
Eur. Phys. J. C (2024) 84:360
https://doi.org/10.1140/epjc/s10052-024-12596-x

Regular Article - Theoretical Physics

QGP probes from a dynamical holographic model of AdS/QCD

S. Heshmatian1,a , R. Morad2,3,b

1 Department of Engineering Sciences and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran
2 UNESCO UNISA ITL/NRF Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA),

Pretoria, South Africa
3 Nanosciences African Network, Materials Research Department, iThemba LABS, National Research Foundation, Cape Town, South Africa

Received: 13 October 2023 / Accepted: 19 February 2024 / Published online: 4 April 2024
© The Author(s) 2024

Abstract In this paper, we employ the gauge/gravity dual-
ity to study some features of the quark–gluon plasma. For
this purpose, we implement a holographic QCD model con-
structed from an Einstein–Maxwell-dilaton gravity at finite
temperature and finite chemical potential. The model cap-
tures both the confinement and deconfinement phases of
QCD and we use it to study the effect of temperature and
chemical potential on a heavy quark moving through the
plasma. We calculate the drag force, Langevin diffusion coef-
ficients and also the jet quenching parameter, and our results
align with other holographic QCD models and the experi-
mental data.
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1 Introduction

Quark–gluon plasma (QGP) produced at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) is a strongly coupled plasma whose dynamics is domi-
nated by non-perturbative effects [1,2]. Since the perturbative
quantum chromodynamics (QCD) is applicable only in the
weak coupling regime, the lattice QCD techniques could be

a e-mail: heshmatian@bzte.ac.ir (corresponding author)
b e-mail: rmorad@tlabs.ac.za

hired for understanding the static equilibrium thermodynam-
ics of such matter. Alternatively, the “AdS/CFT correspon-
dence” [3–7] provides a non-perturbative tool to examine
the dynamical quantities of the strongly coupled QGP. The
“AdS/CFT correspondence” indicates a duality between the
N = 4 SU (Nc) super-Yang–Mills theory and type IIB string
theory on AdS5 × S5, which is a powerful tool to study the
strongly coupled gauge theory in the large Nc limit and large
’t Hooft coupling. The original duality maps an asymptoti-
cally AdS space to a conformal gauge theory at zero tem-
perature. On the other hand, due to the fact that the physical
quantities of the quark–gluon plasma are temperature depen-
dent, many attempts were made to extend the original duality
to holographic models describing the QGP at finite temper-
ature using top-down [8–10] or bottom-up models [11–39].

One of the interesting features of QCD is the confinement-
deconfinement crossover where the QCD coupling constant
becomes very large. This phenomenon leads to a strong sup-
pression of quarkonium near the crossover temperature, as
the confined phase of QCD is at a lower temperature and
density compared to the deconfined phase [40–42]. Lattice
QCD calculations demonstrate that the entropy of the quark–
antiquark pair develops a peak around the crossover area
[43,44] which indicates the strong interaction between the
quark–antiquark pair in this region. The quark–antiquark
entropy in both phases and the confinement-deconfinement
crossover have both been thoroughly studied utilizing the
AdS/CFT correspondence and generalized dual holographic
models [45–50].

Among holographic models of QCD, the model con-
structed from a black hole solution using the Einstein–
Maxwell-dilaton gravity is beneficial as it incorporates
the temperature dependency of the entropy of the quark–
antiquark pair in both confined and deconfined phases
[51,52]. On the other hand, this holographic model includes

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12596-x&domain=pdf
http://orcid.org/0000-0002-0659-2874
mailto:heshmatian@bzte.ac.ir
mailto:rmorad@tlabs.ac.za


360 Page 2 of 14 Eur. Phys. J. C (2024) 84 :360

chemical potential as the QCD equation of state and phase
diagram depends on the chemical potential. On the gravity
side, increasing temperature leads to a phase transition from
thermal AdS to a black hole using a specific choice of an arbi-
trary function A(z). In the boundary theory, these are dual
to phase transitions from confined to deconfined phases. The
results of this model for the quark–antiquark entropy are in
good agreement with those from Lattice QCD and therefore,
this holographic model could be a capable model to study
the QCD feature in confined and deconfined phases. The
gravity solution was then extended with a magnetic field to
analyzed the quark–antiquark free energy and entropy from
holographic point of view [53–55].

Jets of quarks propagating through the medium are the
most interesting objects produced in QGP and their interac-
tion with the medium is one of the challenging problems in
new physics. The transport coefficient, also known as the jet
quenching parameter, is one of the most interesting exper-
imental observables associated with quark energy loss in
the hot medium observed at RHIC and LHC [56–63]. It is
defined as the average squared transverse momentum trans-
ferred from a traversing parton to the medium, per unit mean
free path [64]. The parton energy loss through the medium
can also be investigated using the drag force experienced by
heavy quarks moving in the medium. Due to the strong nature
of the interaction, holographic models of QCD are utilized as
powerful tools to investigate the dynamics of this phenomena
and characterize properties of jets and QGP medium as well
as their interactions which leads to the quark energy loss.
Also, heavy quarks moving in QGP undergo a Brownian-
like motion which could be studied by the Langevin diffusion
coefficients [65,66].

According to the AdS/CFT correspondence, a heavy quark
is illustrated as a fundamental string attached to a flavor
brane. The string endpoint could be considered as a quark
in the boundary theory and the string itself can be considered
as a gluonic cloud surrounding the quark. The drag force of
a quark moving in the medium can be measured from the
corresponding momentum flowing of an open trailing string
to the bulk [67–85]. The quantum fluctuations of this trail-
ing string are also dual to the momentum broadening of a
heavy quark moving in the QGP and can be computed along
the quark direction of the motion as well as the transverse
plane. The stochastic Brownian motion is associated with the
correlators of the string fluctuations and can be expressed in
terms of the Langevin coefficients [83–99]. According to this
duality, the jet quenching parameter is related to the thermal
expectation value of the light-like Wilson loop operator cre-
ated from the trajectory of two string endpoints, and many
attempts were made to compute this parameter in the con-
text of the AdS/CFT correspondence [100–127]. The holo-
graphic energy loss of a quark moving in a strongly cou-
pled QGP has been studied in [121] for a strongly coupled

anisotropic N = 4 super Yang–Mills plasma and also, in
[128] using another version of the Einstein–Maxwell-dilaton
model where the anisotropy is introduced at one spatial direc-
tion in metric [129].

In this paper, we study the QGP aspects such as the drag
force, Langevin coefficients, and the jet quenching parame-
ter for a heavy quark moving through the plasma using the
gauge/gravity duality. For this purpose, we implement the
dynamical holographic QCD model of Ref. [52] as the dual
boundary theory involves temperature in both confined and
deconfined phases as well as the chemical potential and has
a qualitative agreement with Lattice results for the quark–
antiquark entropy in both confined and deconfined phases,
therefore it would be an appropriate model to examine the
QGP features.

This paper is organized as follows: In Sect. 2 we
briefly review the holographic QCD model constructed from
the Eintein–Maxwell-dilaton gravity introduced in [52]. In
Sect. 3 we discuss the drag force on heavy quark moving
in the dynamical holographic model of QCD. In Sect. 4,
the Langevin coefficients are calculated. In Sect. 5, the jet
quenching parameter is studied, and in Sect. 6, a summary
and conclusion are presented.

2 Einstein–Maxwell-dilaton gravity

In this section, we review the Einstein–Maxwell-dilaton
gravity (EMD) model at finite and zero temperature [51,52]
which is described by the following action in 5 dimensions,

SEM = − 1

16πG5

∫
d5x

√−g

×
[
R − f (φ)

4
FMN F

MN − 1

2
∂Mφ∂Mφ − V (φ)

]
. (1)

where G5 is the Newton constant, V (φ) is the potential of
the dilaton field and f (φ) is the gauge kinetic function repre-
senting the coupling between the dilaton and the gauge field
AM .

By assuming the following ansatz for the metric, gauge
field, and dilaton field,

ds2 = L2e2A(z)

z2

(
−g(z)dt2 + dx2

1 + dx2
2 + dx2

3 + dz2

g(z)

)
,

AM = At (z), φ = φ(z), (2)

where L is the AdS length scale and fields are assumed to
be functions of extra radial coordinate z, one can solve the
equations of motion analytically in terms of A(z) and f (z)
[11,12]

g(z) = 1 −
∫ z

0 dx x3e−3A(x)
∫ x
xc
dx1

x1e−A(x1)

f (x1)∫ zh
0 dx x3e−3A(x)

∫ x
xc
dx1

x1e−A(x1)

f (x1)

,
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φ′(z) =
√

6(A′2 − A′′ − 2A′/z),

At (z) =
√√√√ −1∫ zh

0 dx x3e−3A(x)
∫ x
xc
dx1

x1e−A(x1)

f (x1)

×
∫ z

zh
dx

xe−A(x)

f (x)
,

V (z) = −3z2ge−2A

L2

[
A′′ + A′

(
3A′ − 6

z
+ 3g′

2g

)

−1

z

(
−4

z
+ 3g′

2g

)
+ g′′

6g

]
. (3)

The spacetime asymptotic boundary is located at z = 0 where
g(z) goes to 1, and z = zh is the position of the horizon with
the boundary condition of g(zh) = 0. It is shown that by
considering the simple form of f (z) = ecz

2−A(z), one can
reproduce the linear Regge trajectory of the discrete spec-
trum of the mesons. The value of c = 1.16 GeV2 is fixed
by matching the holographic meson mass spectrum to the
lowest-lying heavy meson states [11].

The gravity solution corresponds to a black hole with hori-
zon located at zh , is then given by

g(z) = 1 − 1∫ zh
0 dx x3e−3A(x)

×
[∫ z

0
dx x3e−3A(x) + 2cμ2

(1 − e−cz2
h )2

det G
]

,

φ′(z) =
√

6(A′2 − A′′ − 2A′/z),

At (z) = μ
e−cz2 − e−cz2

h

1 − e−cz2
h

,

V (z) = −3z2ge−2A

L2

[
A′′ + A′

(
3A′ − 6

z
+ 3g′

2g

)

−1

z

(
−4

z
+ 3g′

2g

)
+ g′′

6g

]
, (4)

where μ is the chemical potential and

det G =
∣∣∣∣∣
∫ zh

0 dx x3e−3A(x)
∫ zh

0 dx x3e−3A(x)−cx2

∫ z
zh
dx x3e−3A(x)

∫ z
zh
dx x3e−3A(x)−cx2

∣∣∣∣∣ .

The Hawking temperature and entropy of this solution are

T = z3
he

−3A(zh)

4π
∫ zh

0 dx x3e−3A(x)

[
1 + 2cμ2

(
e−cz2

h
∫ zh

0 dx x3e−3A(x) − ∫ zh
0 dx x3e−3A(x)e−cx2)

(1 − e−cz2
h )2

]

SBH = L3e3A(zh)

4G5z3
h

. (5)

There is another solution for the Einstein–Maxwell-
dilaton equations which corresponds to a thermal-AdS space.
This solution is obtained by taking the zh → ∞ limit of the

solution (4) which results in g(z) = 1. The chemical poten-
tial goes to zero in this limit and therefore, the thermal gas
solution has zero chemical potential. This thermal solution is
asymptotically AdS. Nevertheless, it can have a non-trivial
structure in the bulk due to the scale factor A(z).

It should be highlighted that, traditionally, one would con-
struct a gravitational background by fixing V (φ) and solve
the Einstein equations. Instead, for the model summarized
here, the background is constructed by fixing A(z) which
leads to an implicit dependency on T and μ for the dilaton
potential. Consequently, the thermodynamic laws are slightly
violated. This is a known issue for this construction method,
however, it has been verified that the dependency of dilaton
potential on these parameters is generally minor. For more
detail please refer to [53].

For the holographic model to describe the confinement-
deconfinement phases in the boundary theory, the following
form of A(z) is being considered

A(z) = A2(z) = −āz2, (6)

which vanishes at the boundary. The value of ā = c/8 �
0.145 is determined such that the Hawking/Page phase tran-
sition occurs at T � 270MeV at zero chemical potential.
With this choice of A(z), the thermodynamic properties of
the solution are shown in Figs. 1 and 2.

In Fig. 1a, the temperature of the solution is plotted in
terms of zh . At each temperature, for small values of μ,
there are two solutions: large black hole (small zh) and small
black hole (large zh). The small black hole solution is ther-
modynamically unstable. Also the black hole solution only
exist above a minimum temperature, Tmin indicating there
is a first order phase transition from black hole to thermal-
gas phase. Although, this transition happens at some critical
temperature Tc above the Tmin . In Fig. 1b, the ratio of crit-
ical temperature to the minimum temperature is plotted for
different values of μ. This ratio is always larger than one and
enhanced by increasing the chemical potential. Increasing the
value of chemical potential in Fig. 1a, the branch with neg-
ative slope (the small black hole solution) becomes smaller
and completely vanishes at some critical chemical potential

μ = μc = 0.673. At μ > μc, we have a single black hole
solution which remains stable at all temperatures.
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Fig. 1 a The temperature of the solution versus zh for different values of μ. b The ratio of critical temperature to the minimum temperature for
different values of μ. Stable solutions are represented by solid lines while dashed lines characterize the unstable solutions

In Fig. 2a, the normalized entropy of the system is plot-
ted in terms of temperature. By increasing temperature,
this ratio reaches the value of one. In Fig. 2b, the free
energy of the solution is plotted in terms of the tempera-
ture. The free energy is normalized such that the free energy
of thermal-AdS is zero. Therefore, changing the sign of free
energy means a first-order phase transition from AdS black
hole to thermal-AdS as the temperature decreases which
takes place at T = Tc. This is the famous Hawking-Page
phase transition. In [52], this Hawking-Page phase transi-
tion on the gravity side is used to determine the confine-
ment/deconfinement phase transition on the dual boundary
side. They used the phase for which the free energy of the
probe quark–antiquark pair varies linearly with respect to
their separation length, as confinement. Here, we explore
this confinement/deconfinement phase transition using the
external probes on the gravity side.

In order to study the holographic probes we are interested
in, it is more convenient to use the string frame metric which
can be obtained using the following standard transforma-
tions,

(gs)MN = e

√
2
3 φgMN , ds2

s = L2e2As (z)

z2

×
(

−g(z)dt2 + dz2

g(z)
+ dx2

1 + dx2
3 + dx2

3

)
, (7)

where As(z) = A(z) +
√

1
6φ(z). The open string tension

Ts in units of the AdS length scale L2 is considered to be
Ts L2 � 0.1 [52], which is obtained by comparing the numer-
ical results with the lattice QCD estimate of the string tension,
i.e. σs ≈ 1/(2.34)2 GeV2 [55].

3 Drag force

In this section, we consider a heavy quark moves with a
constant velocity in one of the spatial directions denoted by
x. Therefore, the embedding function of a heavy quark in the
static gauge τ = t, σ = z is X = {t, x(t, z), z}. The action
of a fundamental string is given by the Nambu- Goto action
as,

S = − 1

2πα′

∫
dσ dτ

√−γ

= − 1

2πα′

∫
dσ

×dτ

√
−GttGzz − GttGxx x ′ 2 − GxxGzz ẋ2 , (8)

where dot and prime are derivatives with respect to τ and σ

and G represent the components of the background metric.
In order to study the dynamics of string, we use the metric
of Eq. (7). In the static gauge, the corresponding Lagrangian
density takes the following form,

L = − 1

2πα′
e2As (z)

z2

√
1 − ẋ2

g(z)
+ g(z)x ′(z)2. (9)

Then the equation of motion for x is,

∂t

(
ẋ√−γ ′

)
− z2 g(z)

e2As (z)
∂z

(
e2As (z)g(z)x ′

z2
√−γ ′

)
= 0. (10)

The static string stretching from the boundary to the horizon,
x(t, z) = Constant is a trivial solution of this equation.
For a string whose endpoint at the boundary moves with a
constant velocity v, the following ansatz is chosen,
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Fig. 2 a The ratio of black hole entropy to the AdS Schwarzschild
black hole entropy versus temperature for different values of μ. b The
free energy versus temperature for different values of chemical poten-
tial between zero (red) and μ = μc (purple). For each value of μ, there
is a phase transition between the AdS-BH and thermal gas solution.

Here, μc = 0.673GeV is the critical value for μ for which there is
no phase transition and the large black hole solution exists from zero
temperature to high temperature. Solid (Dashed) lines show the stable
(unstable) solutions

X = {t, vt + ξ(z), z}, (11)

which leads to the following equation of motion,

e2As (z)g(z)ξ ′(z)√−γ z2 = const ≡ πx , (12)

where πx is the worldsheet conserved quantity. One can
obtain the equation for ξ as follows,

ξ ′(z) = ± πx

g(z)

√√√√ g(z) − v2

e4As (z)g(z)
z4 − π2

x

. (13)

Requiring the real values for the function under the square
root fixes the constant of the equation of motion as,

g(zs) − v2 = 0 ,

e4As (zs )g(zs)

z4
s

− π2
x = 0 ⇒ πx = e2As (zs )v

z2
s

. (14)

Finally, substituting the Eq. (14) into the Eq. (13), one can
solve the string solution,

ξ ′(z) = −e2As (zs )v

z2
s

1

g(z)

√√√√ g(z) − g(zs)
e4As (z)g(z)

z4 − e4As (zs )g(zs )
z4
s

. (15)

The canonical momentum densities associated to the string
are,(

π0
t

π0
x

)
= T0L4

√−γ

e4As (z)

z4g(z)

(−g(z)
(
g(z)ξ ′(z)2 + 1

)
v

)
, (16)

(
π1
t

π1
x

)
= T0L4

√−γ

e4As (z)

z4

(−v g(z) ξ ′(z)
g(z) ξ ′(z)

)
. (17)

Integrating the π0
t and π0

x along the string gives us the total
energy and the total momentum in the direction of motion of

the string, respectively. While, π1
t and π1

x are the energy and
momentum flow down along the string. It is straightforward
to show that π1

x is exactly the constant of the equations of
motions, πx in Eq. (14). Also, just similar to the case of N =
4 SYM plasma, π1

t = −v π1
x . It means that if we pull the

quark with the constant velocity, the fraction of energy flow
at a given point along the string, π1

t is constant. This is the
energy dissipating into the surrounding medium by the quark.
Therefore, the drag force is obtained as,

Fdrag = −π1
x = − 1

2πα′
e2As (zs )v

z2
s

. (18)

The drag force of the AdS Schwarzschild black hole back-
ground can be obtained analytically as [78,79],

FSYM
drag = −π T 2

√
λ

2

v√
1 − v2

, (19)

while in this background, we first need to solve the Eq. (14)
numerically to obtain the zs , and then calculate the drag force
using the Eq. (18).

In Fig. 3, the ratio of drag force to its conformal value is
plotted in terms of temperature for two different quark veloc-
ities and different values of μ from zero to the critical value
of 0.673. The solid curves represent the drag force ratio of
the deconfined phase starting from the critical temperature
Tc while the non-physical dashed curves correspond to the
confined phase drag ratio. As mentioned in Sect. 2, a first-
order phase transition from thermal AdS to black hole phase
occurs by decreasing zh , and for each chemical potential
value, the critical temperature is the temperature in which the
free energy sign changes. Therefore, there exist two solutions
at each temperature, one for the thermal AdS solution and the
other for the AdS Black hole solution. The drag ratio develops
a peak around the critical temperature only for the high veloc-
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ity v = 0.99. The peak moves towards higher temperatures
for smaller values of chemical potential and higher quark
velocities, as shown in red and orange curves inside Fig. 3a.
For the deconfined phase, the drag force ratio increases by
increasing the chemical potential value and decreasing the
quark velocity. The same behavior in temperature and chemi-
cal potential has been reported in the holographic QCD model
of [87] for the Einstein–Maxwell-scalar gravity system (also
in [101] the same behavior on baryon chemical potential has
been shown). From this figure, one could also find that at
high temperatures, the curves of all chemical potential val-
ues converge and the drag force would be less than the value
of N = 4 SY M theory due to the smaller ’t Hooft coupling
of the holographic QCD model.1 At lower temperatures, the
drag force ratio is more sensitive to the chemical potential
value, and the drag force of the holographic model is larger
than the drag force of the N = 4SY M theory for larger μ

values. For lower quark velocities, the drag force ratio is less
sensitive to the chemical potential (Fig. 3b).

The world-sheet coordinates can be reparametrized as,

τ = t + K (z),

x = v t + v K (z) + ξ(z) . (20)

Since, the dynamic of the string is independent from K (z),
one can choose the following ansatz,

K ′(z) = − Gxx v

Gtt + Gxx v2 ξ ′(z) . (21)

By substituting the background metric components and using
Eqs. (14), and (15), the induced metric simplifies as,

hα,β = L2 e2As (z)

z2

×
(−(g(z) − v2) 0

0 z4
s e

4As (z)

e4As (z) g(z) z4
s − e4As (zs ) g(zs ) z4

)
(22)

which can be considered as the metric of a two-dimensional
world-sheet black hole with the horizon radius of zs . The
local speed of light at the worldsheet horizon corresponds to
the speed of a quark at the boundary. The associated Hawk-
ing temperature of the worldsheet is calculated numerically
and its ratio to its conformal value is plotted in Fig. 4 for
two different quark velocities. Similar to the drag force, the
behavior of this ratio at lower temperatures, near the critical
temperature, is very dependent on the chemical potential and
quark velocity, such that for μ close to μc the worldsheet
temperature in this background can be larger than its confor-
mal value. However, at large temperatures, this ratio tends to
one independent of the μ and quark velocity values. Similar

1 In this paper, we have considered Ts L2 = 0.1 [52] which corresponds
to a small ’t Hooft coupling for the holographic QCD model compared
to the N = 4SY M coupling that is considered to be 6π .

to the drag force ratio plot of Fig. 3, for each chemical poten-
tial value, the solid curve starts from its critical temperature
and the solid and dashed curves correspond to the deconfined
and confined phases respectively.

4 Langevin equation

Heavy quarks moving at a constant velocity in the plasma
experience a Brownian motion which can be described by
the effective equation of motion [78]

dp

dt
= − ηD p + ξ(t), (23)

where ηD is the drag coefficient, p is the relativistic expres-
sion of the momentum of the quark, and ξ is a random force,
expressing the interaction of the medium with the heavy
quark. This random force causes the momentum broadening
of the quark which can be extracted by analyzing small fluctu-
ations in the path of the Wilson line. This is dual to perturbing
the location of the classical string endpoint on the boundary
which yields fluctuations on the string world sheet dragging
behind the quark. Therefore, we consider the quadratic fluc-
tuations around the classical trailing string solution obtained
in the previous section. In the static gauge, τ = t , and σ = z,
we generalise the embedding function of the string as

xL(t, z) = v t + ξ(z) + δ x(t, z) , xT = δ xT (t, z), (24)

where L and T denote to the parallel and transverse to the
direction of motion. Now, we rewrite the Nambu-Goto action
Eq. (8) and expand it to second order in terms of fluctuations
around the string solution, Eq. (15)

S = − 1

2πα′

∫
dz dt

√−γ
γ αβ

2

× [
N (z) ∂αδxL ∂βδxL + Gxx ∂αδxT ∂βδxT

]
, (25)

where

γ = L4z4
s

z4

e8As (z)(g(z) − v2)

e4As (z)g(z)z4
s − e4As (zs )g(zs)z4

, (26)

and

N (z) = L2

e2As(z)z2

e4As (z)g(z)z4
s − e4As (zs )g(zs)z4

z4
s (g(z) − v2)

. (27)

The above action can be rewritten in terms of the world-
sheet coordinate Eq. (20) and ansatz Eq. (21) which diago-
nalized the induced metric, Eq. (22)

S = − 1

2πα′

∫
dz dt

Hαβ

2

× [
N (z) ∂αδxL ∂βδxL + GTT ∂αδxT ∂βδxT

]
, (28)
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Fig. 3 The ratio of drag force in the holographic QCD model to its
conformal value in terms of temperature for μ = 0, 0.2, 0.4, 0.6 and
0.673 (red, orange, green, blue and violet respectively). The solid curves

correspond to the deconfined phase and the dashed curves represent the
data of the confined phase. a The velocity of quark is v = 0.99. b The
velocity of quark is v = 0.3

Fig. 4 The ratio of the worldsheet temperature of the holographic
QCD model to its conformal value in terms of temperature for μ =
0, 0.2, 0.4, 0.6 and 0.673 (red, orange, green, blue and violet respec-

tively). The solid curves correspond to the deconfined phase and the
dashed curves represent the ratio in the confined phase. a The velocity
of quark is v = 0.99. b The velocity of quark is v = 0.3

where Hαβ is defined in terms of inverse of the diagonalized
induced metric Eq. (22) as

Hαβ = √
hhαβ, (29)

One can read the transport coefficient directly from the
above action according to the membrane paradigm [94]. The
quadratic effective action for a massless scalar field φ has the
form of

S = −1

2

∫
dz dt

√−g q(z) gMN ∂Mφ ∂Nφ. (30)

The momentum broadening coefficients can be read directly
from the above action as

κ = lim
ω→0

(
−2Twsh

ω
ImĜ R(ω)

)
= 2 Twsh q(z), (31)

where ImĜ R is the imaginary part of retarded correla-
tion function at the world-sheet horizon. By comparing the

action 28 with Eq. (30) and implying the relation 31, the
Langevin coefficients can be read as [7,95,96]

κT = 1

πα′ Twsh Gxx |z→zs

κL = 1

πα′ Twsh N (z)|z→zs (32)

The final results for the ratio of the longitudinal to transverse
transport coefficients in this model is

κL

κT
= 1 + 4g(zs)

(
zs A′

s(zs) − 1
)

zsg′(zs)
, (33)

where the L’ Hospital’s rule were employed since our func-
tions are continuous and zs is calculated using Eq. (14).

In Fig. 5, we have plotted the transverse and longitudinal
transport coefficients versus temperature for two different
quark velocities. In these plots, the black solid curves rep-
resent the κT and κL of the N = 4 SY M theory, and the
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dashed lines represent the data of the confined phase of the
holographic model. From the deconfined curves, we find that
increasing the temperature and chemical potential, increases
the transport coefficients and for high quark velocity, the
dependency on μ is more relevant. Also, one could observe
that at lower temperatures (available for higher chemical
potential values) the transverse and longitudinal transport
coefficients are larger than theN = 4 SY M while for smaller
μ values, they are smaller than N = 4 SY M . Our numer-
ical results for the transport coefficients obey the expected
inequality in isotropic backgrounds κL > κT [96].

The ratios of κL/κL(SY M) and κT /κT (SY M) in terms of
the temperature for two quark velocities are shown in Fig. 6.
At lower temperatures, the dependency on μ is more evident
while at high temperatures, all the curves converge to a single
value smaller than one. The data of each μ, exhibit a peak
around the critical temperature that moves towards higher
temperatures for smaller values of chemical potential (except
for the small μ curves of Fig. 6b in which no peaks exist).
From these plots, one could find that the transport coefficients
increase by increasing the chemical potential similar to the
transport coefficients in a medium with baryon density [101].

5 Jet quenching parameter

In this section, we study the light quark energy loss by cal-
culating the jet quenching parameter. For this purpose, we
follow the method of [100] to compute this parameter in the
holographic QCD model of [51,52] reviewed in Sect. 2.

Starting from the string frame metric of Eq. (7) and using
the light-cone coordinates x± = (x1±t)/

√
2, the bulk metric

takes the following form,

ds2 = L2 e2As (z)

z2

(
dx2

2 + dx3
2 + 1

2
(1 − g(z))

×
(
dx+2 + dx−2

)

+ (1 + g(z)) dx+dx− + dz2

g(z)

)
. (34)

To calculate the jet quenching parameter, the thermal expec-
tation value of a closed rectangular Wilson loop is being used
as [100],

〈W A(C)〉 ≈ exp

[
− 1

4
√

2
q̂ L− L2

]
, (35)

where L− is the distance (conjugate to partons with relativis-
tic velocities) and L is the transverse distance (conjugate
to the transverse momentum of the radiated gluons). This
equation is valid for L− � L . On the other hand, Thermal
expectation value of the Wilson loop 〈WF (C)〉 is obtained

by using the extremal surface action as [45–47,103,104]

〈WF (C)〉 = exp [−SI (C)] , (36)

where SI is the normalized action of a hanging string from
Wilson loop C joining two light-like lines. to the bulk (after
subtracting the self energy of the qq̄ pair from the Nambu-
Goto action of the string worldsheet). In the large Nc limit,
one can use the relation Tr(Ad j.) = Tr2

(Fund.) and compare
the Eqs. (35) and (36) to obtain,

q̂ = 8
√

2SI
L− L2 . (37)

By the string parametrization xμ(τ, σ ), the Nambu-Goto
action of the string is written as,

SNG = 1

2πα′

∫
dσdτ

√− det γαβ, (38)

where γαβ is the induced metric on the string worldsheet
and the worldsheet coordinates σα = (τ, σ ) are set to be
(x−, x2). The contour length along x2-direction is defined
by L and the length along τ -direction by L−. The boundary
conditions are φ(± L

2 ) = 0 and x3(σ ) and x+(σ ) coordinates
are constant. Then the action of Eq. (38) reads,

SNG = L−
√

2πα′

∫ L
2

0
dσ

e2As (z)

z2

√
1 − g(z)

2

(
1 + z′2

g(z)

)

(39)

where prime denotes the derivative with respect to x2. Since
the Lagrangian density is time independent, the Hamiltonian
of the system is constant,

L − z′ ∂L
∂z′

= �z√
2
. (40)

From the above equation, one can obtain z′ as,

z′ =
√
g(z)

(
e4As (z)(1 − g(z))

�z
2z4

− 1

)
. (41)

Integrating Eq. (41) leads to,

L

2
= a0�z + O(�z

3), (42)

where,

a0 =
∫ 0

zh
dz

z2e−2As (z)

√
g(z) (1 − g(z))

. (43)

Here, we have considered that for small length L , the con-
stant �z is small and its higher order terms are negligible.
Substituting Eq. (41) into Eq. (39) yields,

SNG = L−

πα′

∫ 0

zH
dz

e4As (z)(1 − g(z))

z2
√

2g(z)(e4As(z)(1 − g(z)) + �2
z z

4)

,

(44)
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Fig. 5 The longitudinal and transverse transport coefficients in the holographic model in terms of the temperature for μ = 0, 0.2, 0.4, 0.6 and
0.673 (red, orange, green, blue and violet respectively). a κT for v = 0.99, b κL for v = 0.99, c κT for v = 0.3 and d κL for v = 0.3

where we have used z′ = ∂z
∂σ

. Expanding this equation for
small �z , leads to,

SNG = L−

πα′

∫ 0

zH
dz

e2As (z)

z2

√
1 − g(z)

2g(z)

×
(

1 + e−4As (z)�2
z z

4

2(1 − g(z))
+ ...

)
, (45)

This action diverges and one should subtract the self energy
of two disconnected strings whose worldsheets are located
at x2 = ± L

2 and extended from boundary to horizon as,

S0 = L−

2πα′

∫ 0

zH
dz

√
g−−gzz

= L−

2πα′

∫ 0

zH
dz

e2As (z)

z2

√
1 − g(z)

2g(z)
. (46)

The normalized action is therefore,

SI = SNG − 2S0 ≡ L−�2
z a0

2
√

2πα′ . (47)

Inserting Eq. (47) into Eq. (37) leads to the following expres-
sion for the jet quenching parameter of holographic model,

q̂ = 1

πα′a0
, (48)

where we have used Eq. (42) for �z and a0 is the numeri-
cal integral defined in Eq. (43). For N = 4 supersymmetric
Yang–Mills theory in the large Nc and large λ limits, Eq. (48)
leads to the following analytical equation [100],

q̂SY M = π3/2�( 3
4 )

�( 5
4 )

√
λ T 3, (49)

In order to obtain the jet quenching parameter for the
holographic QCD model of [52], we have solved the equa-
tion of 48 numerically for different values of temperature
(zh) and chemical potential. The resulting curves are plot-
ted in Fig. 7. In this figure, the numerical values of the jet
quenching parameter are shown for the holographic QCD
model (red, orange, green, blue, and purple curves with
μ = 0, 0.2, 0.4, 0.6 and μc respectively). Solid curves cor-
respond to the deconfined phase of the holographic model
and dashed curves represent the confined phase data. For each
chemical potential value, the solid curve starts from the criti-
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Fig. 6 The ratio of the longitudinal to transverse transport coeffi-
cients in the holographic model in terms of the temperature for μ =
0, 0.2, 0.4, 0.6 and 0.673 (red, orange, green, blue and violet respec-

tively). a The transverse ratio for v = 0.99, b the longitudinal for
v = 0.99, c the transverse ratio for v = 0.3 and d the longitudinal ratio
for v = 0.3

cal temperature Tc, at which the confinement/deconfinement
phase transition occurs. In this figure, the solid black curve
displays the q̂SY M and the black circles with error bars are
the absolute values of q̂ for a 10 GeV quark jet in the most
central Au-Au collisions at RHIC with the highest temper-
ature T = 0.37GeV and Pb-Pb collisions at LHC with the
highest temperature T = 0.47GeV [63].2 From this figure,
one can observe that increasing the chemical potential and
temperature leads to an increase of the jet quenching param-
eter. At lower temperatures associated with larger values of
chemical potential, q̂ > q̂SY M and at higher temperatures,
q̂ < q̂SY M . Experimental values of the jet quenching param-
eter, are closer to the higher chemical potential curves.

The ratio of the jet quenching parameter in the holographic
QCD model to the q̂SY M is plotted in Fig. 8a in terms of tem-
perature for μ = 0, 0.2, 0.4, 0.6 and μc. From this figure,
one could observe that at higher temperatures, the jet quench-
ing curves converge to a value lower than the corresponding

2 In this plot, these two temperatures are rescaled as T ≈ TSYM =
3−1/3TQCD since for the holographic QCD theories, the number of
degrees of freedom is more than those of 3 favor QCD [63].

Fig. 7 Jet quenching parameter versus temperature for the holographic
model with different chemical potentials. The black curve is q̂SY M and
the circles indicate the experimental values from RHIC and LHC. The
dashed curves represent the jet quenching parameter for the confined
phase and the colored solid curves stand for the deconfined phase of the
holographic model

value of the N = 4 SYM theory similar to the curves of the
drag force and Langevine coefficients in Figs. 3 and 6. How-
ever, at lower temperatures, the jet quenching parameter of
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Fig. 8 a q̂/q̂SY M and b Log(q̂/G5s) versus temperature for the holographic QCD model. Red, orange, green, blue and violet curves correspond
to μ = 0, 0.2, 0.4, 0.6 and 0.673 respectively)

the holographic QCD model is larger than the q̂SY M . Similar
to Figs. 3a and 5a for a high-velocity heavy quark, increas-
ing the chemical potential value, increases this ratio, and the
q̂/q̂SY M plot indicates a smooth confinement/deconfinement
phase transition that results in a peak around the critical tem-
perature for μ < μc (for smaller μ’s, the peak shifts to
higher temperatures). The same behavior has been observed
for q̂/T 3 in the dynamical holographic QCD model of [102]
suggesting the rapid changing in the system degrees of free-
dom during the phase transition [101,102].

Finally, the logarithmic plot of the jet quenching parameter
over the entropy density is plotted in terms of the temperature
in Fig. 8b (in units of G5) for different values of chemical
potential. The dashed line represents the logarithmic value
of q̂/G5s for the N = 4 SYM theory and each curve has
a sharp rise with a finite peak at the crossover temperature.
The peak increases by increasing the chemical potential and
is higher than the q̂/s curves of [102]. It is worth mentioning
that, despite the different concept and calculation methods,
the jet quenching parameter of a light quark has the same
behavior as the transverse transport coefficient of a high-
velocity heavy quark (and consequently, to the Langevin jet
quenching parameter q̂T = 2κT /v).

6 Conclusion

In this paper, we studied the drag force and the Langevin dif-
fusion coefficients for a heavy quark and also, the jet quench-
ing parameter for a light quark moving through the QGP. For
this purpose, we have implemented the holographic QCD
model of [52] as a realistic framework for the QCD confine-
ment/deconfinement phase transition with thermodynamic
properties consistent with QCD and lattice data.

Our results demonstrate a nontrivial behavior on temper-
ature and chemical potential, especially near the phase tran-
sition temperature. For a high-velocity heavy quark, the drag
force and the transverse transport coefficient ratios increase

by increasing the chemical potential. For each chemical
potential value, these ratios develop a peak around the criti-
cal temperature that shifts to higher temperatures for higher
quark velocities and smaller values of chemical potential. The
longitudinal transport coefficients exhibit the same behav-
ior except for the lower values of the chemical potential
where no peaks exist. For a low-velocity quark, the drag force
and transport coefficients ratios, monotonically decrease by
increasing temperature and are less sensitive to the chemical
potential values.

Also, we have calculated the jet quenching parameter
for a light-like trajectory in terms of temperature for differ-
ent values of chemical potential. This parameter, increases
by increasing the chemical potential and temperature. Our
results are in good agreement with the experimental data
from RHIC and LHC. The ratios of q̂/q̂SY M are more than
one at lower temperatures (accessible to the higher values of
chemical potential). Similar to the drag force and transport
coefficients, the curves develop peaks around the crossover
temperature and at high T ’s, converge to a single value less
than one due to the small ’t Hooft coupling of the holographic
QCD model we have implemented here. The jet quenching
parameter of a light quark and the transverse transport coeffi-
cient of a high-velocity heavy quark, display the same quali-
tative behavior despite the differences. In the end, the ratio of
q̂/G5s has been computed in terms of temperature for differ-
ent values of chemical potential. The curves have sharp rising
by decreasing the temperature and develop finite peaks at the
crossover temperature, indicating that the system degrees of
freedom change rapidly during the phase transition.
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