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Abstract In this paper, we study the geodesic motion in
spherically symmetric electro-vacuum Euclidean solutions
of the Einstein equation. There are two kinds of such solu-
tions: the Euclidean Reissner–Nordström (ERN) metrics, and
the Bertotti–Robinson-like (BR) metrics, the latter having
constant Kretschmann scalar. First, we derive the motion
equations for the ERN spacetime and we generalize the
results of Battista–Esposito, showing that all orbits in as ERN
spacetime are unbounded if and only if it has an event hori-
zon. We also obtain the Weierstrass form of the polar radial
motion, providing an efficient tool for numerical computa-
tions. We then study the angular deflection of orbits in the
Euclidean Schwarzschild spacetime which, in contrast to the
Lorentzian background, can be either positive or negative.
We observe the presence of a null and a maximal deflec-
tion rings for particles with velocity at infinity v > 1 and
we give approximate values for their size when v � 1. For
BR spacetimes, we obtain analytic solutions for the radial
motion in proper length, involving (hyperbolic) trigonomet-
ric functions and we deduce that orbits either exponentially
go to the singularity or are periodic. Finally, we apply the
previous results and use algorithms related to Weierstrass’
elliptic functions to produce a Python code to plot orbits of
the spacetimes ERN and BR, and draw “shadows” of the first
ones, as it was already done before for classical black holes.

1 Introduction and motivation

Instantons (or pseudoparticles) were originally defined in [7]
as solutions of the (classical) Yang–Mills field equations,
which are non-singular on some section of a complexified
spacetime. By analogy, a gravitational instanton was defined
in [31] to be a solution of the classical Einstein field equa-
tion, which is positive-definite (i.e. Riemannian) on some
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section of a complexified spacetime. Such metrics were first
introduced in quantum gravity by Hartle and Hawking [29]
in order to make some path integral converge, hence defin-
ing the so-called Hartle–Hawking propagator. Quoting [26],
after the development of instantons in Yang–Mills theory and
because (super)gravity is a gauge theory, it seems reasonable
to expect gravitational instantons to play a similar role in
gravity as instantons do in quantum field theory. For general
discussions on gravitational instantons, see [19–21,24,30].

Since their introduction, gravitational instantons and their
interactions with gauge instantons have been a subject of
deep interest [44–46,52]. More recently, the existence and
uniqueness of toric instantons have been established in [36].
Moreover, purely Euclidean instantons (i.e. the correspond-
ing complex spacetime does not admit any Lorentzian sec-
tion) have been introduced in [13] and thoroughly described
in [2]. It is worth mentioning that the gravitational instantons
with positive cosmological constant were fully described and
classified in [47].

Besides quantum gravity, in the early geometric models of
matter introduced in [5], the Fubini–Study metric on the pro-
jective planeCP2 has been proposed as a (compact) model for
the spacetime surrounding a neutron. Later in [4], the authors
rather propose the Euclidean Schwarzschild geometry as a
model for the neutron. As explained in [35], this has been
generalized to other spin- 1

2 -particles such as the proton and
the electron, for which the Taub–bolt and Taub–NUT instan-
tons were respectively given as candidates. Moreover, inter-
esting uniqueness results on Euclidean Schwarzschild and
Taub–NUT instantons were obtained in [40]. These propos-
als further motivate the investigation of gravitational instan-
tons and, in particular, the study of the geodesic dynamics in
such spaces.

Geodesic motion in gravitational instantons has started
more than thirty years ago, with the pioneer work [3], focus-
ing on closed geodesics in compact instantons, with applica-
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tions in the determination of their injectivity radius. The gen-
eral geodesic dynamics in (generalized) Taub–NUT instan-
tons has been detailed in [55]. More recently, the case of
Kerr–Newman instantons is the topic of [39], while instan-
tons of Eguchi–Hanson type were studied in [57]. Finally,
we mention that the integrability of the conformal geodesic
flow on spherically symmetric instantons motivates
the work [18].

In the present paper, an instanton will designate a Rie-
mannian solution of the Maxwell–Einstein equations on a 4-
dimensional manifold.1 We investigate the geodesic motion
in such spaces, which we assume to be spherically symmetric.
In particular, we will apply the theory of Weierstrass elliptic
functions to the radial motion, as it was already done in the
Lorentzian framework; see [14,27]. We also study the gravi-
tational lensing of trajectories, as done for photons and mas-
sive particles in Reissner–Nordström (resp. Kerr–Newman)
spacetimes in [48] (resp. in [32]). Our methods can also be
compared to the more recent work [56], where tidal forces are
also investigated. As explained below, one of the main aims
of the present paper is to highlight some important dynam-
ical differences between the Euclidean and the Lorentzian
backgrounds.

The simplest example of a gravitational instanton is the
Euclidean Schwarzschild metric [29], given in Schwarzschild
coordinates (τ, r, θ, φ) on M := R×]2M;+∞[×S

2 �
R

2 × S
2 by

ds2 =
(

1 − 2M

r

)
dτ 2 +

(
1 − 2M

r

)−1

dr2 (ES)

+ r2(dθ2 + sin2 θdφ2),

(M ≥ 0 being the mass of the central body) and the link
with the Lorentzian Schwarzschild metric is given by setting
the Euclidean time τ = i t, with t being the (Lorentzian)
coordinate time. In other words, the Euclidean Schwarzschild
metric is obtained from the Lorentzian one by applying a Wick
rotation. As for any metric, it is natural to study the geodesic
motion associated to it. Regarding the metric (ES) above, this
question was addressed thoroughly in [6].

As suggested in [25, §II], one can also look for the
Reissner–Nordström analogue of the Euclidean
Schwarzschild solution; a metric that was used in [42, §4] and
[43, §II.B], for instance. Assuming the central body has an
electric charge Q ∈ R, the Euclidean Reissner–Nordström
(ERN) metric is given by

1 In contrast to [31], we do not assume that the curvature vanishes at
large distances.

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dτ 2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2

(ERN)

+ r2(dθ2 + sin2 θdφ2).

In this paper, we generalize the approach of [6] to this
metric and study the motion of a test particle in the ERN
spacetime. Specifically, we prove that the method of [27,
§3.1] still applies to the ERN metric, hence obtaining ana-
lytic solutions for (non-purely radial) geodesics in terms of
Weierstrass’ elliptic functions. As we will see, one of the
remarkable results obtained in [6] extends to the ERN space-
time with horizon (i.e. such that Q2 ≤ M2), namely the
fact that the energy of an exterior geodesic is confined in the
open interval ]−1, 1[. In particular, no elliptic-like geodesics
exist in the sub-extremal case. This fails in the super-charged
case Q2 > M2, where arbitrary high energy is allowed and
attained by a circular geodesic. As mentioned in [6], these
facts show that these Riemannian solutions present substan-
tial differences in their dynamics, when compared to their
usual relativistic avatars.

Moreover, we will see how the polar motion equation sim-
plifies in the Schwarzschild case Q = 0 and we retrieve the
results from [6] using only the elementary geometric prop-
erties of the real elliptic curve describing the phase portrait
in (affinely transformed) Binet variable.

Another remarkable dynamical distinction between
Lorentzian and Euclidean Schwarzschild spacetimes relies
in the gravitational deflection of orbits. As is well-known,
given an orbit coming from and to infinity, the deflection
angle δφ (in the motion plane) between its two asymptotic
directions is always positive in Schwarzschild geometry, for
photons as well as for massive particles. This means that
test-particles can only be attracted by the central body. How-
ever, in Euclidean Schwarzschild geometry, the deflection
angle can be positive or negative, depending on the veloc-
ity at infinity v and the perihelion rmin of the orbit; in this
geometry, particles can be attracted or repelled by the central
mass. More precisely, we observe that, at fixed v < 1, we
have δφ < 0 for all values of rmin, while for v > 1, the
deflection δφ vanishes (resp. is maximal positive) at some
perihelion rmin = ρ0 (resp. rmin = ρmax). In (11) and (12),
we give approximate values for ρ0 and ρmax when v � 1. The
existence of ρmax gives rise to a visible maximal deflection
ring in the shadow of such a spacetime. As already said, the
fact the δφ < 0 at small perihelia indicates that particles are
repelled by the central mass and thus the horizon becomes
invisible to the observer, see Figs. 2 and 16.

The only other possible type of spherically symmetric
instanton is given by a Bertotti–Robinson-like metric, whose
line element has the form
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ds2 = Q2
(

1 − 2mr + q2r2

r2 dτ 2 + dr2

r2(1 − 2mr + q2r2)

(BR)

+dθ2 + sin2 θdφ2
)

,

where Q �= 0 and m, q ∈ R are some constants. This is
the Euclidean analogue of the general Bertotti–Robinson
electro-vacuum Lorentzian solution. As in the Lorentzian
case, this metric essentially differs from (ERN) is this sense
that its Kretschmann invariant is constant. To the knowledge
of the author, the dynamics of this solution, Euclidean or
Lorentzian, doesn’t appear in the literature. This is treated in
§ 5, where we provide a full analytic solution of the geodesic
equation, in terms of (hyperbolic) trigonometric functions;
see (23) and (25).

Finally, the efficient algorithms available to approximate
Weierstrass’ elliptic functions [11,15] are used to produce a
Python code,2 designed to draw orbits in the two types of
instantons discussed here, as well as to obtain the “shadow”
of an ERN space by ray-tracing, as it was already done for
black holes in [12,17,49,53,54], for instance. Since there
are no null geodesics in Euclidean geometry, photons are
replaced by particles with a velocity at infinity that should
be provided by the user. Conformally to what was mentioned
above concerning the deflection angle, we observe the pres-
ence of a maximal deflection ring when v > 1 and we notice
that the horizon is not visible. In particular, the optical dif-
ference between the cases Q2 � M2 and Q2 � M2 is not
as obvious as in the Lorentzian background. We still observe
that the size of the maximal deflection ring diminishes as the
charge increases, see Fig. 19.

The layout of the paper is as follows: first, we state that the
metrics (ERN) and (BR) are the only spherically symmetric
solutions of the Einstein–Maxwell field equation with com-
plex vector potential Aμ = −i Qr−1dτ. The detailed proof
of this result can be found in the Appendix A. Then, we
derive the motion equations and the motion constants for the
metric (ERN), and we prove that the energy E of a geodesic
satisfies E2 < 1 when Q2 < M2, as mentioned above.
We then obtain the Weierstrass equation from of the polar
radial motion equation and we investigate the particular case
where Q = 0. Next, we study the gravitational deflection in
Euclidean Schwarzschild spacetime and provide the afore-
mentioned approximations for the deflection angles, as well
as for the null and maximal deflection rings. Concerning the
Bertotti–Robinson family (BR), we derive the motion equa-
tions and obtain analytic solutions with (hyperbolic) trigono-
metric functions. Finally, we quickly explain how the Python

2 Available at https://github.com/arthur-garnier/
euclidean_orbits_and_shadows.git.

code is constructed and we finish with some figures illustrat-
ing our results and programs.

2 The two types of spherically symmetric
electro-vacuum instantons

In this section, we state the unicity result for spherically
symmetric electro-vacuum instantons. We systematically use
Stoney units where G = c = 4πε0 = 1. Let (M, Q) ∈
R+ × R and consider the numbers r+, r− defined by

r± :=
{

M ±√
M2 − Q2 if Q2 < M2,

0 otherwise.

Let also M := R×]r+,+∞[×S
2 � R

2 × S
2, with coordi-

nates xμ = (τ, r, θ, φ), the pair (θ, φ) describing spherical
coordinates on S

2. Since we work on the Euclidean section,
we restrict our study to the open subset r > r+, just as in [21].
This is a reasonable restriction, as we are interested by the
exterior region of the spacetime.

We denote by d	2 := dθ2 + sin2 θdφ2 the usual round
metric on S

2 and we have the following result, the detailed
proof of which can be found in Appendix A.

Let ds2 = gμνdxμdxν be a spherically symmetric solu-
tion of the Einstein–Maxwell equation with complex vec-
tor potential

Aμ = −i Qr−1dτ,

defined for r � 0.

If the Kretschmann invariant K = Rαβμν Rαβμν asso-
ciated to gμν is independent of r, then there are con-
stants m, q ∈ R such that the metric takes the Bertotti–
Robinson form

ds2 = Q2
[

1 − 2mr + q2r2

r2 dτ 2

+ dr2

r2(1 − 2mr + q2r2)
+ d	2

]

in which case the Kretschmann invariant is K = 8Q−4.

Otherwise, there are coordinate transformations of the
form τ̃ = Cτ and R = r/(Ar + B) (with A ∈ R and
B, C ∈ R

∗) as well as constants M̃, Q̃ ∈ R such that
gμν takes the Reissner–Nordström form

ds2 =
(

1 − 2M̃

R
+ Q̃2

R2

)
dτ̃ 2

+
(

1 − 2M̃

R
+ Q̃2

R2

)−1

dR2 + R2d	2,
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whose Kretschmann invariant is K = 8R−8(6M̃2 R2 −
12M̃ Q̃2 R + 7Q̃4).

We make the following observations:

• The Ricci scalar of any of the above solutions vanishes.
• The proof shows in particular that for a vector potential

Aτ = Qr−1, a spherically symmetric solution of the field
equation is Euclidean (resp. Lorentzian) if and only if Q
is purely imaginary (resp. is real).

• Recalling the notation from the proof, we observe that in
the Reissner–Nordström case, the new potential is

A′
μ = −i Q̃ R−1dτ̃ = −i Q(r−1 + αβ−1)dτ

= Aμ − i∇μ f,

where f := Qαβ−1τ. Therefore, the coordinate transfor-
mation (τ, r) �→ (τ̃ , R) induces a gauge transformation
Aμ �→ Aμ − i∇μ f.

• The second metric of the statement with m = q = 0 gives
the Euclidean version of the original Bertotti–Robinson
line element derived in [9,50]

ds2 = Q2

r2

[
dτ 2 + dr2 + r2d	2

]
.

Observe moreover that in Binet variable u = 1/r, the
general Bertotti–Robinson metric has an even simpler
form

ds2 = Q2
[
(u2 − 2mu + q2)dτ 2 + du2

u2 − 2mu + q2

+d	2
]

.

If now ds2 = gμνdxμdxν = gμμ(dxμ)2 is an asymptot-
ically flat spherically symmetric electro-vacuum instanton,
then the Kretschmann scalar should vanish as r → +∞,

thus only the Reissner–Nordström form from the previous
theorem is allowed, with τ̃ = Cτ and R = r/(Ar + B). But
the asymptotic conditions

lim
r→+∞(Ar + B)−2 = lim

r→+∞
gθθ

r2 = 1 = lim
r→+∞ gττ

= lim
r→+∞ C2(1 − 2M̃/R + Q̃2/R2)

impose R = r and τ̃ = τ. Finally, the electromagnetic tensor
Fμν has i Fτr = Q̃ R−2 = Qr−2, so that Q̃ = Q and we have
obtained the following Euclidean analogue of the Birkhoff–
Hoffmann theorem:

The Euclidean Reissner–Nordström metric is the only
spherically symmetric, asymptotically (Euclidean) flat

metric satisfying the electro-vacuum Einstein–Maxwell
equation associated to the complex vector potential

Aμ := −i Qr−1dτ.

More precisely, if ds2 = gμνdxμdxν is a such a metric,
defined for r � 0, then there exists a constant M̃ ∈ R

such that

ds2 =
(

1 − 2M̃

r
+ Q2

r2

)
dτ 2 +

(
1 − 2M̃

r
+ Q2

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2.

In particular, the metric (ERN) is the only spherically
symmetric solution of the Einstein–Maxwell equation
associated to Aμ defined on M, which reduces to the
Euclidean Schwarzschild metric (ES) when Q → 0.

3 Geodesic motion in Euclidean Reissner–Nordström
instantons

3.1 Motion equations and energy of orbits

Recall the notation from the beginning of the previous section
and consider a non-constant geodesic γ = (τ, r, θ, φ) in
M = R×]r+,+∞[×S

2 for the metric (ERN), with affine
parameter λ. We will analyse the geodesic equation in the
same fashion as in [6].

By spherical symmetry, we may assume that θ ≡ π/2 and
letting

�(r) := 1 − 2M

r
+ Q2

r2 ,

the relativistic Lagrangian L = 1
2 gμνγ̇

μγ̇ ν reads

2L = �(r)τ̇ 2 + �(r)−1ṙ2 + r2φ̇2.

Thus, the temporal and angular Euler–Lagrange equations
provide constants C, J ∈ R such that

τ̇ = C

�(r)
, φ̇ = J

r2 (1)

and thus the scalar

H := 2L = �(r)−1(C2 + ṙ2) + J 2

r2 > 0

is conserved along γ and the proper length s satisfies ds2 =
Hdλ2 so that we get
(

dφ

ds

)2

= φ̇2

H = L2

r4 ,

(
dr

ds

)2

= ṙ2

H = �(r)

(
1 − L2

r2

)

−E2, (2)
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where E (resp. L) is the energy per unit mass (resp. angu-
lar momentum per unit mass) of γ, defined by analogy
with the Lorentzian framework as the proper temporal (resp.
azimuthal) conjugate momentum

E := pτ(s) = 1√|H| pτ(λ) = gτμγ̇ μ

√H = �(r)τ̇√H
= C√H ,

(
resp. L := 1√|H| pφ = J√H

)
.

For the rest of this section, we assume that γ is non-purely
radial and we denote the differentiation with respect to the
Euclidean time τ with a dot.

We want to apply the Weierstrass analysis of this equation
and since it has degree 4, one first needs to choose a real root
of the quartic right-hand side. Such a real root is guaranteed
to exist as soon as E2 < 1, a property that we shall prove
to always hold, provided that the metric (ERN) presents an
event horizon (that is, when Q2 < M2). To do this, we need
expressions for the energy and angular momentum, as func-
tions of the initial conditions γ (0) =: (τ0, r0, π/2, φ0) and
γ̇ (0) =: (1, ṙ0, 0, φ̇0). By symmetry, we may assume that
τ0 = φ0 = 0 and if we let α := dτ

dλ

∣∣
λ=0 , then the constant

C reads C = α�(r0) and we also have J = αr2
0 φ̇0. Then,

H = �(r0)
−1

(
C2 +

(
dr

dλ

)2
)

+ J 2

r2
0

= α2
(
�(r0) + �(r0)

−1ṙ2
0 + r2

0 φ̇2
0

)
,

so that we arrive at the following expressions for the energy
and angular momentum:

E = �(r0)√
�(r0) + �(r0)−1ṙ2

0 + r2
0 φ̇2

0

,

L = r2
0 φ̇0√

�(r0) + �(r0)−1ṙ2
0 + r2

0 φ̇2
0

. (3)

We can now state the main result of this section, gener-
alizing the results from [6] to the charged case. It implies
in particular that the metric (ERN) features an event hori-
zon exactly when there is no bounded orbit. The proof, rely-
ing on a tedious analysis of a real polynomial, is given in
Appendix B.

If Q2 ≤ M2, then any (exterior) non-constant geodesic
γ for the metric (ERN) has E2 < 1. Otherwise, there are
circular orbits with arbitrary energy.

3.2 Reduction of the polar radial equation to Weierstrass’
form

Let γ = (τ, r, φ) be a non-purely radial equatorial geodesic.
Then J �= 0 so that the map s �→ φ(s) is a diffeomorphism

onto its image and from (2) we find the polar radial equation
(

dr

dφ

)2

= 1 − E2

L2 r4 − 2M

L2 r3

+
(

Q2

L2 − 1

)
r2 + 2Mr − Q2 =: F(r). (4)

In this section, the dot denotes differentiation with respect
to the polar variable φ. We use the same trick as in [27, §3.1]
to reduce the degree of the above equation and then re-write
it in Weierstrass form. Let r ∈ C be a root of the quartic F
(which, in view of the result from Sect. 3.1, is guaranteed to
be real positive when Q2 ≤ M2) and consider the shifted
Binet variable

u := 1

r − r
.

Then, the Eq. (4) becomes

u̇2 = ṙ2

(r − r)4 = u4 F(r + 1/u)

= 1

L2

[
2(2(1−E2)r3−3Mr2+(Q2 − L2)r+M L2)u3

+ (6(1 − E2)r2 − 6Mr + Q2 − L2)u2

+2(2(1 − E2)r − M)u + 1 − E2
]
.

It is now straightforward to re-write this in Weierstrass form.
Indeed, we can choose a root r ∈ C of the quartic

1 − E2

L2 r4 − 2M

L2 r3 +
(

Q2

L2 − 1

)
r2 + 2Mr − Q2 = 0,

which we can choose to be real positive if Q2 ≤ M2. If we
let

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ = 1−E2

L2 ,

γ = 2
(

2δr − M
L2

)
,

β = 6r
(
δr − M

L2

)
+ Q2

L2 − 1,

α = 2
(

2δr3 − 3M
L2 r2 +

(
Q2

L2 − 1
)

r + M
)

,

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g2 := 1
4

(
β2

3 − αγ
)

,

g3 := 1
8

(
αβγ

6 − α2δ
2 − β3

27

)
,

℘ := α
4(r−r)

+ β
12 ,

(5a)

then the function ℘ satisfies the Weierstrass equation

℘̇2 = 4℘3 − g2℘ − g3. (5b)

In other words, the polar radial motion is given by

r(φ) = r + α

4℘(φ) − β/3
, (5c)
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where ℘ = ℘g2,g3 is the Weierstrass function associated to
the pair (g2, g3) ∈ C

2.

More practically, given an initial radius r0 := r(φ0), we
have to find some z0 ∈ C such that ℘(z0) = α

4(r0−r)
+ β

12 , a
task that can be achieved using Carlson’s integrals [11]

RF (x, y, z) := 1

2

∫ ∞

0

dζ√
(ζ + x)(ζ + y)(ζ + z)

. (RF )

Then, the Eq. (5c) can be recast in the following form

r(φ) = r + α

4℘g2,g3(z0 + φ) − β/3
, with (5c’)

z0 := RF (℘0 − z1, ℘0 − z2, ℘0 − z3) ∈ C,

where z1,2,3 ∈ C are the roots of the Weierstrass cubic
4z3 − g2z − g3 and ℘0 := α

4(r0−r)
+ β

12 .

The main advantage of this formulation is that the integrals
(RF ) can be approximated efficiently by the Carlson algo-
rithm [11, §2] and we can approach ℘ using the Coquereaux–
Grossmann–Lautrup algorithm [15, §3]. This is the method
we use to approximate ERN orbits and produce a Python
code.

3.3 The special case of the Euclidean Schwarzschild
geometry

When Q = 0, we have F(0) = 0 so that we may take r = 0
so that the polar equation in Binet variable simplifies to

u̇2 = u4 F(1/u) = 2Mu3 − u2 − 2M

L2 u + 1 − E2

L2

which is [6, equation (2.16)]. Therefore, the Weierstrass form

℘̇2 = 4℘3 − g2℘ − g3

is obtained by letting ℘ := M/(2r) − 1/12, as well as

g2 := 1

12
+ M2

L2 and g3 := 1

216
− M2

12L2 (2 − 3E2). (gES
12 )

These expression can be compared to the Lorentzian
Schwarzschild case, where for a test-particle of mass μ = 2L
(twice the Schwarzschild Lagrangian), the constants g2 and
g3 read (cf [28, §4, p. 84])

g2 = 1

12
+ μM2

L2 and g3 = 1

216
− M2

12L2 (2μ + 3E2).

(gLS
12 )

Therefore, one may view a Euclidean Schwarzschild
geodesic as a space-like Lorentzian Schwarzschild geodesic
with complex energy EEuc = i ELor. Notice that this last

equality is expected since the energy is defined as the tem-
poral momentum and because the Euclidean time τ and the
Lorentzian time t are related by the relation τ = i t.

The Weierstrass formulation also permits to derive a
shorter proof of the fact that E < 1 for every geodesic
γ in Euclidean Schwarzschild geometry, with initial radius
r0 > r+ = 2M. As above, we may simplify the notation by
rescaling the radius and assuming that M = 1. If L = 0, then
the second equation (2) reduces to (dr/ds)2 = 1− E2 −2/r
so 1 − E2 ≥ 2/r > 0, as claimed. Now if L �= 0, then
we may use Weierstrass’ form and the discriminant of the
equation 4z3 − g2z − g3 reads

� := 16(g3
2 − 27g2

3)

= L−6
[
(1 − E2)L4 − (27E4 − 36E2 + 8)L2 + 16

]

= 1 − E2

L2 + O
(

1

L4

)
,

so that if, for the sake of contradiction, we assume E2 > 1,

then � < 0 for L � 0, something which can be achieved
by rescaling the initial azimuthal angular velocity. Therefore,
we assume that � < 0 and look for an absurdity.

Consider the Weierstrass cubic q(x) := 4x3 − g2x − g3;
then the phase portrait in Weierstrass variable x = 1/(2r) −
1/12 describes a portion of the (real) elliptic curve

Eq := {(x, y) ∈ R
2 | y2 = q(x)}.

Since limx→+∞ q(x) = +∞, we have Eq ∩ {x = x0} �= ∅
for x0 � 0 but because q(1/6) = −(E/2L)2 < 0, the
non-compact connected component of Eq lies in the open
half-plane {x > 1/6} (which corresponds in radial variable
to {r < 2}), so that the considered phase portrait cannot
describe a portion of this component. However, to say that
� < 0 amounts to say that Eq is connected, a contradiction.

At this point, we know that � ≥ 0. If � > 0, then the
elliptic curve Eq has an additional compact connected com-
ponent and since q(−1/12) = (1 − E2)/(4L2) > 0, this
component intersects the subset {x = −1/12}. Therefore,
the corresponding orbit is indeed unbounded. In the case
where � = 0, the curve is singular but connected so that the
orbit imposes 0 ≤ q(1/6) = −(E/2L)2 ≤ 0 so r = 2, a
new contradiction. We summarize the discussion as follows:

Any Euclidean Schwarzschild orbit has E2 < 1, and is
unbounded. Moreover, the phase portrait of a non-radial
equatorial Euclidean Schwarzschild orbit in Weierstrass
variable ℘ = M/(2r) − 1/12 (with polar argument)
describes a portion of the unique compact connected
component of the associated (real) elliptic curve E,

included in E ∩ {−1 < 12℘ < 2}. In particular, the
discriminant of E is positive.
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4 Gravitational deflection of Euclidean Schwarzschild
orbits

Consider an equatorial orbit γ = (τ, r, φ), with energy
−1 < E < 1 and angular momentum L ∈ R

∗. Since γ is
unbounded, we may consider its velocity at infinity, defined
by v2 := limr→∞(dr/dτ)2. Using Eqs. (1) and (2), we find
the expression

v2 = lim
r→∞

(
dr

dτ

)2

= lim
r→∞

(
ṙ

τ̇

)2

= lim
r→∞

�(r)2

C2

(
�(r)

(
H − J 2

r2

)
− C2

)
= 1

E2 − 1.

The Eq. (4) can be recast in Binet variable u = 1/r and
yields
(

du

dφ

)2

+ u2 = 2Mu3 − 2M

L2 u + 1

b2 = 2Mu

(
u2 − 1

L2

)

+ 1

b2 , (6)

where the constant b :=
√

L2

1−E2 is the impact parameter of
γ, satisfying L = ±bvE . Since

lim
r→∞

dφ

dτ
= lim

r→∞
J�(r)

Cr2 = 0,

the orbit admits asymptotic lines, and we are first inter-
ested in the deflection angle at infinity δφ between these two
asymptotic directions, as a function of the orbit’s perihelion
r = rmin.

4.1 Analytic expression of the deflection angle using
Carlson’s integrals

As illustrated in the Fig. 1, the deflection (at infinity) δφ is
given by

δφ = 2|φ(r = ∞) − φ(r = rmin)| − π

and using (4) again leads to the expression

δφ = 2
∫ ∞

rmin

dφ − π = 2
∫ ∞

rmin

dφ

dr
dr − π

= 2
∫ ∞

rmin

1√
1
b2 − 1

r2

(
1 − 2M

r + 2Mr
L2

) dr

r2 − π.

This expression can be simplified using the Weierstrass vari-
able ℘ = Mu/2 − 1/12. Indeed, using the constants g2, g3

given by equation (gES
12 ), we have

δφ = 2

∣∣∣∣∣∣∣∣
∫ 1/rmin

0

du√
1
b2 − u2 + 2Mu

(
u2 − 1

L2

)

∣∣∣∣∣∣∣∣
− π

= 2
∫ − 1

12

− 1
12 + M

2rmin

d p√
4p3 − g2 p − g3

− π.

This expression can be rewritten in terms of elliptic integrals,
as in the pioneer work [16]. However, it is both easier and
numerically more adequate to express it with the integrals
(RF ), which we numerically approximate using Carlson’s
algorithm [11]. Observe first that because r = rmin is a turn-
ing point of γ, we have

0 = d℘2

dφ2

∣∣∣∣
r=rmin

= 4℘(r = rmin)
3 − g2℘(r = rmin) − g3.

In other words, the point ℘max := M/(2rmin)−1/12 is a root
of the Weierstrass cubic and this leads to the factorization

4p3 − g2 p − g3 = (p − ℘max)

(
4p2 +

(
2M

rmin
− 1

3

)
p

+
(

1

36
− g2 − M

3rmin
+ M2

r2
min

))
,

which allows to find the other two roots ℘± ∈ C of the cubic.
We then have

∫ − 1
12

℘max

d p√
4p3 − g2 p − g3

=
∫ 0

M
2rmin

dζ√
4
(
ζ − 1

12

)3 − g2
(
ζ − 1

12

)− g3

= 1

2

∫ 0

M
2rmin

dζ√(
ζ − ℘max − 1

12

) (
ζ − ℘− − 1

12

) (
ζ − ℘+ − 1

12

)

= 1

2

[∫ ∞
M

2rmin

−
∫ ∞

0

]
dζ√(

ζ−℘max − 1
12

) (
ζ − ℘− − 1

12

) (
ζ − ℘+ − 1

12

)

= RF

(
emax + M

2rmin
, e− + M

2rmin
, e+ + M

2rmin

)
− RF (emax, e−, e+),

where emax,± := −℘max,± − 1/12. Thus, we obtain the fol-
lowing expression for the deflection:

δφ = 2
(

RF

(
emax + M

2rmin
, e− + M

2rmin
, e+ + M

2rmin

)

−RF (emax, e−, e+)) − π. (7)

This is an efficient formula for numerical calculations (see
below), but it is natural to ask for an approximation of δφ

when rmin → ∞. This is the goal of the next subsection.
Observe moreover that the two terms of (7) involving the
integrals (RF ) can be complex, but their difference is real
and non-negative.

4.2 Approximation of the deflection angle with perturbed
solution

The aim of this section is to obtain an expansion of δφ in
powers of the perihelion rmin, up to order 3. This choice of
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Fig. 1 Schematics of an orbit with angle deflection δφ = 2φ − π

Fig. 2 Orbits with different velocities and their perihelion (in units of M) and deflection at infinity

order will become transparent later, when we study the null
and maximal deflection rings.

To do so, we could use for instance the well-known per-
turbed solution method [10,23,33,51]. However, we will
avoid complicated calculations with a simple observation.
First, using (2), the turning point condition at r = rmin gives
the following relation

0 =
(

1 − 2M

r

)(
1 − L2

r2

)
− E2,

or, in terms of b and v,

r2
min

(
1 − 2M

rmin

(
1 + 1

v2

))
= b2

(
1 − 2M

rmin

)
,

that is,

b=rmin

√√√√√1− 2M
rmin

(
1+ 1

v2

)
1 − 2M

rmin

=rmin

√
1 − 2M

v2(rmin−2M)
.

(8)

Recall also that L2 = b2v2(1 + v2)−1 and that the equation
(4) in terms of b and L reads

(
dr

dφ

)2

= r4
(

1

b2 − 1

r2

(
1 − 2M

r
+ 2Mr

L2

))
.
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On the other hand, in Lorentzian Schwarzschild geometry,
the same equation

(
dr

dφ

)2

= r4

(
1

b2
Sch

− 1

r2

(
1 − 2M

r
− 2Mr

L2
Sch

))

differs from the above one by just a sign in the term in L−2,

and we have in this case

b2
Sch = rmin

√
1 + 2M

v2(rmin − 2M)
,

as well as L2
Sch = b2v2(1 − v2)−1. This means that the

expression of the deflection angle in Euclidean Schwarzschild
geometry with squared velocity v2 is the same as the expres-
sion of the Lorentzian deflection angle with same perihelion
and “squared velocity” −v2. This is mathematically well-
defined since the data only depend on the squared quantities
(b2, v2), and not on the pair (b, v) itself, so no complex num-
ber is involved. Moreover, this interpretation is physically
consistent with the relation τ = i t between the Euclidean
time τ and the Lorentzian time t and the definition of the
Euclidean velocity v2 = limr→∞(dr/dτ)2, while in the
Lorentzian case, v2 = limr→∞(dr/dt)2.

After [1] or [38] for instance, up to order 3, in Lorentzian
Schwarzschild geometry we have

δφ = 2M

b

(
1 + 1

v2

)
+ 3π M2

4b2

(
1 + 4

v2

)

+ 2M3

3b3

(
5 + 45

v2 + 15

v4 − 1

v6

)
+ O

(
M4

b4

)
. (9)

Therefore, changing the sign of the terms in v−2 yields the
following estimate, in Euclidean Schwarzschild geometry,

δφ = 2M

b

(
1 − 1

v2

)
+ 3π M2

4b2

(
1 − 4

v2

)
(δb

3)

+ 2M3

3b3

(
5 − 45

v2 + 15

v4 + 1

v6

)
+ O

(
M4

b4

)
.

Using now the relation (8), we arrive at the expression

δφ = 2M

rmin

(
1 − 1

v2

)
+ M2

r2
min

(
3π

4

(
1 − 4

v2

)
(δr

3)

+ 2

v2

(
1 − 1

v2

))

+ M3

r3
min

(
3π

2v2

(
1 − 4

v2

)
+ 10

3
− 26

v2 + 9

v4 − 7

3v6

)

+ O

(
M4

r4
min

)
.

Concerning the metric (ERN) with non-zero charge Q �=
0, the perturbed solution method gives, up to order 2 and
after elementary calculations we omit,

δφ = 2M

b

(
1 − 1

v2

)
+ 3π M2

4b2

(
1 − 4

v2

)

−π Q2

4b2

(
1 − 2

v2

)

+ O(b−3),

in agreement with [48]. Expressing the impact parameter b
in terms of the perihelion rmin as

b = rmin

√
1 − 2Mrmin − Q2

v2(r2
min − 2Mrmin + Q2)

,

yields the expansion

δφ = 2M

rmin

(
1 − 1

v2

)

+ M2

r2
min

(
3π

4

(
1 − 4

v2

)
+ 2

v2

(
1 − 1

v2

))

− π Q2

4r2
min

(
1 − 2

v2

)
+ O(r−3

min). (10)

As a sanity check, observe that replacing v2 by −v2 in the
previous expression and letting v → 1 leads to the light
deflection formula of [10, §III.B]

δφ = 4M

rmin
+ M2

r2
min

(
15π

4
− 4

)
− 3π Q2

4r2
min

+ O(r−3
min).

4.3 Null and maximal deflection rings

We start by observing that, at lowest order, the deflection
angle for a usual (Lorentzian) massive Schwarzschild orbit
with velocity at infinity v is given by

δφLor ≈ 2M

rmin

(
1 + 1

v2

)
> 0,

while in the Euclidean background, the estimation (δr
3) reads

δφEuc ≈ 2M

rmin

(
1 − 1

v2

)
.

This suggests that for the Euclidean Schwarzschild solution,
the deflection δφ may vanish for some values of rmin. This
can also be noticed from the motion equation itself. Indeed,
recall from [41, §144] that a polar curve, parametrized in
Binet variable u is concave with respect to its pole (hence,
has a positive deflection) if and only if u + d2u

dφ2 > 0. Now,
this quantity in Schwarzschild geometry is given by

ü + u = M(3u2 − εL−2),
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Fig. 3 Orbits with v = 5 and corresponding deflection graph

Fig. 4 Representations of δφ = δφ(rmin) for several values of v

where ε is the signature of the metric. Hence, this is always
positive in the Lorentzian background ε = −1, while it may
change of sign in the Euclidean world ε = 1.

To numerically appreciate this phenomenon, in the Fig. 2
we depict pencils of orbits with different velocities. Their
deflection at infinity is computed using the formula (7) and
Carlson’s algorithm. Observe that the deflection stays neg-
ative when v < 1. The more extreme case where v = 5 is
displayed in the Fig. 3, along with the graph representing the
deflection angle as a function of the perihelion. Observe the
presence of a null deflection at rmin ≈ 2.16 and a maximal
deflection at rmin ≈ 2.5. The Fig. 4 depicts the deflection as
a function of the perihelion, for several velocities at infinity.

Observe that in the Lorentzian (resp. Euclidean)
Schwarzschild spacetime, the impact parameter b of a mas-
sive particle (resp. of any particle) satisfies bv = L/E .

Moreover, a photon in the usual Schwarzschild metric has

b = L/E and this motivates the following terminology: an
orbit in a Euclidean Schwarzschild spacetime with velocity
at infinity v will be called of sub-photon type (resp. of sup-
photon type) if v � 1 (resp. v � 1).

We have numerically observed that sub-photon orbits have
a negative deflection (i.e. are repelled by the central mass)
and that the absolute value of δφ behaves like in the usual
Schwarzschild spacetime. This can also be noticed using the
lowest order approximations from (δr

3) and (9) recalled at the
beginning of the subsection.

For orbits with fixed velocity v > 1, one could use numer-
ical methods on the expression (7) to find an approximation of
the critical value ρ0 (resp. ρmax) such that the deflection angle
of the orbit with perihelion rmin = ρ0 (resp. rmin = ρmax)
vanishes (resp. is maximal). However, we can also use the
estimate (δr

3). Indeed, as it is a third order approximation of
the deflection, to solve δφ = 0 at this order amounts to solve
a quadratic equation. Similarly, we can differentiate (δr

3) with
respect to rmin to obtain an approximation of ρmax using the
quadratic formula again. This is precisely the reason why
we chose this order at the first place. Though the resulting
expressions for ρ0 and ρmax are not very enlightening, it is
worth noticing that they both diverge when v → 1. This sug-
gests to expand these expressions in powers of v−1, yielding
estimations of ρ0 and ρmax for orbits of sup-photon type. We
find

ρ0

M
= 9π

16
(v − 1)−1 + 1 − 21π

32
+ 64

9π
+ O(v − 1)

≈ 1.767

v − 1
+ 1.202 + O(v − 1) (11)

and

ρmax

M
= 9π

8
(v − 1)−1 + 1 − 21π

16
+ 32

3π
+ O(v − 1)
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Fig. 5 Accuracy of the approximations (11) and (12) for several velocities

≈ 3.534

v − 1
+ 0.272 + O(v − 1). (12)

Observe that, at lowest order, we have the remarkable relation
ρmax = 2ρ0. Moreover, at this order, the maximal value of
the deflection is given by

δφmax ≈ 16(v − 1)

9π

(
1 − 1

v2

)
. (δmax)

However, this estimate badly fails when v � 1. We illustrate
our approximations in the Fig. 5.

4.4 Deflection of orbits passing through a given point

Consider now an orbit starting from a given point (φ, r) =
(0, r0), for some fixed r0 > 2M, whose velocity vector at
this point makes an angle 0 < α ≤ π

2 with respect to the
radial direction. Thinking of the point (φ, r) = (0, r0) as
an observer receiving particles coming from infinity, we are

interested in the total deflection angle δαφ between the tan-
gent line to the orbit at (0, r0) and the asymptotic direction.
The situation may be visualized using the Fig. 6.

We first proceed as in the first subsection, to obtain
a numerically efficient analytic formula for δαφ, using
Carlson’s integrals. Recall the Weierstrass variable ℘ =
M/(2r) − 1/12, satisfying the Weierstrass equation with
constants g2,3 = g2,3(v, rmin) given by Eq. (gES

12 ). Recall
also that ℘max = M/(2rmin) − 1/12 is the maximal value of
℘ along the geodesic. We have

φ =
∫ rmin

∞
dr

r2

√
1
b2 − 1

r2

(
1 − 2M

r + 2Mr
L2

)

=
∫ − 1

12

℘max

d p√
4p3 − g2 p − g3

,
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Fig. 6 Schematics of an orbit
passing through the point
(φ, r) = (0, r0), with total
deflection
δαφ = � + α + 1

2 (δφ − π) =
α − π + φ + �

and

� =
∫ rmin

r0

dr

r2

√
1
b2 − 1

r2

(
1 − 2M

r + 2Mr
L2

)

=
∫ ℘0

℘max

d p√
4p3 − g2 p − g3

,

where ℘0 := M/(2r0) − 1/12, so that

δαφ = α − π + φ + � = α − π +
[∫ − 1

12

℘max

+
∫ ℘0

℘max

⎤
⎦ d p√

4p3 − g2 p − g3
.

We now introduce the two remaining roots ℘± �= ℘max of
the cubic 4p3 − g2 p − g3, as well as the constants emax,± :=
−℘max,± − 1/12 as above and arrive at the expression

δαφ = RF

(
emax + M

2rmin
, e− + M

2rmin
, e+ + M

2rmin

)

+ RF

(
emax + M

2r0
, e− + M

2r0
, e+ + M

2r0

)

+ α − π − 2RF (emax, e−, e+). (13)

It may be observed that, at fixed α ∈]0;π/2], when r0 �
0, we have � ≈ π

2 −α, so rmin ≈ r0 cos(�) ≈ r0 sin(α) and
δαφ ≈ 1

2δφ(rmin = r0 sin α). On the other hand, at fixed r0,

when α = π
2 , we have rmin = r0 and � = 0. We thus obtain

the boundary conditions

δαφ ≈
r0→∞

1

2
δφ(rmin = r0 sin α) and δπ/2φ

= 1

2
δφ(rmin = r0).

In particular, at lowest order,

δαφ ≈
r0→∞

M

r0 sin α

(
1 − 1

v2

)
.

We illustrate the situation in the Fig. 7.
For fixed values of r0 and v, we now aim to find the critical

angle α0 (resp. αmax) at which the total deflection δαφ van-
ishes (resp. is maximal). First recall the following relation
from [8] (which is just the Pythagorean theorem in curved
space)

tan2 α = pφγ̇ φ

pr γ̇ r

∣∣∣∣
r=r0

= r2
(

1 − 2M

r

)(
dφ

dr

)2
∣∣∣∣∣
r=r0

= 1 − 2M
r0

r2
0

b2 − 1 + 2M
r0

− 2Mr0
L2

yielding

α = arctan

√√√√√ 1 − 2M
r0

r2
0

b2 − 1 + 2M
r0

− 2Mr0
L2

. (14)

The value of the impact parameter b and the angular momen-
tum L are obtained using the relations (8) and L = bv(1 +
v2)−1/2. Therefore, we obtain the value of α as a function of
the triple (v, r0, rmin). With the notation of the previous sub-
section, we are thus interested in the values of α at (v, r0, ρ0)

and (v, r0, ρmax).

For sup-photon type orbits with high perihelion, we may
inject the approximations (11) and (12) into (14), expand in
powers of r0 up to order 2, and then expand in powers of
v − 1 up to order 0 and obtain the following estimates

α0 = 9π M

16r0

(
1 + M

r0

)
(v − 1)−1 + M

r0

(
64

9π
− 21π

32

)
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Fig. 7 Orbits with r0 = 10M and v = 1.5, and the corresponding graph

− M2

r2
0

(
57π

32
− 64

9π

)
+ O(v − 1, r−3

0 ) (15)

and

αmax = 9π M

8r0

(
1 + M

r0

)
(v − 1)−1 − M

r0

(
21π

16
− 32

3π

)

− M2

r2
0

(
57π

16
− 32

3π

)
+ O(v − 1, r−3

0 ). (16)

We illustrate our approximations in the Fig. 8.
Finally, concerning the observable sizes R0 and Rmax

of the null and maximal deflection rings, we have R0 =
r0 tan α0 and Rmax = r0 tan αmax. For an orbit of sup-photon
type with r0 � 0, we may use the relation (14) and the
estimates (11) and (12) to obtain

R0 = 9π M

16

(
1 + M

r0

)
(v − 1)−1 + M

(
64

9π
− 21π

32

)

− M2

r0

(
57π

32
− 64

9π

)
+ O(v − 1, r−2

0 ) (17)

and

Rmax = 9π M

8

(
1 + M

r0

)
(v − 1)−1 − M

(
21π

16
− 32

3π

)

− M2

r0

(
57π

16
− 32

3π

)
+ O(v − 1, r−2

0 ). (18)

Observe that this is consistent with the approximations (15)
and (16) since, at fixed velocity, we have limr0→∞ α0 = 0
and thus R0 = r0 tan α0 ∼ r0α0 and similarly, Rmax ∼
r0αmax.

We may proceed similarly for the charged case where Q �=
0, but the calculations are a bit tougher. At the lowest order,

we have

ρmax ∼
v→1

π M

8

(
9 − Q2

M2

)
(v − 1)−1, (19)

as well as

αmax ∼r0→∞
v→1

π M

8r0

(
9 − Q2

M2

)(
1 + M

r0

)
(v − 1)−1 (20)

and

Rmax ∼r0→∞
v→1

π M

8

(
9 − Q2

M2

)(
1 + M

r0

)
(v − 1)−1. (21)

Furthermore, just as in the Schwarzschild case, at lowest
order, we have ρmax = 2ρ0 and similarly for α0 and R0. Note
that for these approximations to make sense, the velocity
at infinity v = √

E−2 − 1 should be real and in view of
Sect. 3.1, this is ensured only when Q2 < M2.

5 Geodesic motion in Bertotti–Robinson spacetimes

In this section we investigate the dynamics in Euclidean
and Lorentzian Bertotti–Robinson spacetimes and provide
in particular analytic solutions for the geodesic equation. For
m, q ∈ R, consider the line element in Binet radial variable

ds2 = Q2
[
ε�(u)dτ 2 + �(u)−1du2 + d	2

]
, (BRb)

where �(u) := u2 − 2mu + q2. This is an electro-vacuum
solution of Einstein’s equation for Aμ = √−εQudτ.

Let γ = (τ, u, θ, φ) be a geodesic with respect to the
metric (BRb), parametrized by an affine parameter λ. By
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Fig. 8 Accuracy of the approximations (15) and (16) for several velocities and r0 = 30M

spherical symmetry, we may assume that θ ≡ π/2, in which
case the Lagrangian reads

L = 1

2
gμμ(γ̇ μ)2 = Q2

2

[
ε�(u)τ̇ 2 + �(u)−1u̇2 + φ̇2

]
.

Thus, the temporal and angular Euler–Lagrange equations
immediately yield constants J, C ∈ R such that τ̇ =
C�(u)−1 and φ̇ = J and so the quantity

H := 2L = Q2
[
�(u)−1(εC2 + u̇2) + J 2

]

is conserved alongγ.Thus, the proper length s satisfies ds2 =
Hdλ2 and we get

(
du

ds

)2

= u̇2

H = �(u)

(
1

Q2 − L2
)

− εE2, (22)

where we denote L := J/
√H and E := C/

√H. From now
on, differentiation with respect to s will be denoted by a dot.

Since the right-hand side of (22) is quadratic in u, we may
solve it explicitly.

Fix now an exterior equatorial geodesic γ = (τ, u, φ)

in the spacetime (BRb), with proper angular momentum
L = φ̇(0) and let u0 := u(0) and u̇0 := u̇(0). The Binet
component u of γ, as a function of the proper length s, is
given by

u(s) = m + (u(0) − m) cos(s
√

�)

+u̇(0)
sin(s

√
�)√

�
, where � := L2 − 1/Q2. (23)

Moreover, the only circular orbit has u ≡ m.

Before establishing (23), we observe the following con-
sequences:

• The calculations of the previous proof allow to re-write
the motion equation (22) as
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(
du

ds

)2

= (1/Q2 − φ̇2
0)(u − u0)(u + u0 − 2m) + u̇2

0.

In particular, the proper spatial dynamics does not depend
on the parameter q, nor on the signature of the metric
(BRb). Moreover, the translated variable v := u − m
satisfies the equation

v̇2 + �v2 = �(u0 − m)2 + v̇2
0 .

Therefore, in the non-degenerate case � �= 0, the phase
portrait in Binet variable is either an ellipse if � > 0, and
a hyperbola otherwise.

• A non-circular geodesic γ = (τ, u, θ, φ) with angular
momentum L = φ̇(0) is bounded if and only if Q2L2 >

1, in which case it has periodic radial component with
proper period

ωγ = 2π Q√
Q2L2 − 1

= 2π

L
+ O

(
1

Q2L3

)
.

When Q2L2 = 1, the geodesic is affine in proper length
and when Q2L2 < 1, we have

u(s) =
s→∞ O

(
es

√
1−Q2 L2

)
,

so the Binet variable u blows-up exponentially in proper
length.

• There are exterior circular orbit only when q2 > m2, in
which case the only such orbit has r = 1/m. In partic-
ular, there are no circular orbits in the original Bertotti–
Robinson space [9,50].

• Any (exterior) Bertotti–Robinson spacetime is geodesi-
cally complete in Binet variable.

Back to the derivation of (23), observe first that, up to dilat-
ing the affine parameter, we may assume that

( dτ
dλ

)∣∣
λ=0 = 1.

Then, we have

H = Q2

⎡
⎣ε

(
�(u0)

( dτ
dλ

)∣∣
λ=0

)2 + ( du
dλ

)∣∣2
λ=0

�(u0)
+ J 2

⎤
⎦

= Q2

[
ε�(u0) + H u̇2

0 + �(u0)L2

�(u0)

]
,

implying

H = εQ2�(u0)
2

�(u0)(1 − Q2L2) − Q2u̇2
0

�⇒ E2 = C2

H

= �(u0)(1 − Q2L2) − Q2u̇2
0

εQ2 = −��(u0) + u̇2
0

ε

and thus the Eq. (22) becomes

u̇2 = �(�(u0) − �(u)) + u̇2
0 = �(u0 − u)(u0 + u − 2m)

+u̇2
0. (24)

If u̇0 = 0, then the technical lemma from Appendix C applied
to y = u − m, β = u0 − m and α = −� leads to the stated
expression for u. Otherwise, on a neighbourhood of 0, we
have u̇ �= 0 and differentiating (22) with respect to s yields

ü = −��′(u)

2
= �(m − u),

a linear ODE of order 2 whose solution reads

u(s) = m + (u0 − m) cos(s
√

�) + u̇0
sin(s

√
�)√

�
,

and this function indeed satisfies (24) and is globally defined.
Now, if γ is circular, then u̇0 = 0 and applying the lemma

again, we find that u(s) = m+(u0−m) cos(s
√

�) is constant,
so that � = 0 or u0 = m. This can also be seen by analysing
the potential V = √

��. But suppose now that u �= m, then
� = 0 and since u̇(0) = 0, we get

� = 0 ⇐⇒ L2 = 1

Q2 ⇐⇒ Q2φ̇2
0

H = 1 ⇐⇒ �(u0) = 0,

contradicting the fact that γ is exterior.
From (23) we can deduce the analytic expression for the

geodesic motion in terms of affine parameter: if the affine
parameter λ is chosen so that τ̇0 = 1, then the motion con-
stants and expressions of r and φ as functions of λ are given
as follows:

H=Q2

(
ε(1−2mr0+q2r2

0 )

r2
0

+ ṙ2
0

r2
0 (1−2mr0+q2r2

0 )
+φ̇2

0

)

and � := φ̇2
0

H − 1

Q2 , (25a)

r(λ) =
(

m +
(

1

r0
− m

)
cos(λ

√
�) − ṙ0

r2
0

sin(λ
√

�)√
�H

)−1

,

as well as φ(λ) = φ0 + λφ̇0. (25b)

Moreover, the geodesic γ has energy E = 1−2mr0+q2r2
0

r2
0

√H and

angular momentum L = φ̇0√H .

6 Implementation of orbits and ray-tracing

We have developed a package3 under Python, for drawing
orbits in the spacetimes (ERN) and (BR), as well as for

3 https://github.com/arthur-garnier/euclidean_orbits_and_shadows.
git.
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Fig. 9 Some Euclidean Reissner–Nordström orbits with M = 1

ray-tracing the first ones, using a standard backward ray-
tracing method (see for instance [53]). As mentioned in
Sect. 3.2, the Carlson and Coquereaux–Grossmann–Lautrup
algorithms [11,15] are used to compute geodesics in the
Reissner–Nordström instanton.

Let us briefly recall the backward ray-tracing procedure
we use for shadowing a spacetime. First, we consider an
artificial celestial hemisphere on which we project our orig-
inal image, seeing it as a portion of its tangent plane paral-
lel to the screen (and on the other side of the black hole).
As a projection, we simply choose the standard and widely
used equirectangular projection, which has the advantage of
taking the celestial hemisphere to a square, which we may
rescale to fit our image.

Next, for each pixel of the screen, we consider the geodesic
for the spacetime (null in the Lorentzian and normalized in
the Euclidean case) starting at this point and with velocity
directed by the line from the point observer. We then solve
the geodesic equations (backwards) and we see if the ray
ends in (came from) the black hole or touches the sphere
somewhere. If so, the RGB value of the pixel on the screen
is given by the value of the landing pixel on the sphere and
we carry this process on until every pixel has been worked
out.

To simplify calculations, we make heavy use of the spher-
ical symmetry of the spacetimes considered here: given an
initial datum, use a linear rotation to bring the initial velocity
(and hence the full orbit) in the plane {θ = π/2}. Then, we
give values to the various constants involved in the expres-
sion of the radial geodesic and, instead of computing the full
orbit, we simply solve the equation r = rS where rS is the

radius of the celestial sphere, using the Weierstrass function.
This can be done rather easily, precisely and quickly: we
compute some values until we cross the sphere and the first
such point is used as an initial value for the Newton method.
We finally rotate the result back and find our landing pixel.
Thus, no full orbit calculation is required. For more details
and illustrations, see [22]. We should mention however that
since, in contrast to the Lorentzian framework, photons (i.e.
null geodesics) do not properly exist in the Euclidean world,
we have to trace orbits with some prescribed velocity at infin-
ity v: an additional input to the program. For each pixel (i.e
each particle), we provide its initial position and the direc-
tion of its velocity vector, whose norm is adjust to match the
velocity v.

We finish our discussion by providing some figures illus-
trating the programs and our results.

First, concerning the orbits drawings, it should be men-
tioned that, while the functions of the package are designed
to draw orbits in 3D, we chose to plot planar orbits here, to
make the figures more readable. In each case, the mass is set
to unity and we vary the charge in the different plots, distin-
guishing between the sub-extremal and sup-extremal cases
for the charge. In each figure, the legend gives the values of
the energy and angular momentum of each displayed orbit.

The Fig. 9 depicts some orbits in the spacetime (ERN).
In particular, we illustrate the results from Sect. 3.1: when
there is a horizon, the squared energy is smaller than unity
and there are circular orbits with arbitrary energy when we
have a naked singularity. Notice also the presence of bounded
orbits in the sup-extremal case.
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Fig. 10 Orbits in Lorentzian Bertotti–Robinson spacetimes with Q = 1/2 and m = 1

In the Figs. 10 and 11, we show some Bertotti–Robinson
orbits, with ε = ±1, Q = 1/2 and m = 1. The Fig. 12 dis-
plays orbits in the original Bertotti–Robinson spaces where
m = q = 0.

Finally, some particular unstable orbits may be observed in
the sup-extremal Euclidean cases. In the Fig. 13 are displayed
some “flower orbits” in a horizon-less ERN spacetime, while
in the Fig. 14, we plot some “star orbits” in a horizon-less
BR space. These can be seen as analogues of “leaf orbits” in
the usual Lorentzian solutions, see [37, Figs. 14, 15].

Regarding the shadows, just as in [22], we use the color
grid shown in Fig. 15 as our base picture for the shadows. In
the Fig. 16, we depict the shadows of an ERN spacetime with
various charges. The render time of each figure is approxi-
mately 350 s, on an 8-core 3.00 GHz CPU with 16 Go of
RAM.4

To illustrate our results on deflection, we also wrote a code
similar to the shadowing program, but which rather displays
the total angular deflection δαφ (here, α is the angle between
the initial velocity vector and the radial direction passing
through the common converging point of the “light rays”. The
results are depicted in the Figs. 17 and 18. Observe that, in
accordance with the Sect. 4, the deflection is always positive
in the usual Schwarzschild spacetime, with a visible event
horizon, while in the Euclidean world, the horizon disappears
and the presence of a null and maximal deflection rings is
manifest.

Lastly, in the Fig. 19, we give the shadows of ERN space-
times on a celestial background. The original picture is from

4 We have tested the efficiency of the shadowing program by running
it on (randomly generated) images with 10 × 10 to 500 × 500 pixels
and we made an exponential regression on the render time. We found

time[s] ≈ e−10.6 × pix2.5,

with a regression coefficient r > 0.99.

the NASA and the render time for each shadow is about
2800 s, the resolution of the picture being of 1080 pix-
els. While the null deflection ring is impossible to pinpoint
on such a picture, the maximal deflection ring is still quite
noticeable. Observe moreover that, again in contrast to the
usual Schwarzschild metric, the horizon-full case Q2 < M2

and the naked singularity case Q2 > M2 produce similar
pictures, the most noticeable difference being the size Rmax

of the maximal deflection ring, which decreases as the charge
increases. This is in accordance with the lowest order approx-
imation of Rmax provided in (21).

7 Conclusions

7.1 Summary

In this work, we study the geodesic motion in the two differ-
ent kinds of spherically symmetric electro-vacuum Euclidean
solutions of Einstein’s equation with complex vector poten-
tial, namely the Reissner–Nordström and Bertotti–Robinson-
like instantons. More precisely, after proving that these are
indeed the only two possible such solutions (and that these
two are incompatible), we derive the motion equations and
give the main properties of the test-particle orbits, using their
motion constants such as the energy and angular momentum.

We start with the Euclidean Reissner–Nordström solution,
for which we prove that if the spacetime has a horizon, then all
exterior (non-constant) geodesics have bounded energy and,
otherwise, there are circular orbits with arbitrary energy. In
particular, the spacetime features a horizon if and only if there
are no bounded orbits. This generalizes the results from [6]
on the Euclidean Schwarzschild solution and shows that the
differences in the dynamics of the Lorentzian and Euclidean
solutions is deeper than the apparent mere sign change in
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Fig. 11 Orbits in Euclidean Bertotti–Robinson spacetimes with Q = 1/2 and m = 1

Fig. 12 Orbits in Bertotti–Robinson spaces with Q = 1 and m = q = 0

Fig. 13 Flower orbits in ERN space with M = 1 and Q = 1.098

Fig. 14 Star orbits in BR space with ε = −1, Q = 1/2, m = 1 and q = 1.098
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Fig. 15 The color grid used in
the program

Fig. 16 Shadows of ERN spacetimes with M = 1 and v = 1.5

the line element. Then, we show that the polar radial motion
equation may be put in Weierstrass form, something that we
can take advantage of to numerically solve the motion equa-
tion. Moreover, this approach shows that, in the special case
of the Euclidean Schwarzschild metric, the (polar) phase por-
trait in Binet variable5 describes a real elliptic curve. This
allows us to derive a new proof of the results from [6],
using the elementary geometry of the curve. Furthermore,
we observe that this elliptic curve is always disconnected,
while in the usual Lorentzian Schwarzschild solution, it can
be either connected or not.

We then study the gravitational bending of geodesics in
Euclidean Schwarzschild spacetimes. More precisely, given
a geodesic with closest approach radius r = rmin and velocity
at infinity v2 = limr→∞(dr/dτ)2, we first provide an ana-
lytic formula for the deflection angle δφ that occurs between
the two asymptotic directions of the geodesic, in terms of
Carlson’s elliptic integrals, which are used to numerically
compute the deflection. Then, we give approximations for
δφ when rmin → ∞ using the previous results of [1]. We
observe that when v > 1, there are particular values ρ0 and

5 Specifically, in an affine transform of the Binet variable.

ρmax for which δφ = 0 for rmin = ρ0 and δφ is maximal
for rmin = ρmax. Estimates for ρ0 and ρmax are provided
when v � 1. We then do the same for the deflection δαφ

of geodesics passing through a point at fixed radius r0 and
with varying angle 0 < α < π/2, modelling orbits coming
from infinity to the eye of an observer. We give approxima-
tions, when r0 � 2M and v � 1, for the critical angles α0

and αmax corresponding to the null and maximal deflection
rings, as well as for the observable size of these rings. We
use numerical evaluations of the analytic formulas to check
the accuracy of our estimates.

Observe that the inequality δφ < 0 for close perihelia
means that the central mass repels such test-particles, while
it attracts them at bigger perihelia. In particular, at fixed initial
radius and velocity at infinity v > 1, there is a critical angle
0 < α0 < π/2 such that δα0φ = 0 (see Fig. 7b for instance),
meaning that the corresponding curve in the (r, θ, φ)-space
is undistinguishable from that of a flat geodesic (i.e. a straight
line).

Next, we do the same for the Bertotti–Robinson solution
for which, after a technical lemma on ordinary differential
equations, we give a general analytic solution, in terms of
(hyperbolic) trigonometric functions. In particular, orbits are
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Fig. 17 Deflection maps in Euclidean Schwarzschild spacetime (M = 1) with several velocities at infinity

Fig. 18 Deflection maps in Lorentzian Schwarzschild spacetime (M = 1) with several velocities at infinity

either periodic or unbounded and there is a unique circular
orbit, which is exterior exactly when the metric has no hori-
zon.

Finally, we provide some details on a Python code,6

designed to plot orbits in the aforementioned spacetimes,
as well as to draw shadows of the Euclidean Reissner–
Nordström family, by the usual backward ray-tracing method.
The numerical computation takes advantage of the Weier-

6 Available at https://github.com/arthur-garnier/
euclidean_orbits_and_shadows.git.

strass form of the polar equation, coupled with the well-
known Carlson [11] and Coquereaux–Grossmann–Lautrup [15]
algorithms, to produce an efficient and rather fast code. This
method is the same as the one used by the author in [22]
to ray-trace Reissner–Nordström–(anti)de Sitter black holes.
We illustrate the code and our results by providing some fig-
ures.
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Fig. 19 Shadows of ERN
spacetimes with M = 1 and
v = 1.5 on a celestial
background (original image:
https://images.nasa.gov/details/
GSFC_20171208_Archive_e000717)

7.2 Discussion and perspectives

In the Figs. 13 and 14, we depict some particularly shaped
unstable periodic orbits, that can be seen as analogues of the
so-called “leaf orbits” that occur in the Lorentzian frame-
work [37]. However, we have no theoretical interpretation
for these orbits and this could be a matter of interest for
future works.

In Sect. 3.3, we have observed that a Euclidean
Schwarzschild orbit can mathematically be interpreted as a
Lorentzian space-like Schwarzschild orbit with purely imag-
inary energy. To decide whether this is merely a mathemat-
ical curiosity or is a manifestation of a deeper physical phe-
nomenon is beyond the knowledge of the author and could
be an interesting subject to investigate as well.

In Sect. 4, we give approximate values for the null and
maximal deflection rings of a sup-photon type particle (i.e.
with velocity at infinity v � 1). Moreover, we have numeri-
cally observed that such particular rings occur exactly when
v > 1. It would be suitable to provide a rigorous proof of
this fact.

Besides the theoretical results, one aim of this work is to
provide an open, transparent, user-friendly and customizable

Python code to plot orbits and draw shadows of spherically
symmetric (asymptotically flat) electro-vacuum instantons.
This has a negative side though, which is that the code is
under-optimal and still slow in comparison to other widely-
used ray-tracing codes, such as GYOTO, GRay or the more
recent OSIRIS [12,53,54]. Therefore, it would be interest-
ing to improve it by using a GPU parallelization, for instance.

As in [22], the shadowing program is designed to work
with a common plane background image and in order to
avoid distortions, we took the compromise of projecting the
image on a celestial hemisphere. However, to be able to catch
any possible particle that is ray-traced, we had to take the
whole celestial sphere into account and we arbitrarily chose
to project a mirrored version of the original image onto it.
Thus, the code could be completed by producing a panoramic
version of it.
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Appendix A: Proof of the unicity result from Sect. 2

Let ds2 = gμνdxμdxν be a spherically symmetric solu-
tion of the field equation. As proved in [34], a Lorentzian
spherically symmetric solution of the electro-vacuum Ein-
stein equations is necessarily static and the proof can be
adapted verbatim to the Euclidean case. Therefore, the met-
ric is diagonal: ds2 = gμμ(dxμ)2 and moreover, the func-
tions gττ and grr only depend on r. Furthermore, since
the restriction to a hypersurface with constant coordinates
(τ, r) must be an SO(3)-invariant metric on S

2, there is a
positive smooth function ρ :]r+,+∞[−→ R

∗+ such that
gθθdθ2 + gφφdφ2 = ρ(r)r2d	2. Thus the metric may be
reduced to the form

ds2 = ρ(r)
[
u(r)dτ 2 + v(r)dr2 + r2d	2

]
.

The Christoffel symbols �α
μν = 1

2 gαβ(gβμ,ν + gβν,μ −
gμν,β) of this metric read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�τ
μν = (uρ)′

2uρ

(
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
,

�r
μν = 1

2vρ

⎛
⎝−(uρ)′ 0 0 0

0 (vρ)′ 0 0
0 0 −r(rρ′+2ρ) 0
0 0 0 −r sin2 θ(rρ′+2ρ)

⎞
⎠ ,

�θ
μν =

⎛
⎜⎝

0 0 0 0
0 0 rρ′+2ρ

2rρ 0

0 rρ′+2ρ
2rρ 0 0

0 0 0 − sin θ cos θ

⎞
⎟⎠ ,

�φ
μν =

⎛
⎜⎝

0 0 0 0
0 0 0 rρ′+2ρ

2rρ
0 0 0 cotan θ

0 rρ′+2ρ
2rρ cotan θ 0

⎞
⎟⎠ ,

where we have dropped the dependence in the variable r for
simplicity.

On the other hand, the electro-magnetic field tensor asso-
ciated to the potential Aμ is given by

Fμν = Aμ,ν − Aν,μ = −i Q

r2

( 0 1 0 0−1 0 0 0
0 0 0 0
0 0 0 0

)

so that the Maxwell equations

0 = Fμν ;μ = Fμν
,μ + �μ

μλFλν + �ν
μλFμλ

= 1√
det g

(√
det gFμν

)
,μ

are satisfied for all ν �= τ and we have Fμτ ;μ = Frτ
,r +

�μ
μr Frτ = i Q(uv)′

(ruvρ)2 , so that the Maxwell equations hold if

and only if there is a constant k ∈ R
∗ such that v = k/u.

Therefore, the stress-energy tensor Tμν reads

Tμν = 1

μ0

(
gαβ FαμFβν − 1

4
gμν Fαβ Fαβ

)

= 1

4π

(
Q2

2kr4ρ2 gμν − gαα Fμα Fαν

)

= Q2

8πr2ρ
diag

(−u

kr2 ,
−1

ur2 ,
1

k
,

sin2 θ

k

)
.

Next, the Ricci tensor Rμν = �α
μν,α−�α

μα,ν+�α
βα�β

μν−
�α

νβ�β
μα and Einstein tensor Gμν = Rμν − 1

2 Rgμν are
diagonal and have
⎧⎪⎪⎨
⎪⎪⎩

2krρRττ = −u(ruρ′′ + rρu′′ + 2ρ′(ru′ + u) + 2ρu′),
2ruρ2 Rrr = −3ruρρ′′ − rρ2u′′ + 3ru(ρ′)2

−2ρρ′(ru′ + u) − 2ρ2u′,
2kρRθθ = −r2uρ′′ − ρ′(r2u′ + 4ru) + 2ρ′(k − u − ru′),

as well as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kr2ρ2Gττ = u(r2uρρ′′ − 3r2u(ρ′)2/4
+rρρ′(ru′ + 4u)/2 + ρ2(k − u − ru′)),

Grr = kGττ /u2 − ρ′′/ρ + 3/2(ρ′/ρ)2

kρ2Gθθ = r(ruρρ′′ + rρ2u′′/2 − 3ru(ρ′)2/4
+ρρ′(ru′ + u) + ρ2u′),

and we have Rφφ = sin2 θ Rθθ and Gφφ = sin2 θGθθ . Thus,
if the Einstein equation Gμν = 8πTμν holds, then we have

0 = 2ρ2

u2

(
u2(Grr − 8πTrr ) − k(Gττ − 8πTττ )

)

= 3(ρ′)2 − 2ρρ′′

and the function ρ satisfies (ρ/ρ′)′ = −1/2, so that there
are constants α, β ∈ R such that ρ(r) = (αr + β)−2. The
metric now reads

ds2 = (αr + β)−2(u(r)dτ 2 + ku(r)−1dr2 + r2d	2).

We then distinguish two cases:

123

https://github.com/arthur-garnier/euclidean_orbits_and_shadows.git
https://github.com/arthur-garnier/euclidean_orbits_and_shadows.git
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2024) 84 :374 Page 23 of 26 374

If β �= 0, then the field equations reduce to the single
equation Grr = 8πTrr , which may be re-written as

βr3(αr + β)u′(r) + βr2u(r)(β − 2αr)

+(αr + β)2((α2 Q2 − k)r2 + 2Q2αβr + Q2β2) = 0,

an equation which is equivalent to(
ru(r)

(αr + β)3

)′
= (k − α2 Q2)r2 − 2Q2αβr − Q2β2

βr2(αr + β)2

and we integrate the right-hand side by decomposing it into
simple rational fractions. For α �= 0, we obtain the solution

u(r) = (αr + β)3

r

(
γ + 1

β

(
Q2

r
− k

α(αr + β)

))
,

for some additional constant γ ∈ R. If α = 0, then we get
the equation

r3u′(r) + r2(u(r) − k) + Q2β2 = 0,

whose solution is

u(r) = k + α̃/r + Q2β2/r2

for some α̃ ∈ R. Observe now that since β �= 0, the map
r �→ r(αr + β)−1 is a diffeomorphism onto its image for
any α and if we let

τ̃ := τ
√

k

β
, R := r

αr + β
, Q̃ := Q√

k
,

M̃ :=
{

1
2

(
1
α

+ αQ2−β2γ
k

)
if α �= 0,

− α̃
2kβ otherwise,

then we obtain the Reissner–Nordström form of the state-
ment.

Assume now that β = 0 (forcing α �= 0), in which case
the equation Grr = 8πTrr reduces to k = α2 Q2. Moreover,
the remaining non-trivial component of the field equation is
Gθθ = 8πTθθ , which yields

r2u′′(r) − 2ru′(r) + 2(u(r) − α2 Q2) = 0,

whose solution reads u(r) = β̌r2 + γ̌ r +α2 Q2 for constants
β̃, γ̃ ∈ R. Letting

τ̌ := αQτ, q :=
√

β̌

αQ
, m := − γ̌

2α2 Q2

we obtain the form

ds2 = 1

α2

[
1 − 2mr + q2r2

r2 dτ̃ 2 + dr2

r2(1 − 2mr + q2r2)

+d	2
]
.

But in the new coordinates (τ̃ , r, θ, φ), the vector potential
becomes Aμ = −iα−1r−1dτ̃ , so that we may assume that
α = 1/Q, thus obtaining the stated form of the metric.

To conclude, it remains to compute the Kretschmann
scalar K = Rαβμν Rαβμν of each metric of the statement.
To do this, we use the symmetry and give the non-zero com-
ponents Rαβμν = gαλ(�

λ
βν,μ − �λ

βμ,ν + �λ
σμ�σ

βν −
�λ

σν�
σ

βμ) of the Riemann tensor for indices α < β and
μ < ν. First, for the Bertotti–Robinson metric we have

Rτrτr = − Q2

r4 , Rθφθφ = Q2 sin2 θ �⇒ K = 8

Q4

is indeed independent of r.For the Reissner–Nordström form,
we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rτθτθ = Rτφτφ

sin2 θ
= (Q̃2−M̃ R)(R2−2M̃ R+Q̃2)

R4 ,

Rτrτr = 2M̃ R−3Q̃2

R4 ,

Rrθrθ = Rrφrφ

sin2 θ
= Q̃2−M̃ R

R2−2M̃ R+Q̃2 ,

Rθφθφ = (2M̃ R − Q̃2) sin2 θ.

and thus

K = 8(6M̃2 R2 − 12M̃ Q̃2 R + 7Q̃4)

R8 ,

which depends on R and thus the Kretschmann scalar
expressed in the original coordinates depends on r as well,
as claimed. ��

Appendix B: Proof of the energy constrain in the horizon-
full case (Sect. 3.1)

Assume first that Q2 ≤ M2. For simplicity, we may rescale
the radius by 1/M and assume that M = 1. From (3), we
have

E2 ≥ 1 ⇐⇒ �(r0)
2 ≥ �(r0) + �(r0)

−1ṙ2
0 + r2

0 φ̇2
0

⇐⇒ P(r0) ≤ 0,

where P = PQ2,ṙ2
0 ,φ̇2

0
∈ R8[x] is the following polynomial

of degree at most 8:

P(x) = −x6�(x)(�(x)2 − �(x) − ṙ2
0 �(x)−1 − x2φ̇2

0)

=φ̇2
0 x8−2φ̇2

0 x7+(Q2φ̇2
0+ṙ2

0 )x6+2x5−(8 + Q2)x4

+ 8(1 + Q2)x3 − 2Q2(6 + Q2)x2 + 6Q2x − Q6.

We will inductively prove that P is positive on the interval
I =]r+,+∞[ (with r+ = 1 +√

1 − Q2), hence contradict-
ing the above inequality and establishing the result. Observe
first that P(8)/8! = φ̇2

0 ≥ 0 so P(7) is non-decreasing on I
and since

1
7! P(7)(r+) = 2φ̇2

0(3 + 4
√

1 − Q2) ≥ 0

we find that P(7) ≥ 0 so that P(6) is non-decreasing on I.
We repeat the process, with

1
6! P(6)(r+) = 3φ̇2

0

(
5 + 9(1 − Q2) + 14

√
1 − Q2

)
+ ṙ2

0 ,
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which is positive since γ is non-constant. Thus, we get
P(6) > 0 on I and P(5) is increasing (not only non-
decreasing) on I. Next, we have

1
5! P(5)(r+) = 2

√
1 − Q2

[
45φ̇2

0 + 25φ̇2
0(1 − Q2) + 3ṙ2

0

]

+ 20φ̇2
0 + 120φ̇2

0(1 − Q2) + 2(1 + 3ṙ2
0 ) > 0,

1
4! P(4)(r+) = 5(1 +

√
1 − Q2)2

[
3(Q2φ̇2

0 + ṙ2
0 )

+14φ̇2
0(1 +

√
1 − Q2)

√
1 − Q2

]

+ 10
√

1 − Q2 + 2 − Q2 > 0,

1
3! P(3)(r+) =

√
1 − Q2

[
12φ̇2

0(3Q4 + 2) + 60ṙ2
0 + 4

+4(1 − Q2)(78φ̇2
0 + 5ṙ2

0 + 1)
]

+ 20ṙ2
0 + 4(1 − Q2)(4 + 15ṙ2

0 )

+ 6φ̇2
0(Q2 + (1 − Q2)(56 − 25Q2)) ≥ 0,

and

1
2 P ′′(r+) =

√
1 − Q2

[
60ṙ2

0 + 4(1 − Q2)(2 + 15ṙ2
0 )

+2φ̇2
0(33Q4 − 136Q2 + 112)

]
+ 15ṙ2

0 Q4

+ φ̇2
0(−13Q6 + 174Q4 − 384Q2 + 224)

+ 4(1 − Q2)(30ṙ2
0 + (1 − Q2) + 1) ≥ 0,

P ′(r+) =
√

1 − Q2
[
6ṙ2

0 (Q4 − 12Q2 + 16)

+2φ̇2
0(−Q6 + 18Q4 − 48Q2 + 32)

]

+ 6ṙ2
0 (5Q4 − 20Q2 + 16)

+ 4φ̇2
0(−3Q6 + 19Q4 − 32Q2 + 16) ≥ 0,

and thus, P ′ is increasing on I and has P ′(r+) ≥ 0, so P
is increasing on I. We conclude by observing that P(r+) =
ṙ2

0 r6+ ≥ 0.

To prove the second statement, assume that Q2 > M2,

choose e > 0 and consider a circular (equatorial) geodesic
γ = (τ, r, π/2, φ) with energy E = e. Introducing the
potential

V (r) :=
√

�(r)

(
L2

r2 − 1

)
,

the condition that γ is circular reads

V (r)2 + e2 = 0 = ∂V

∂r
.

The first equation imposes

L = ±r

√
1 − e2

�(r)
,

while the second yields

0 = ∂V

∂r
= 1

2V

((
L2

r2 − 1

)
∂�

∂r
− 2L2�

r3

)

⇔ (e2 − 1)r4 + M(4 − 3e2)r3

+ 2(Q2(e2 − 1) − 2M2)r2 + 4M Q2r

− Q4 = 0.

This quartic has a positive root, since it evaluates to −Q4 < 0
at r = 0 and is positive when r � 0. ��

Appendix C: A technical lemma on an implicit differen-
tial equation

Lemma For any (α, β) ∈ R
∗ ×R, their is a unique smooth

maximal non-constant solution of the incomplete initial value
problem{

ẏ2 = α(y2 − β2),

y(0) = β.

Moreover this solution is globally defined and given, for s ∈
R, by
y(s) = β cosh(s

√
α).

Proof The following argument is due to Olivier Goubet.
First, up to exchanging y ↔ −y, we may assume that β ≥ 0.

Let y be a maximal non-constant solution of the problem,
defined on a (maximal, open) interval I. Consider the open
subset
U := {s ∈ I | y(s) > β} ⊂ R

∗

and suppose that ]a; b[⊂ U is a connected component of
U, of finite length. By continuity of y, we have β ≤
lims→a+ y(s) = y(a) ≤ β, so that y(a) = β = y(b) and
by Rolle’s theorem, we may choose a < t < b such that
0 = y′(t) = α(y(t)2 −β2). This leads to y(t) ≤ |y(t)| = β:
a contradiction.

This proves that U has no connected component of finite
length, leaving four possibilities:

• If U = ∅, then y is constant.
• If U = R

∗+, then y = β on R− and solving the well-

defined ODE ẏ = √
α(y2 − β2) on U leads to

y(s) =
{

β cosh(s
√

α) if s > 0,

1 otherwise.

• The case U = R
∗− is the symmetric of the previous one.

• if U = R
∗, then we solve ẏ = ±√α(y2 − β2) on R

∗±
and obtain the stated solution, the only one being non-
constant and smooth.

��
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