3(F
2)2 + α4F

4, (4.23)

where F2 = FμνFμν and F4 = Fμ
νFν

αFα
βFβ

μ.

The Gibbons–Hawking term and boundary counterterms

We need to add the boundary terms to the action to have
a well-defined variational principle on a manifold with
a boundary. Variation of the Einstein–Hilbert action with
respect to the metric requires the boundary term if we
have the Neumann boundary condition on the metric. The
Gibbons–Hawking–York boundary term for the Einstein–
Hilbert action is

SGHY = 1

8πGN

∫
∂M

d4y
√−γ K , (4.24)

where K is the trace of the extrinsic curvature defined as
Kμν = ∇(μnν), where nμ is the normal vector to the hyper-
surface with γab as the induced metric.

Now, the bulk action we worked with is given by12

Sbulk = − 1

16πGN

∫
M

d5x
√−g

[
R − 2�0 − 1

4
F2

+α′(α1Rμνρσ R
μνρσ + α2Rμνρσ F

μνFρσ

+α3

(
F2

)2 + α4F
4
)]

. (4.25)

A well-defined variation of the bulk action (4.25) with respect
to the metric on spacelike or timelike boundary surfaces
demands a boundary action by following the procedure in
[36,37], given as

S(1)
bdy = 1

8πGN

∫
d4x

√−γ

[
K

(
1 + α1

8

L2
0

− α1
5

6
F2

)

+ 2α1(KnμF
μλnνF

ν
λ + KabF

aλFb
λ )

+ 2α2nμF
μanνF

νbKab

+ α1

(
− 2

3
K 3 + 2KKabK

ab − 4

3
KabK

bcKa
c

11 Here, we did not consider the CS terms or the CP-odd term that
appear in specific dimensions, because those terms are not pertinent for
the static, stationary, and spherically symmetric black holes.
12 This action was explored earlier in a different context in [37,67,72,
73].

− 4

(
Rab − 1

2
Rhab

)
Kab

)]
. (4.26)

Similarly, obtaining a well-behaved variation with respect to
the gauge field also requires the additional boundary term,
which corresponds to assuming a δ(nμFμν) = 0 boundary
condition from the gauge field instead of δAμ = 0. We found
the subsequent boundary terms added to the gravitational
action as the generalization of the Hawking–Ross boundary
term [4,5] to cancel the boundary terms originating from the
variation of gauge kinetic term and higher-derivative operator
in bulk action.

S(2)
bdy = 1

16πGN

∫
∂M

d4y
√−γ nμ

(
Fμν Aν

− 4α2R
μναβFαβ Aν − 8α3F

2Fμν Aν

− 8α4F
μγ FμδFγ δAν

)
. (4.27)

Thus, the relevant boundary term for a well-defined varia-
tional principal for the action (4.25) is Sbdy = S(1)

bdy + S(2)
bdy.

If one works in the grand canonical ensemble, then the
Hawking–Ross term vanishes to compute the thermodynam-
ics quantities.

We use the holographic renormalization procedure to
extract the non-divergent part from the gravitational action
computed on the background solution. This procedure entan-
gles an appropriate boundary counterterm Sct to remove the
divergence. Therefore, the total action is presented as

� = Sbulk + Sbdy − Sct. (4.28)

To examine the appropriate counterterm [27,28] needed to
regulate the action (4.25), we have

Sct = 1

16πGN

∫
∂M

d4y
√−γ

[
A + BR + C1R2

+ C2R2
ab + C3R2

abcd + · · ·
]
, (4.29)

and our foremost requirement is the identification of a vac-
uum AdS solution with higher-derivative term modification
with R = −20/L2, where

L = L0

(
1 + α1

3

α′

L2
0

)
(4.30)

is the corrected AdS curvature length, and the vacuum metric
from asymptotic AdS geometry with L is

ds2 ∼
(

1 + r2

L2

)
dt2 +

(
1 + r2

L2

)−1

dr2 + r2d	2
3,

(4.31)

where d	2
3 is the metric on the unit 3-sphere.
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R2-corrected black hole solution in five dimensions

Here, we demonstrate the R2-corrected spherical symmet-
ric black hole solution, precisely represented by the action
(4.25). The Einstein and Maxwell equations are highly non-
trivial and unsolvable with the higher-derivative correction.
Therefore, we treat the higher-derivative term as a perturba-
tive correction to the Einstein–Hilbert Maxwell action, and
by the following metric and gauge field ansatz (for a static
spherically symmetric solution), we obtain

ds2 = − f (r)dt2 + 1

g(r)
dr2 + r2d	2

3,

A = Aμdxμ = �(r)dt, (4.32)

where d	2
3 is a metric on a 3-sphere of unit radius. We solve

the equations of motion perturbatively to obtain f (r), g(r),
and �(r). In the absence of these higher-derivative terms,
the equations of motion admit the Reissner–Nordström black
hole solution in an asymptotically AdS background. The
leading-order metric and gauge field solution is given by

f0(r) = g0(r) = 1 + r2

L2
0

− m

r2 + q2

4r4 ,�0(r) = −
√

3q

2r
.

(4.33)

Now we solve the higher-derivative-corrected equation of
motion perturbatively, and the corrected solution up toO(α′)
takes the form

f (r) = f0(r) + α′ f1(r),
g(r) = g0(r) + α′g1(r),

�(r) = �0(r) + α′�1(r), (4.34)

where f1(r), g1(r), and �1 stand for the correction in the
metric and gauge field.

f1(r) = 2α1r2

3L4
0

− (13α1 + 10α2) q2

L2
0r

4
+ 2α1m2

r6

− 2 (11α1 + 6α2) q2

3r6 + (5α1 + 6α2)mq2

3r8

+ (17α1 − 24 (α2 + 6α3 + 3α4)) q4

96r10 , (4.35)

g1(r) = 2α1r2

3L4 − (65α1 + 54α2) q2

3L2
0r

4
+ 2α1m2

r6

− 4 (4α1 + 3α2) q2

r6 + (31α1 + 30α2)mq2

3r8

− (191α1 + 72 (3α2 + 2α3 + α4)) q4

96r10 , (4.36)

�1(r) = (−13α1 + 24 (2α2 + 6α3 + 3α4)) q3

8
√

3r8

− 4
√

3α2q
(
L2

0m − r4
)

L2
0r

6
. (4.37)

Fixing the integrating constants coming from the integration
of the corrected equation of motion is done in such a man-
ner that the corrected metric solution satisfies the asymptotic
AdS solution as exemplified in (4.31), and we hold one of the
integrating constants to zero, demanding a shift in m param-
eter. A fixed-charge configuration determines an integrating
constant from Maxwell’s equation, where the electric charge
is defined as a conserved Noether charge given by

Q = 1

16πGN

∫
S3

�F , (4.38)

where F is the effective field strength

Fμν = Fμν − 4α′(α2F
αβ Rμναβ + 2α3FαβF

αβFμν

+ 2α4FαβFμ
αFν

β
)
. (4.39)

Thermodynamic quantities with corrected geometry

In this subsection, we compute the main thermodynamic
quantities to describe the black hole as the Hawking tempera-
ture, Wald entropy, and the free energy of the black hole. For
a Euclideanized black hole, the periodicity β of Euclidean
time τ or the black hole temperature is given by

T = 1

β
= κ

2π
= 1

4π

√
g′(r) f ′(r)

∣∣∣∣
r+

. (4.40)

After some simplification, we find that the corrected Hawk-
ing temperature is given by

T = r+
πL2

0

+ 1

2πr+
− q2

8πr5+
+ α′

[
α1

(
q2

(
5L2

0 − 4r2+
)

3πL2
0r

7+

− 2
(
3L4

0 + 6L2
0r

2+ + 2r4+
)

3πL4
0r

3+
− 9q4

16πr11+

)

+α2

(
q4

4πr11+
− q2

(
L2

0 + 2r2+
)

πL2
0r

7+

)
+ 3 (2α3 + α4) q4

2πr11+

]
.

(4.41)

For the generic four-derivative theory shown in (4.25), the
Wald entropy tensor will take the form

∂L
∂Rαβγ δ

= 1

16πGN

(
1

2
(gαγ gβδ − gαδgβγ )

+ α′ (2α1Rαβγ δ + α2FαβFγ δ

) )
, (4.42)

123



Eur. Phys. J. C (2024) 84 :467 Page 11 of 19 467

and using an appropriate definition of the binormal tensor by
following [66], the Wald entropy for the black hole is

S = SW = π2r3+
2GN

+ α′
[
α1

(
2π2r+

(
3L2

0 + 2r2+
)

GN L2
0

− 7π2q2

2GNr3+

)
− 3π2α2q2

GNr3+

]
. (4.43)

Alternatively, the corrected entropy can be computed using
Euclidean computation. Similarly, the ADM mass of the
black hole can be obtained by computing either the asymp-
totic stress tensor [27,74] or on-shell Euclidean action [66].
The result is given by

M = 3π2

8πGN

[
r2+ + r4+

L2
0

+ q2

4r2+

+ α′

L2
0

(
α1

(
2

(
3L4

0 + 12L2
0r

2+ + 10r4+
)

3L2
0

+ 23L2
0q

4

32r8+

− 14q2
(
L2

0 + 2r2+
)

3r4+

)
+ α2

×
(
L2

0q
4

4r8+
− 2q2

(
L2

0 + 4r2+
)

r4+

)

− 3 (2α3 + α4) L2
0q

4

4r8+

)]
. (4.44)

And finally, we compute the free energy of the black hole
from the on-shell action computation via the holographic
renormalization or counterterm method:

βF = SOS
tot = Sbulk + Sbdy − Sct. (4.45)

Thus, the renormalized free energy of the black hole is

F = πr2+
(
L2

0 − r2+
)

8L2
0

+ π
(
3L2

0r
2+ + 5q2

)
32r2+

+ α′
[
α1

(
29πL2

0q
4

256r8+
+ πq2

(
14r2+ − L2

0

)
12r4+

− π
(
81L4

0 + 144L2
0r

2+ + 40r4+
)

48L2
0

)

+ α2

(
πq2

(
5L2

0 + 4r2+
)

4r4+
− 13πL2

0q
4

32r8+

)

− 33π (2α3 + α4) L2
0q

4

32r8+

]
. (4.46)

Since we are working in a canonical ensemble, i.e., fixed-
charge configuration, the free energy up to O(α′) satisfies
the relations

F + T S = M = ∂SOS
tot

∂β
, SW = β

∂SOS
tot

∂β
− SOS

tot . (4.47)

Holographic first law and the chemical potential

In Sect. 2 we examined how the first law of thermodynamics
for charged black holes in the presence of higher-derivative
terms is modified. Their first law is illustrated as

dM = T

4GN
dA + �dQ + �

8πGN
d�0

− (M − �Q)
dGN

GN
+ Aα′

GN
dα′, (4.48)

where

� = −1

2
π2r4+ + α′

(
α1

(
4π2q2

r2+
− 4π2r2+

(
L2

0 + r2+
)

3L2
0

)

+ 4π2α2q2

r2+

)
, (4.49)

and

Aα′ = α1

(
πq2

(
3L2

0 + 2r2+
)

4L2
0r

4+
− π

(
9L4

0 + 20L2
0r

2+ + 6r4+
)

4L4
0

− 43πq4

256r8+

)
+ α2

(
3πq2

4r4+

−9πq4

32r8+

)
− 9π (2α3 + α4) q4

32r8+
. (4.50)

Thereafter, we wanted to recast the first law in terms of the
boundary theory variable c±, as we discussed before. Here,
c± is constructed out of the anomaly coefficient c and a
in the boundary CFT, which emerges from the presence of
higher-derivative terms. Following [47,48], one can compute
these anomaly coefficients as

c = L3
0

128πGN

(
1 + 3α1

α′

L2
0

)

a = L3
0

128πGN

(
1 − 5α1

α′

L2
0

)
. (4.51)

Thus, the extended first law of thermodynamics in terms of
c± takes the form

dE = T dS + �̃dQ̃ − pdV + μ+dc+ + μ−dc−, (4.52)

where p = M/3V represents the field theory pressure with
boundary volume V and μ± given by

μ+ = 8π2q2

L3
0r

2+
+ 16π2r2+

(
L2

0 − r2+
)

L5
0

+ α′

L2
0

[
α2

(
8π2q4

L0r8+
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− 32π2q2
(
L2

0 − 4r2+
)

L3
0r

4+

)
+ α1

(
− 64π2q2

(
5L2

0 − 4r2+
)

3L3
0r

4+

+ 128π2
(
3L4

0 + 6L2
0r

2+ + 2r4+
)

3L5
0

+ 23π2q4

L0r8+

)

− 24π2 (2α3 + α4) q4

L0r8+

]
, (4.53)

and

μ− = 6π2q2
(
4L2

0 + 3r2+
)

L3
0r

4+
− 4π2

(
18L4

0 + 39L2
0r

2+ + 13r4+
)

L5
0

− 43π2q4

8L0r8+
+ 1

α1

(
α2

(
24π2q2

L0r4+
− 9π2q4

L0r8+

)

− 9π2 (2α3 + α4) q4

L0r8+

)
, (4.54)

and they satisfy the Euler relation of the boundary theory as
presented in (3.5).

5 Critical behaviour and phase structure of bulk and
boundary thermodynamics

By treating the cosmological constant as a thermodynamic
pressure and its conjugate quantity as the volume, the phase
structure was significantly enhanced, leading to an analogy
between the liquid-gas and black hole systems. Considering
Newton’s constant as a thermodynamic parameter opens up
an entirely novel perspective on the phase structure of bulk
thermodynamics, which facilitates the engagement towards
the study of critical phenomena and the phase space descrip-
tion of the boundary CFT. In this section, we discuss the
phase structure of the charged black hole in AdS5 with higher-
derivative correction and investigate the criticality behaviour
of bulk theory and boundary theory.

5.1 Gauss–Bonnet AdS charge black hole

5.1.1 Critical point analysis of the AdS5 Gauss–Bonnet
black hole

In a canonical ensemble, i.e., a fixed-charge Q configura-
tion, one can interpret Eq. (1.4) with (4.8) as the equation of
state as P = P(r+, T ) for a Gauss–Bonnet AdS black hole.
Given the equation of state, one can smoothly calculate the
critical point of the system. In the following equation, we can
compute the critical points:

∂T

∂r+
= 0,

∂2T

∂r2+
= 0. (5.1)

Solving the above equations exactly is challenging. However,
we are interested in the solution’s approximate behaviour
to understand the universal behaviour of critical points and
its dependence on the parameter α′. Hence, we solve these
equations perturbatively up to O(α′), and we obtain

r+(cri) = 151/4√q

(
1 + α′ 8

√
3

53/2q

)
,

L(cri) = 31/451/4√q

(
1 + α′ 16

√
3

53/2q

)
. (5.2)

Setting the value of r+(cri) and L(cri) in Eqs. (4.8) and (1.4),
we can find the critical value of the bulk temperature and
pressure. Thus, the critical value of temperature and pressure
is

Tcri = 4

5 × 151/4π
√
q

(
1 − α′ 4

√
3√

5q

)
,

Pcri = 1

4
√

15πGNq

(
1 − α′ 278

15
√

15q

)
, (5.3)

and in the end, with the support of Eq. (4.15), the critical
value of central charges up to O(α′) is given by

ccri = 9 × 31/453/4q3/2

128πGN

(
1 + α′ 397

15
√

15q

)
,

acri = 9 × 31/453/4q3/2

128πGN

(
1 + α′ 119

5
√

15q

)
. (5.4)

Behaviour near the critical point

In this subsection, we will compute the critical exponent for
the charged Gauss–Bonnet black hole, which stands for the
phase transition’s universal property. In general, around the
critical point, a van der Waals-like phase transition is charac-
terized by the four critical exponents α, β, γ, and δ, which
are defined as

Specific heat: Cv = T
∂S

∂T

∣∣∣∣
v

∝
(

−T − Tcri

Tcri

)−α

,

Order parameter: η = vs − vl

vcri
∝

(
−T − Tcri

Tcri

)β

,

Isothermal compr.: κT = − 1

v

∂v

∂P

∣∣∣∣
T

∝
(

−T − Tcri

Tcri

)−γ

,

Equation of state: P − Pcri ∝ (v − vcri)
δ , (5.5)
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where v is the specific volume.13 Computation of these expo-
nents is given in Appendix B. Our result for a charged GB-
AdS black hole is given by

α = 0, β = 1

2
, γ = 1, δ = 3. (5.6)

Apparently, the critical exponents of the five-dimensional
spherical charged GB-AdS black holes coincide with the
computation of the critical exponents from the mean-field
theory for the van der Waals liquid-gas system. We can
write the thermodynamics quantities in terms of boundary
variables by implementing the holographic dictionary. We
obtained an equivalent result for the critical exponent for the
boundary field theory dual to charged GB-AdS black holes.

Phase transition

We mainly work in canonical ensembles with fixed (Q) con-
figurations. We can express the free energy as a function of T,

P , or L0, Q, GN and higher-derivative coupling parameters.

F = π

8GN L2
0r

2+
(
r2+ + 4α′)

(
q2L2

0

(
5r2+ + 36α′)

− 6L2
0r

2+α′ (r2+ − 4α′) + r6+
(
L2

0 − 36α′) − r8+
)
.

(5.7)

In Fig. 1, we plotted the Gibbs free energy (F) given above
with respect to the Hawking temperature (T ) (4.8) of the cor-
rected black hole for different values of Q and α′ while fixing
the other parameters. There we introduce fiducial length �0

such that all quantities are gauged in terms of �0. We observe
that the behaviour of the free energy is similar to Einstein’s
gravity as detailed in [5,6,75], and the Gauss–Bonnet param-
eter has a significant role in the critical behaviour because it
modifies the critical points. In Fig. 1, for Q < Qcrit (orange,
blue), the free energy displays a “swallowtail” behaviour, and
a first-order phase transition emerges between two thermo-
dynamically stable branches. The “horizontal” branch has
low entropy, corresponding to the small black hole, while
the “vertical” branch has high entropy, reaching the mas-
sive black hole. Again, the swallowtail-like behaviour or
the first-order phase transitions occur for different Gauss–
Bonnet parameters, and it is observed that the swallowtail
behaviour disappears for a large value of α′.

Next, we rewrite the free energy F in terms of the bound-
ary variable as F(T, L0, Q,c+,c−), and in Fig. 2 we study

13 We can identify the specific volume v with the horizon radius of the
black hole as

v = 4l1−d
p

d − 1
r+.

Fig. 1 Gibbs free energy F vs temperature T diagram. Gibbs free
energy F�2

0 is displayed as a function of temperature T �0 in a different
configuration of electric charge and different value of Gauss–Bonnet
parameter. a We vary the total charge Q of the black hole keeping other
parameters to a fixed value as GN = 1, L0 = 25�0, α

′ = 5�2
0. b We

vary the Gauss–Bonnet parameter α′ ∈ (0, 1, 2, 3, 4)�2
0 holding other

parameters to GN = 1, L0 = 25�0, Q = 20�2
0

the critical behaviour of free energy w.r.t. the boundary
observable.

Like the bulk phase structure, we observed the swallowtail
behaviour in the phase diagram of free energy for various
configurations of electric charge of the boundary CFT while
preserving the form of the central charge, and in the fixed-
charge ensemble, the variation of c+ leads to swallowtail
behaviour when c+ ∼ c−, and it starts disappearing for the
considerable contrast between the values of c+ and c−.

We investigate the phase behaviour of the chemical poten-
tial conjugate to the central charge of the boundary theory
in Fig. 3. According to the phase diagram of free energy
expressed in terms of boundary variables, we discovered
that μ+ exhibits swallowtail behaviour. Additionally, μ+
exhibits behaviour resembling the chemical potential Aα′
that emerges in the presence of higher derivatives.
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Fig. 2 Gibbs free energy F vs temperature T diagram. Gibbs free
energy F�2

0 is displayed as a function of temperature T �0 in terms
of the boundary variable. Left: We vary the total charge Q ∈
(50, 100, 150, 200, 250)�2

0 of the black hole keeping other parame-
ters to a fixed value as L0 = 30�0,c+ = 20�3

0,a− = 20�3
0. Right:

We vary the c+ ∈ (20, 21, 22, 23)�3
0 holding other parameters to

L0 = 25�0, Q = 20�2
0,c− = 20�3

0

5.2 Charged AdS black hole in generic four-derivative
gravity

Here, we present the qualitative behaviour of the critical point
of a charged AdS black hole in the generic four-derivative
theory. One can find the critical points perturbatively using
the equation given in (5.1). The critical points in the four-
derivative theory are shown below

r+(cri) = c
√
q

×
(

1 + α′ (398α1 + 672α2 − 528 (2α3 + α4))

75
√

15q

)
,

(5.8)

L(cri) = c
√

3q

×
(

1 + α′ (383α1 + 192α2 − 88 (2α3 + α4))

25
√

15q

)
,

(5.9)

Fig. 3 Chemical potential μ+ vs T diagram. The chemical potential
conjugate to c+ is plotted against the temperature of the boundary
theory in various configurations. a We vary the total electric charge
Q ∈ (20, 50, 100, 150, 200)�2

0 with a fixed value of L0 = 20�2
0, c+ =

10�2
0, c− = 10�2

0. b We vary the c+ while keeping the fixed value of
L0 = 20�2

0, Q = 20�2
0, c− = 20�2

0

where c = 151/4/
√

2. Putting the value of r+(cri) and L(cri)

in the Eqs. (4.41) and (1.4), we can find the critical value of
the bulk temperature and pressure. Thus, the critical values
of temperature and pressure are

Tcri = 4

5πc
√
q

×
(

1 − α′ (934α1 + 336α2 − 144 (2α3 + α4))

45
√

15q

)
,

(5.10)

Pcri = 1

4πGNc2q

×
(

1 − (6794α1 + 3456α2 − 1584 (2α3 + α4)) α′

225
√

15q

)
,

(5.11)
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and in the end, with the support of Eq. (4.51), the critical
value of central charges up to O(α′) is given by

ccri = 3
√

3c3q3/2

128πGN

×
(

1 + α′ (1199α1 + 576α2 − 264 (2α3 + α4))

25
√

15q

)
,

(5.12)

acri = 3
√

3c3q3/2

128πGN

×
(

1 + α′ (3197α1 + 1728α2 − 792 (2α3 + α4))

75
√

15q

)
.

(5.13)

We can express the free energy as a function of T, P , or L ,

Q,, GN and higher-derivative coupling parameters. In Fig. 4,
we plotted the free energy (F) given in (4.46) with respect to
the Hawking temperature (T ) (4.41) of the corrected black
hole for different values of P and Q while fixing the other
parameters. We observe that the behaviour of the free energy
is the same as Einstein’s gravity as detailed in [5,6,75] for
the small coupling term of the higher-derivative terms.

6 Conclusion and discussion

In this article, we consider the consequence of the higher-
derivative term (containing a higher derivative in the metric
field as well as in the gauge field) on the charged black hole
thermodynamics and uncover its consistency with the ther-
modynamics of the boundary field theory by implementing
the AdS/CFT dictionary. These higher-derivative terms nat-
urally emerge in theories of quantum gravity, specifically in
string theories, when we consider their low-energy limits. To
study this further, we apply the effective field theory approach
to the four-derivative terms discussed in Sect. 4.

Since bulk thermodynamics for black holes in Gauss–
Bonnet gravity [53–57] and the four-derivative effective
action [37,73] discussed in (4.25) are well investigated, we
discuss the extended structure of black hole thermodynamics
and its holographic counterpart using variations of Newton’s
constant as well as variations of the cosmological constant.
The emergence of the higher-derivative terms in bulk comes
with an additional parameter α′. The implication of the well-
established AdS/CFT dictionary leads the variation of � to
induce a variation in the ’t Hooft coupling λ, apart from vari-
ations in colour N and boundary volume V . Therefore, to
disentangle the λ variation from that of N and V, we allow
the parameter α′ to vary in bulk along with L and GN as
bookkeeping devices. As a result, we will be able to demon-
strate that boundary and bulk thermodynamics are indeed
equivalent.

Fig. 4 Gibbs free energy F vs temperature T diagram. Gibbs free
energy F�2

0 is displayed as a function of temperature T �0 in a different
configuration of electric charge and AdS length. a We vary the total
AdS curvature scale L keeping other parameters to a fixed value as
GN = 1, Q = 20�2

0, α
′ = 0.001�2

0. b We vary the total charge Q of the
black hole, keeping other parameters to a fixed value as GN = 1, L =
25�0, α

′ = 0.001�2
0

We will proceed with the general four-derivative theory of
gravity coupled with the U(1) gauge field in the bulk black
holes. In the presence of such terms, we include the variation
of α′ in the bulk first law and show that the variations of GN

and α′ generate the variations of c+ and c−, where c± = (c±
a)/2, and the bulk first law can be beautifully interpreted as
the boundary first law which is written in terms of variations
of c±. As a result, the boundary theory is endowed with two
chemical potentials μ± (corresponding to c±, respectively),
and they satisfy the generalized Euler relation (3.5) of the
boundary theory. The existence of a gauge field modifies the
general expression of the chemical potential μ± as shown in
(3.11). Furthermore, we concluded that the authors of [31,32]
did not consider the anomaly present in the boundary theory
due to the presence of the higher-derivative terms in the bulk
theory, and as a result, they had not taken into account the

123



467 Page 16 of 19 Eur. Phys. J. C (2024) 84 :467

other central charge contribution in the boundary theory’s
first law thermodynamics.

After establishing a one-to-one correspondence between
bulk and boundary thermal parameter space, we study the
phase behaviour of the charged black hole in the higher-
derivative gravity theory. The phase structure of charged
black holes in AdS space with higher-derivative terms is
endowed with a different chemical potential; hence the
dimension of the thermodynamic phase will increase. In
this paper, we study thermodynamics perturbatively. How-
ever, in the first example, we discuss the Gauss–Bonnet AdS
black holes, for which one can extract the complete solu-
tion. Therefore, without any perturbative analysis, we dis-
cuss the thermodynamic and phase behaviour of a charged
Gauss–Bonnet AdS black hole from both the bulk and bound-
ary perspectives. We notice the swallowtail behaviour in the
Gauss–Bonnet AdS black hole, which is analogous to the
Reissner–Nordström AdS black hole. In contrast, the swal-
lowtail behaviour will depend on both the charge of the black
hole and the Gauss–Bonnet parameter. The boundary CFT
dual to Gauss–Bonnet black hole thermodynamics observed
a similar phase structure. The analysis of the critical points
generated by Eq. (5.1) is the crucial step in the study of phase
structure. We found that the critical points for charged Gauss–
Bonnet black holes are the same as the critical point from
the mean-field theory computation. One can see the depen-
dence of the Gauss–Bonnet parameter on the critical points
from (5.2) and (5.3). In the subsequent example, we study
the thermodynamic phases of charged black holes in generic
four-derivative perturbatively.

It would also be interesting to find an adequate van der
Waals-type description of higher-derivative black holes and
understand the effect of the central charges on the mean-field
potential [76]. Subsequently, it would be fascinating to inves-
tigate the validity of this formalism for rotating black holes
or black holes with scalar charges in higher-derivative theo-
ries [77–79], boosted black string [80], and quantum black
hole [81,82].
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Appendix A: Thermal quantities for Maxwell Gauss–
Bonnet in terms of L

Using the relation between L and L0, the Hawking temper-
ature from (4.8) can be expressed as

T = 3π2r4+
(
L4 + 2L2r2+ − 4r2+α′) − G2L4Q2

6π3L4r3+
(
4α′ + r2+

) , (A.1)

and from (4.7) the mass M of the black hole is

M = 3π
(
L4

(
2α′ + r2+

) + L2r4+ − 2r4+α′)
8GL4 + GQ2

8πr2+
.

(A.2)

The volume of the black hole as conjugate quantity corre-
sponds to P defined in (1.4), and the chemical potentials
conjugate to α′ are given by

∂M

∂P

∣∣∣∣
r+,Q,α′

= 1

2
π2r4+ − 2π2r4+α′

L2 , (A.3)

∂M

∂α′

∣∣∣∣
r+,L ,Q

=−3π2
(
L4

(
3r2+−4α′) +8L2r4+−12r4+α′+r6+

)
4πGL4

(
4α′ + r2+

)

+ 4G2Q2

4πGr2+
(
4α′ + r2+

) . (A.4)

Using the black hole mass (A.2), we can generate the first
law of thermodynamics and Smarr relation presented in (2.5)
and (2.6), where �0 is replaced with �, defined in terms of
the effective AdS length.

Appendix B: Critical exponent computation

To find the critical exponent, we observed thatCv = 0 for the
black holes, and hence the first critical exponent is α = 0.

To discover the other exponent, we introduced the expansion
parameter as t = T

Tcri
− 1, ε = v

vcri
− 1 and expanded the

equation of state near the critical point

p = 1 + a1t + a2tε + a3ε
3 + O(tε2, ε4). (B.1)
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Using Maxwell’s area law, during the phase transition∫ εs

εl

ε
dp

dε
dε = 0 �⇒ ε ∝ √−t . (B.2)

Therefore, we have

η = vs − vl

vcri
∝ √−t �⇒ β = 1/2. (B.3)

The isothermal compressibility gives us the third critical
exponent as

κT = −1

v

∂v

∂P

∣∣∣∣
vcri

∝ − 1
∂p
∂ε

∣∣∣∣∣
ε=0

= 1

t
, (B.4)

which indicates that the critical exponent γ = 1. Moreover,
the shape of the critical isotherm t = 0 gives the fourth expo-
nent as

p − 1 ∝ −ε3 �⇒ δ = 3. (B.5)
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