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Abstract We consider an extension of the Standard Model
of particle physics with an additional SU (2) gauge sector
along with an additional scalar bidoublet and a non-linear
sigma field. The neutral components of the bidoublet serve
as dark matter candidates by virtue of the bidoublet being
odd under a Z2 symmetry. Generic beyond Standard Model
constraints like vacuum stability, invisible decay of Higgs,
Higgs alignment limit and collider constraints on heavy
gauge bosons restrict the parameter space of this model. In
this multicomponent dark matter scenario, we investigate the
interplay between the annihilation and co-annihilation chan-
nels originating from the new gauge sector as those contribute
to the relic abundance. We also inspect the direct detection
constraints on scattering cross-sections of the dark matter
particles with the detector nucleons and present our observa-
tions.

1 Introduction

The Standard Model (SM) of particle physics has been exper-
imentally proven to be a very successful theory over the last
few decades. However, there are a few limitations of the SM
which motivate physicists to look for Beyond the Standard
Model (BSM) scenarios. One such very important drawback
with the SM is that it can not explain the particulate nature of
the Dark Matter (DM). DM consists of more than one fourth
of the energy budget of our universe [1,2]. In the quest of
solving the DM problem, one very popular class of models
are those that incorporate a Weakly Interacting Massive Par-
ticle (WIMP) in their spectrum [3–5]. In a typical WIMP
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model, there is an extended sector in addition to the SM par-
ticles which is weakly coupled to the SM and protected by
a stabilising symmetry. Various scalar extensions including
singlet extensions [6–12], two-singlet extensions [13–22],
inert 2HDM [23,24], 2HDM+scalar singlet [25,26], 2HDM
with gauge extension [27], and also various gauge extensions
mostly of different kinds of additional U (1) [28–34] with an
extended scalar and/or fermion sector have been studied in
this context.

In this work, we extend the gauge sector of SM with an
additional SU (2) and also the scalar sector with an additional
scalar bidoublet and a non-linear sigma field. The SM-like
scalar doublet and the sigma field contribute to the sponta-
neous symmetry breaking whereas the scalar bidoublet pro-
vides the DM candidates protected by an imposed Z2 sym-
metry. An extended gauge sector introduces co-annihilation
channels for the relic calculation as well as modifies the
direct detection constraints – the main goal of the present
work is to study in this specific model context how these
phenomenological considerations affect the parameter space
of the model.

The paper is organised as follows: in Sect. 2 we intro-
duce the model. In Sect. 3 we discuss the model constraints
arising from vacuum stability, invisible decay of the Higgs
particle, Higgs alignment, and collider searches for heavy
gauge bosons. In Sect. 4, we investigate the DM phenomenol-
ogy motivating the DM candidates and calculating the relic
abundance and the direct detection constraints before finally
presenting our conclusions in Sect. 5. All the relevant cou-
plings are organised in Appendix B after a few comments
on perturbativity in Appendix A. A brief note on the loop
level calculations of Higgs decay to two photons is provided
in Appendix C with appropriate loops relevant to the model
under study. The Boltzmann equations and Feynman dia-
grams relevant for the relic are given in Appendix D.
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Table 1 Z2 charges of the states

Fields Z2 charges

The fermionic sector +

�1 +

� +

�2 (and thus its components φ0, φ3, φ
±) –

2 The model

We consider an SU (2) extension of the gauge sector of the
SM. Furthermore, the scalar sector is extended with an addi-
tional scalar bi-doublet odd under a Z2 symmetry and a non-
linear sigma field (for details see Tab. 1). The gauge sector
can now be written as SU (2)0 × SU (2)1 ×U (1)2 (where the
subscripts help us to keep track of different gauge charges).
We will see that three out of the four degrees of freedom of
the scalar doublet and three degrees of freedom of the sigma
field are eaten up by the six gauge bosons of the gauge sector,
thus giving rise to massive gauge bosons, while the photon
remains massless due to the residualU (1)EM symmetry. The
electrically neutral components of the scalar bidoublet pro-
tected by a Z2 symmetry furnish the dark matter candidates
of the universe. The various scalar fields can be conveniently
expressed in the following form

�1 =
(

G+
v1+h+iG0√

2

)
;

�2 = 1

2

(
φ0 + iφ3 i(φ1 − iφ2)

i(φ1 + iφ2) φ0 − iφ3

)
; � = exp

iσ aπa

F
.

(2.1)

After a few redefinitions, the latter two can be recast as

�2 = 1

2

(
φ0 + iφ3 i

√
2φ+

i
√

2φ− φ0 − iφ3

)
;

� =
(

1 + i
F π3 i

√
2

F π+
i
√

2
F π− 1 − i

F π3

)
, (2.2)

where φ± = 1√
2
(φ1 ∓ iφ2) and similarly for the π ’s.

The scalars transform under these gauge symmetries in
the following manner:

�2 → U †
0 �2U1, � → U †

1 �U0, �1 → U1�1,U2�1.

(2.3)

Thus the �2 and � transform as bidoublets under the
SU (2)0 ×SU (2)1whereas the �1 is a doublet under SU (2)1.
The Ui signify the unitary transformation matrices corre-
sponding to the gauge symmetry indexed i and the covariant

derivatives accordingly take the form

Dμ�1 = ∂μ�1 − ig1

2
Wa

1μσ a�1 − ig2

2
B2μ�1

Dμ�2 = ∂μ�2 + ig0

2
Wa

0μσ a�2 − ig1

2
�2W

a
1μσ a

Dμ� = ∂μ� + ig1

2
Wa

1μσ a� − ig0

2
�Wa

0μσ a .

With these definitions in place, the kinetic energy term of the
scalar sector can be written as

L ⊃ (Dμ�1)
†(Dμ�1) + Tr [(Dμ�2)

†(Dμ�2)]
+ F2

4
Tr[(Dμ�)†(Dμ�)]. (2.4)

The SU (2)0 × SU (2)1 ×U (1)2 symmetry is broken down to
SU (2) × U (1)2 as � develops a vacuum expectation value
F . We identify this gauge group with SU (2)L × U (1)Y
of the SM. Then this symmetry is further broken down to
U (1)EM as the �1 develops a vacuum expectation value v (=
246 GeV). After symmetry breaking, collecting the relevant
terms, the neutral gauge boson mass matrix can be written as

M2
N = 1

8

⎛
⎝ g2

0F
2 −g0g1F2 0

−g0g1F2 g2
1(F2 + v2) −g1g2v

2

0 −g1g2v
2 g2

2v2

⎞
⎠

= g2
0F

2

8

⎛
⎝ 1 −x 0

−x x2(1 + r2) −x2tr2

0 −x2tr2 x2t2r2

⎞
⎠ , (2.5)

where g1
g0

= x � 1, g2
g1

= t , and v
F = r .

This matrix can be diagonlized perturbatively in the small
parameter x . The eigenvalues corresponding to the eigen-
states of the photon, Z and Z ′ bosons are given by

m2
γ = 0; m2

Z = g2
0F

2r2x2

4
(1 + t2 − x2);

m2
Z ′ = g2

0F
2

4
(1 + x2), (2.6)

and the mass eigenstates are (writing t = s
c )

Aμ = sxW 3
0μ + sW 3

1μ + cB2μ, (2.7)

Zμ = cxW 3
0μ + cW 3

1μ − sB2μ, (2.8)

Z ′
μ = W 3

0μ − xW 3
1μ. (2.9)

The charged gauge boson mass matrix can similarly be com-
puted and given by

M2
C = g2

0F
2

4

(
1 −x

−x x2(1 + r2)

)
. (2.10)

The mass eigenvalues are

m2
W = g2

0F
2r2x2

4
(1 − x2); m2

W ′ = g2
0F

2

4
(1 + x2).

(2.11)
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The mass eigenstates of the charged gauge bosons are

Wμ = xW0μ + W1μ, (2.12)

W ′
μ = W0μ − xW1μ, (2.13)

where the one with the smaller mass is identified as the
W boson and the heavier one as the W ′ boson. It is to be
noticed that the massive SM gauge bosons get their contri-
bution predominantly from SU (2)1. However, for the BSM
gauge bosons, SU (2)0 is the major contributor. In the limit
g0 → ∞ (or equivalently x → 0), the mW ′,Z ′ decouple
and the gauge spectrum at low energies thus reduces to that
of the SM as expected. For all practical purposes x can be
parametrized as the ratio of the light and heavy gauge boson
masses (to leading order) as

x2 ≈ m2
W

r2m2
W ′

(2.14)

which can be readily seen from Eqs. (2.11) and (2.6).
After taking into account the gauge charges of the scalars

and the imposed Z2 symmetry, the most general scalar poten-
tial can be written as

V (�1,�2, �) = m2
2 Tr(�†

2�2) + λ1

[
�

†
1�1 − v2

2

]2

+ λ2

[
Tr(�†

2�2)

]2

+ λ12

[
�

†
1�1 − v2

2

][
Tr(�†

2�2)

]

+ λ23F
2
[

Tr(��2��2)

]

+ λ̃23F
2
[

Tr(��2)

]2

.

(2.15)

After spontaneous symmetry breaking the higgs mass (m2
h)

is given by the expression 2λ1v
2 and the charged scalar mass

(m2
φ± ) is given by m2

2 −λ23F2. The two neutral components
of �2 have masses given by the following expressions:

m2
φ0

= m2
2 + λ23F

2 + 2λ̃23F
2,m2

φ3
= m2

2 − λ23F
2. (2.16)

It is important to note here that the Z2 symmetry of the �2

bi-doublet works as the stabilising symmetry required for
the DM under the WIMP scenario. However, this discrete
symmetry can not forbid the number changing processes
among the components of this bidoublet. Thus for a posi-
tive (λ23 + λ̃23), the φ3 component will be the natural DM
candidate and for negative values of this quantity, the φ0

component serves the same purpose from the stability argu-
ment. However, if the couplings are such that these two are
degenerate, then we have an interesting possibility of a mul-
ticomponent DM scenario where both neutral components

are cosmologically stable DM candidates – we describe how
this will play out in more detail in Sect. 4.

The Yukawa sector is assumed to mimic that of the SM as
�1 plays a similar role of the SM Higgs doublet. However,
the fermions can still couple to the heavy gauge bosons due
to gauge mixing. All the relevant couplings can be straight-
forwardly computed (again in a perturbative expansion in x)
and are listed in Appendix B. Specifically, the purely scalar
sector couplings are given in Tables 3 and 4. The scalar cou-
plings with the gauge bosons are listed in Tables 5,6,7,8,9,10
and 11. The relevant couplings of the gauge bosons with the
fermions can be found in Tables 12 and 13 and that of the
gauge bosons among themselves in Table 14.

3 Model constraints

In this section, we impose all the theoretical and experimen-
tal constraints on the model. We will not only identify all
the relevant parameters for carrying out further analysis, but
also assign values to some and constrain the rest with various
experimental observations. Among the many model param-
eters, the following are the most relevant for our analysis:
v, mh , mφ3 , λ12, λ23, λ̃23, mW ′ (or mZ ′) and F (or equiva-
lently r ). The other important parameters can be represented
in terms of these above mentioned ones. For example, x can
be represented in terms of mZ ′ and F following Eq. (2.6) or
more conveniently through the mass ratio in Eq. (2.11) (for
a given v, F and r can be used interchangeably). We also set
mh = 125 GeV and v = 246 GeV in this paper. We now look
at four key constraints on the model parameters coming from
vacuum stability, the branching ratio of invisible decay of the
Higgs, the Higgs alignment limit and collider constraints on
the heavy gauge bosons.

3.1 Vacuum stability

It is the quartic part of the scalar potential that contributes
to the vacuum stability conditions [35]. After spontaneous
symmetry breaking when � develops a vacuum expectation
value, the quartic part of the scalar potential in our model can
be written in the unitary gauge 〈�〉 = 1 as,

V4 = λ1(�
†
1�1)

2 + λ2[Tr(�†
2�2)]2

+λ12(�
†
1�1)[Tr(�†

2�2)] (3.1)

The vacuum stability conditions can now be found through
the standard procedure described in [35]. Let’s assume that
�

†
1�1 = a and Tr(�†

2�2) = b. Then,

V4 = λ1a
2 + λ2b

2 + λ12ab

= (
√

λ1a − √
λ2b)

2 + (2
√

λ1λ2 + λ12)ab. (3.2)

123



144 Page 4 of 17 Eur. Phys. J. C (2024) 84 :144

• Let us consider first the b = 0 direction (a → ∞). We
demand V4 ≥ 0, which implies λ1a2 ≥ 0. The condition
is then λ1 ≥ 0.

• Next we consider the a = 0 direction (b → ∞). Simi-
larly by demanding V4 to be positive, one can derive the
condition λ2 ≥ 0.

• Lastly, the direction a =
√

λ2
λ1
b (where a, b → ∞) can

be considered. Again demanding V4 ≥ 0 one can find the
condition λ12 ≥ −2

√
λ1λ2.

Now collecting all the equations together the vacuum stabil-
ity conditions for this model are given by

λ1 ≥ 0, λ2 ≥ 0, and λ12 ≥ −2
√

λ1λ2. (3.3)

Another relevant theoretical constraint, the perturbativity
bound, is discussed in Appendix A.

3.2 Higgs invisible decay

The Higgs invisible decay branching ratio is given by

BRh→inv = 
h→inv


h→inv + 
h→SM
. (3.4)

Among ATLAS [36] and CMS [37] measurements of this
quantity, the more stringent bound comes from the ATLAS
experiment and is 11%. In Fig. 1, assuming φ3 to be the dark
matter candidate, we present this bound in the parameter
space mφ3 − λ12 for dark matter masses smaller than half
of mh (in order, of course, that h can decay into a pair of
them). There is an upper bound on λ12 as a function of mφ3

as indicated by the shaded region in the figure. For higher
DM masses the restriction will be drastically lenient due to
off-shell suppression of the decay width.

3.3 Higgs alignment limit

Given the extended gauge and scalar sector in our model, the
standard Higgs boson couplings to various constituents of
the SM are modified due to gauge mixing. For example, the
coupling between Higgs and the pair of W boson (Table 5)
will take the form

λhW+
μ W−

μ
= e2v

2 sin2 θw

(
1 + x2 sin2 θw

)
+ h.c. (3.5)

One can notice that the deviation of this coupling from the
SM counterpart is proportional to x2. A similar deviation
can be found in other SM-like gauge couplings in Tables
5 and 6. On the other hand the couplings between the SM
Higgs and different fermion pairs in this model maintain the
same structure as SM due to the Yukawa sector of both these
models being the same. To analyse how new physics can
modify Higgs properties we look into the branching ratio of
h → γ γ . Apart from the usual SM fermion and W boson

Fig. 1 The shaded region in the λ12 − mφ3 space is disallowed by
constraints from Higgs invisible branching ratio

loops, the heavy W
′

boson as well as the charged scalar φ±
will contribute to this loop mediated process. After incorpo-
rating these additional contributions we have calculated the
branching ratio BR (h → γ γ ) (for a detailed calculation, see
Appendix C) in this model for a range of charged Higgs and
W ′ masses. In Fig. 2, we present the allowed region (shaded
region is disallowed) of the parameter space after recasting
ATLAS [38] and CMS [39] measurements – we have set the
ratio between two vev’s r at 0.25 and presented our results for
two different λ12 benchmark values given by 0.1 and 0.01. It
is found that for both the scenarios, the region mW ′ > 1 TeV
and mφ± > 200 GeV is allowed.

3.4 Collider constraints on heavy gauge bosons

Due to its extended gauge sector, the model admits heavy
charged and neutral gauge bosons. The Z ′ couples to different
SM fields primarily through gauge mixing. As a result, this
Z ′, if produced in colliders, can be discovered from its decays
to different SM final states. Specifically, the Z ′ can decay
into �L �̄L (� represents all possible charged leptons), νL ν̄L
and qLq̄L (q represents all possible SM coloured particles)
pairs where the the corresponding coupling is suppressed by
the parameter x w.r.t the SM counterpart. One can notice
in Tables 12 and 13 that the Z ′ specifically couples to the
left-handed chiral fermions since it is induced purely from a
gauge mixing in the neutral gauge sector and does not receive
any contribution from the U (1)2 (see Eq. (2.9)). In addition
to the fermion pairs, the Z ′ can decay into two other SM
final states Zh and WW . Apart from these SM final states
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Fig. 2 The dark cyan shaded region in the mφ± vs. mW ′ plane is disallowed from the branching ratio measurements of h → γ γ channel

the Z ′ boson does couple to the dark sector particles φ+φ−
and φ0φ3. The three point vertices corresponding to these
two decay modes are proportional to 1

x at leading order (see
Table 11). As a consequence the decay width of these two
modes are significantly larger than SM final states. In Table
2 we present the analytic formulas for these decay widths.

Here Nc stands for the colour factor (3 and 1 for quarks
and leptons respectively) and the λ’s denote the relevant cubic
vertices. We have neglected the mass of the fermions in com-
parison with the Z ′ mass for the fermionic decay modes. In
principle, there exists a cubic vertex of the form λZ ′WW ′ .
However, in the present model mZ ′ and mW ′ are degenerate

and the Z
′

decay via WW
′

channel is kinematically forbid-
den. In Fig. 3 (left) we present the corresponding BRs of these
channels for mZ ′ ranging from 1 TeV to 5 TeV. As expected,
the BR of the φ+φ− and φ0φ3 modes dominate for the entire
mZ ′ range. Among the SM final states the WW has the max-
imum and Zh the minimum branching ratio. For the present
calculation we have set r = 0.25 and mφ0 = mφ3 = mφ± =

400 GeV. In Fig. 3 (right) we present the


Z
′

m
Z
′ in percentage.

There is a visible growth in this ratio at the mass rangemZ ′ >

2.5 TeV. However, the overall value remains below � 30%
for the entire range. This is to emphasize that for the current
benchmark choice the perturbative treatment is applicable.
For different parameter choices, one should explicitly calcu-

late the


Z
′

m
Z
′ and ensure that the corresponding value is less

than unity.
From the above discussion, it is evident that the Z

′
in

this model primarily decays via exotic scalars coming from
the scalar bidoublet and that the branching ratios in the SM
final states are significantly low. Nevertheless, it is useful to
check the direct detection limits to understand the allowed

parameter space. Before the LHC era, the LEP and Teva-
tron colliders have extensively searched for the heavy neu-
tral gauge bosons. The LEP searches [40] can be divided
into two categories: (i) precision measurement around the
Z pole which can effectively constraint the mixing angle
between the Z − Z

′
and (ii) direct searches for the heavy

neutral boson in the e+e− → f f̄ (here f is all possible SM
fermions) at the mass range above Z -pole. On other hand,
at Tevatron the Z

′
boson was primarily looked for in the

p p̄ → Z
′
X → �+�−X channel and using the data, both the

CDF [41,42] and D0 [43,44] collaborations have put bounds
on mZ ′ for different U (1) extensions of the SM. The com-
monality between the LEP and Tevatron is the correspond-
ing bounds are strictly dependent on the Z

′
couplings to SM

fermions. For a comprehensive analysis on how these results
can be translated in a specific model, the interested reader
can consult Refs. [45,46]. At LHC, both the Drell-Yan (DY)
and Vector Boson Fusion (VBF) production mechanisms are
considered for the Z

′
searches. After production, the Z

′
can

decay to dileptons, Zh, and WW final states. For the present
study, we will consider these three final states and will recast
the corresponding ATLAS and CMS bounds in our model.
To calculate the signal cross section in our model we have
used the prescription illustrated in Refs. [47,48]. We begin
with the process pp → Z

′
Zh, where the Z

′
is produced via

DY and decays into Zh. The Z further decays leptonically
and the Higgs boson decays to b̄b. Both the ATLAS [49]
and CMS [50] have searched the Z

′
boson in this mode. The

model dependent upper bounds on the σ × BR is displayed
in Fig. 4 (upper panel left) by red dashed (ATLAS) and blue
dotted curve (CMS) curves. The black solid line represents
the corresponding number for the present model.
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Table 2 The relevant Z ′ decay
rates for the purposes of this
section—the expressions for the
couplings given herein can be
found in Appendix B

Decay modes Decay rate expressions



(
Z

′ → f f̄
) Ncλ

2
Z
′
f f

48π
mZ ′



(
Z

′ → W+W−
) λ2

WWZ
′ mZ

′
192π

√
1 − m2

W
m2

Z
′

(
1 + 16

m2
W

m2
Z
′

− 68
m4

W
m4

Z
′

− 48
m6

W
m6

Z
′

)



(
Z

′ → Zh
) λ2

hZ Z
′

48πm
Z
′

(
2 +

(
m2

Z
′ +m2

Z−m2
h

)2

4m2
Zm

2
Z
′

) √
1 +

(
m2
h−m2

Z

)2

m4
Z
′

− 2
(
m2
h+m2

Z

)2

m4
Z
′



(
Z

′ → φ0φ3

) λ2
φ0φ3 Z

′
48πm

Z
′

(
m2

Z ′ − 2
(
m2

φ0
+ m2

φ3

))√
1 +

(
m2

φ0
−m2

φ3

)
m4

Z
′

− 2

(
m2

φ0
+m2

φ3

)
m2

Z
′



(
Z

′ → φ+φ−
) λ2

φ+φ− Z
′

192πm
Z
′

(
m2

Z ′ − 4m2
φ±

) √
1 − 4

m2
φ±

m2
Z
′

Fig. 3 Left: The branching ratio of Z
′

for all possible two body final
states. Here we have set r = 0.25 and mφ0 = mφ3 = mφ± = 400 GeV.

The branching ratio for Z
′ → qq mode (solid orange line) is summed

over all six SM quark final states. Similarly, the Z
′ → �+�− (blue

solid) and Z
′ → νν (green dashed) modes are calculated while con-

sidering all three lepton flavours. Right: The ratio


Z
′

m
Z
′ for mZ ′ mass

ranging from 1 TeV to 5 TeV. Here 
Z ′ is the total decay width which
is computed considering all possible two body decay modes

In the case of VBF mechanism the Z
′
boson can decay via

WW mode. After that, one of the W bosons decays hadron-
ically and the other one decays leptonically. In Fig. 4 (upper
panel right), we display the corresponding ATLAS, CMS and
model specific σ ×BR values via red dashed, blue dashed and
black solid line respectively. We have also translated the LHC
limits in dilepton final state where the Z

′
is produced via DY

mechanism. The corresponding limits [53,54] are displayed
in Fig. 4 (lower panel). Considering these search channels one
can see that the most stringent bound can be obtained from
the Zh mode and to satisfy current collider limits one have to
set mZ ′ � 2.5 TeV for the specific benchmark points that we
have chosen. Apart from the heavy neutral gauge bosons the
LHC also looked for the additional charged gauge bosons.
However the number of searches is comparatively lower as
well as less stringent in the latter case.

4 Dark matter phenomenology

In this section we consider our model described in Sect. 2
as a plausible solution to the dark matter problem. In what

follows, we discuss the choice of the DM candidate, calcu-
late the relic abundance for a multicomponent scenario, and
address the direct detection constraints.

4.1 Choice of dark matter candidate

For generic choices of parameters in this model, the couplings
mentioned in Table 11 allow the decays φ0 → φ±W ′∓, φ3Z ′
for a positive λ23 + λ̃23, and φ3 → φ0Z ′ for negative val-
ues of λ23 + λ̃23. Such decays, despite being suppressed by
the heavy gauge boson mass, would still make one of the
scalars unstable. In other words, constraining such decays
with the age of universe would push the heavy gauge boson
masses to very high values essentially decoupling them from
SM gauge sector for all practical purposes. While this is cer-
tainly a reasonable path to take, in this work our aim is to
treat the multi-component DM scenario while maintaining a
meaningful way of discussing the gauge sector in the context
of present experiments and constraints. Thus, we work under
the mass degeneracy limit of the Z2 odd sector that makes the
neutral components cosmologically stable DM candidates.
Referring to Eq. (2.16), we see that this corresponds to the
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Fig. 4 The direct search limits in the channels DY → Z
′ → Zh

(upper panel left), VBF → Z
′
j j → WW j j (upper panel right) and

DY → �+�− (lower panel). The red-dashed, blue-dotted and black solid

line denote the ATLAS, CMS and the model specific curves respectively.
The arXiv IDs which are written beside the ATLAS and CMS highlight
the corresponding articles [49–54] which are used in this calculation

particular parameter choice λ̃23 = −λ23. The charged com-
ponents will completely annihilate via photon couplings. For
the mass degenerate scenario, all components of the Z2 odd
sector are stable at tree level in the context of collider produc-
tion as well. However, in the absence of higher dimensional
terms in our scalar Lagrangian, loop level effects can give rise
to a sub-GeV mass non-degeneracy between the charged and
neutral components [55] leading to charged scalar decays via
MeV scale charged pions as in reference [24], thus avoiding
any constraints pertaining to the production of an otherwise
stable charged particle in colliders which could potentially
disallow charged scalar masses (and thus the DM masses)
upto a few TeV. Given that the present model admits an extra
SU (2) gauge group in addition to the SM one, we expect
such loop effects to be even more pronounced in our case
in providing a mass splitting between the charged and the
neutral scalars.

4.2 Relic abundance

In the early universe all the particles were in equilibrium in
the high temperature cosmic soup. Over time as the universe
expanded and the temperature of the universe started to drop,
the interaction rate of WIMPs with the other particles of the
cosmic plasma became comparable to the Hubble parameter.
It became difficult for the WIMPs to find another WIMP

to annihilate with and thus they were frozen out remaining
in the universe as a relic which one can compare with the
observed DM relic abundance. The value of relic abundance
as measured by Planck satellite is given by �h2 = 0.120 ±
0.001 [56].

There are two DM candidates in this model as argued in
Sect. 4.1. The dark matter candidates can annihilate mainly
via higgs mediated channels to SM states, for example bb̄,
τ τ̄ , W+W−, Z Z , hh and t t̄ , as allowed by the kinemat-
ics in various DM mass range. The Feynman diagrams are
given in Appendix D. Among the individual contributions
of the DM candidates to the relic, the contribution from φ3

is much less than that of φ0 for the DM mass range start-
ing from mW upto around 300 GeV. This is due to the fact
that in this model there exists a φ3φ3W+W− coupling (see
Table 7) and also φ3φ

±W∓ couplings (see Table 11) which
is absent for φ0, and thus φ3 annihilates more through those
channels leaving less relic in the universe. These couplings
come into effect around a DM mass of mW and finally go
away as the co-annihilation channels start to dominate at a
DM mass of around 300 GeV.1 As we move into the higher
DM mass range, co-annihilation among φ0 and φ3 via Z ′
mediated diagrams into WW , Zh and quark and lepton pairs
start to dictate the relic abundance. All these properties are

1 The exact DM mass value can be different than 300 GeV depending
upon relevant couplings and the heavy gauge boson mass.

123



144 Page 8 of 17 Eur. Phys. J. C (2024) 84 :144

evident in Fig. 5 where the relic abundance contribution of
each dark matter candidate as well as the total contribution
have been displayed as a function of dark matter mass for a
mass degenerate DM scenario. The Z ′ mass is fixed at 5 TeV
as a benchmark choice and the relic varies with scalar sector
parameter λ12 in the annihilation dominated low DM mass
region whereas at high DM mass region the λ12 dependence
is absent since the Z ′ mediated co-annihilation starts dictat-
ing the relic. There are two peaks in the velocity averaged
cross section due to the Breit-Wigner resonance which are
related to the mass of the two mediators h and Z ′. DM relic is
dictated by various annihilation and co-annihilation channels
in various DM mass ranges:

• The DM annihilation to b̄b is the dominant channel dic-
tating the relic in the DM mass range upto around the
W boson mass i.e. mW ∼ 80.4 GeV. The τ̄ τ is the sec-
ond most dominant process in this DM mass region. The
amplitude for the process to b̄b final state is given by

|M|2
b̄b

∼ λ2
hφiφi

λ2
hb̄b

(s − m2
h)

2 + m2
h


2
h

. (4.1)

• One can observe the sudden decline in the relic curve for
both the individual contribution and the total relic around
the DM mass of mW as the Higgs mediated annihilation
channel to WW final state becomes kinematically acces-
sible. The amplitude for the same is given by

|M|2WW ∼ λ2
hφ0φ0

λ2
hWW

(s − m2
h)

2 + m2
h


2
h

(
1 − 4m2

W

s
+ 12m4

W

s2

)
(4.2)

for φ0 and

|M|2WW ∼
(

λ2
hφ3φ3

λ2
hWW

(s − m2
h)

2 + m2
h


2
h

+ λ2
φ3φ3WW

+ 2λhφ3φ3λhWWλφ3φ3WW (s − m2
h)

(s − m2
h)

2 + m2
h


2
h

)

×
(

1 − 4m2
W

s
+ 12m4

W

s2

)

+
4λ4

∂(φ+)φ3W−

s2
(√

s − 4m2
φ3

√
s − 4m2

W cos ψ + 2m2
W − s

)2

×
(
s cos ψ2(s − 4(m2

φ3
+ m2

W ))

− 2s
√
s − 4m2

φ3

√
s − 4m2

W cos ψ

− 16m2
φ3
m2

W sin ψ2 + s2
)2

+ the interference term (4.3)

for φ3.
• There is a further sudden decline in the relic is evident in

the φ0 contribution and the total relic around the Higgs
mass (i.e. mh ∼ 125 GeV) as the annihilation to hh final
state becomes dominant. The case for φ3 contribution to
relic is slightly different as mentioned above. The ampli-
tude goes as

|M|2hh ∼
(

λhhφiφi + λ2
hφiφi

(
1

u − m2
φi

+ 1

t − m2
φi

)

+λhφiφi λhhh

s − m2
h

)2

. (4.4)

• Finally, at DM masses higher than a few hundred GeV the
Z ′ mediated co-annihilation cross-section takes over and
the Z ′ mediated channel to WW final state emerges as
the dominant contribution. The corresponding amplitude
is proportional to

|M|2WW ∼ λ2
WWZ ′λ2

(∂φ0)φ3Z ′

(s − m2
Z ′)2 + m2

Z ′
2
Z ′

(s − 4m2
W )(s − 4m2

φi
)

8m4
W

×
(
s2 + 12sm2

W + 12m4
W + cos(2ψ)

× (
s2 − 4sm2

W + 12m4
W

))
, (4.5)

where ψ is the angle between the incident and emergent
particle momenta to be summed over. The region above the
black line is disallowed by overabundance as per Planck data.
The relevant Boltzmann equations are given in Appendix D.

The relative contribution of the individual DM compo-
nents to the total relic abundance can be defined as a relic
fraction given by

�φi
�φ0 +�φ3

for the φi component. The relic

fraction of each of the components is shown in Fig. 6. One
can observe that the contribution to the relic from individ-
ual components are of the same order for DM masses < 80
GeV due to similar diagrams contributing to both of them.
For DM masses > 80 GeV, the diagrams with WW as final
states become kinematically accessible. The diagrams shown
in Fig. 14 only exist for the φ3 component and are absent
for the φ0 component. Hence, the φ3 component annihilates
dominantly through these channels, especially through the
φ3φ3WW vertex, leading to a very small contribution to the
relic. The φ0 on the other hand furnishes the major contri-
bution to the relic. As one explores higher DM masses, the
Z ′ mediated diagrams start to become relevant. The con-
tributions are again comparable at the Breit-Wigner reso-
nance region corresponding to the Z ′ mediator (i.e. around
mφ3 ∼ mZ ′

2 ∼ 2.5 TeV).
Next, we turn to the total relic abundance as a function of

DM mass in Fig. 7 but this time for various values of Z ′ mass
and two benchmark values of λ12 to complement our results
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Fig. 5 Relic abundance as a function of dark matter mass for various couplings (lagrangian parameters) in the multi-component dark matter
scenario with annihilation via h portal and co-annihilation mostly via Z ′ portal for mZ ′ = 5 TeV

Fig. 6 Contribution of each component to the relic abundance with benchmark values same as in Fig. 5 and λ12 = 10−3 (Left), 10−2 (Right)

in Fig. 5. For the higher DM mass range not much difference
can be noticed in this logarithmic scale plot for various mZ ′
values apart from the shift in the Breit-Wigner resonance.
However, in the lower DM mass range there is strong com-
petition from the Higgs mediated channels. A heavier Z ′
mediated process generates less cross section compared to
the Higgs mediated processes in low DM mass region. How-
ever, a lighter Z ′ mediated process can produce comparable
cross section to the higgs mediated ones and thus contribute
to the relic significantly even in the low DM mass range as
evident in Fig. 7 (right).

4.3 Direct detection constraints

Direct detection experiments like Xenon1T [57,58], PandaX-
4T [59] and LUX-ZEPLIN (LZ) [60] constrain the parameter
space by non-observation as they provide upper limits on
the scattering cross-section of the DM candidates with the
detector nuclei in the non-relativistic limit. The expression2

2 We have assumed that the quark contribution to each of the nucleons
are approximately equal.
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Fig. 7 Relic abundance as a function of dark matter mass for various Z ′ masses in the multi-component dark matter scenario

for spin independent scattering cross section of φ0 with the
nucleons of the detector material is given by [22]

σ SI
N ,0 = μ2

0

4πm2
φ0

⎡
⎣λhφ0φ0

m2
h

⎛
⎝ ∑

q=u,d,s

λhqq
mN

mq
f NTq

+ 2

27
f NTG

∑
q=c,b,t

λhqq
mN

mq

⎞
⎠

⎤
⎦

2

, (4.6)

where, μ0 = mφ0mN

mφ0 +mN
. The matrix elements ( f NT i ) are given

in reference [61].
In addition to the Higgs mediated φ0N → φ0N scat-

tering process mentioned above, this model also exhibits
a Z ′ mediated φ0N → φ3N process. In the mass degen-
eracy limit of the DM candidates, both the contributions
are to be added together to arrive at the combined cross-
section. The relevant couplings λφ0φ3Z ′ = −λφ3φ0Z ′ and
λZ ′ūL uL = −λZ ′d̄L dL are given in Tables 11 and 12. In the
multicomponent dark matter scenario, the quantity of rele-
vance to realise the constraints from direct detection experi-
ments by non-observation is given by the following effective
cross-section3 [63–65],

(σ SI
N ,i )

e f f = �i

�tot
σ SI
N ,i , (4.7)

where the DM-nucleon scattering cross-section is modified
with each DM candidate’s respective contribution to the relic
abundance and σ SI

N ,i is the summation of the contributions
from both diagrams φi N → φi N and φi N → φ j N . Fig-
ure 8 describes the experimental constraints coming from
Xenon1T, PandaX-4T and LZ experiments on the effective
cross-section of the DM candidate φ0 as a function of DM
mass where LZ is clearly the most restricting of them all. A
similar set of constraints can be obtained for the φ3 as well
following the same procedure.

3 For a detailed study with non-degenerate masses of the DM candidates
and the computation of total DM scattering rate see Refs. [62].

It is evident from Fig. 8 that for a Z ′ mass of 2.5 TeV
(motivated by the lower bound from Fig. 4), much of the
DM mass parameter space is already excluded upto around
2 TeV for both the benchmark values of coupling parame-
ter λ12 = 10−2 and 10−3. Keeping every other benchmark
value same and modifying only the Z ′ mass to 5 TeV brings
the DM mass exclusion region down to ∼ 100 − 200 GeV
range and very interestingly opens up some parameter space
in the lower DM mass region of around 10 − 15 GeV for
λ12 = 10−3. A more careful look at the figures makes it
apparent that for λ12 = 10−2, the Higgs mediated diagram
plays an important role upto the DM masses around the weak
scale and beyond that the heavy gauge boson mediated dia-
gram takes over. However, the contribution of the Higgs
mediated diagram remains subdominant to the one medi-
ated by the heavy gauge boson throughout the DM mass
range for λ12 = 10−3. As expected, the cross section is more
suppressed by a higher value of the Z ′ mass compared to
a lower value. The slightly raised plateau like shape of the
curves in the mid-range of DM masses depicted here are the
result of the fractional contributions of the individual DM
components to the relic. One also has to consider the neu-
trino floor [66] and the neutrino fog [67] in this regard as for
cross-sections too small the DM scattering will be difficult to
tell apart due to the presence of neutrino scattering. Similar
results are expected for φ3 upto the relic fraction as is real-
ized in Fig. 9. The rise (dip) in the curves are indicative of the
substantial (negligible) contribution of φ3 to the relic in that
DM mass region. Even though in this work we have worked
under the mass degeneracy limit of the DM candidates (i.e.
mφ0 = mφ3 ), there is also in principle a scope for inelastic
scattering between the two DM components by softly break-
ing their mass degeneracy. However, that would lead to some
problems with the stability of the DM components and this
multicomponent DM scenario will effectively reduce to a
single component scenario as discussed in Sect. 4.1.
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Fig. 8 Constraints from direct detection experiments on the effec-
tive cross-section of dark matter candidate φ0 for benchmark val-
ues λ12 = 10−2(left) and λ12 = 10−3(right). The constraints from
Xenon1T(2022), PandaX-4T (2021), LUX-ZEPLIN (2022) and also

the Neutrino Floor have been shown in the figures. Also, note that the
mass degeneracy (mφ0 = mφ3 at the limit (λ23 + λ̃23) → 0 following
Eq. 2.16) assumption makes the two masses interchangeable

Fig. 9 Same as Fig. 8 but for φ3

5 Conclusion

In this work we have extended the SM with an SU(2) gauge
sector and the scalar sector with a bidoublet and a non-linear
sigma field. The neutral components of the Z2 protected
bidoublet are suitable DM candidates. In the DM mass range
starting from a few GeV upto around half of the Higgs mass,
the constraint from invisible decay of higgs becomes impor-
tant and restricts the most relevant scalar sector coupling
parameter λ12 with an upper bound ofO(10−3−10−2). How-
ever, the sensitivity of direct detection experiments provide
a much more stringent bound for a typical scalar extension
under the WIMP scenario. In many scalar extensions, one has
to resort to the Breit-Wigner resonance to account for the DM
relic abundance while simultaneously satisfying the direct
detection constraints. In our multicomponent DM model the
extended gauge sector mitigates those strict constraints to a
great extent. The gauge sector couplings provide additional
channels for the DM annihilation and co-annihilation thus
increasing the velocity averaged cross-section and reducing
the relic to avoid overabundance. In the similar coupling

range this model can also be constrained with the direct
detection effective cross-section values from the experimen-
tal observations. Furthermore, we found that a Z ′ mediated
scattering diagram can dominate a scalar mediated diagram
in a sizeable region of parameter space.
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Fig. 10 The variation of x in MZ ′ versus r plane. For details please
see the text

included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A Perturbativity

The perturbativity of a model typically means that the loop
level contributions towards the scattering amplitude should
be lower than the tree level contribution. It must be ensured
that the available couplings in the model are sufficiently small
such that one can employ perturbation theory reliably to cal-
culate the s-matrix. In this model the cubic vertices between
the Z ′ boson and φ0φ3 or φ+φ− scalars are proportional
to 1

x . As a result, for a very small values of x the decay

width 
(Z
′ → φ0φ3/φ

+φ−) becomes significantly large.
For those values of x , the perturbative treatment is not appli-

cable. From Eq. 2.14 one can see x =
√

M2
W

r2M2
Z
′
. This relation

suggest that the parameter x is dependent on two variables r
and MZ ′ . In Fig. 10, we show the variation of the parameter
x in MZ ′ vs r plane.

The black line, blue dashed and red dotted lines signify
the contours of x equals to 0.05, 0.1 and 0.5 respectively.
From the plot one can notice for the r → 0 the value of x
enhances for the entire range of MZ ′ . With these numbers in

hand one can evaluate


Z
′

M
Z
′ for the r ranging from 10−1 to

1 and MZ ′ ranging from 1.25 TeV to 5 TeV. In Fig. 11, the

allowed region is


Z
′

M
Z
′ < 1, where one can safely consider

perturbativity.

Fig. 11 The perturbativity limit is well respected in all regions of inter-
est. The dark cyan shaded portion represents the disallowed region of
parameter space

Table 3 Cubic scalar couplings λabc Couplings

hhh λ1v

hφ0φ0
λ12v

2

hφ3φ3
λ12v

2

hφ+φ− λ12v

Table 4 Quartic scalar
couplings

λabcd Couplings

hhhh λ1
4

hhφ0φ0
λ12
4

hhφ3φ3
λ12
4

hhφ+φ− λ12
2

φ0φ0φ0φ0
λ2
4

φ3φ3φ3φ3
λ2
4

φ+φ+φ−φ− λ2

φ0φ0φ3φ3
λ2
2

φ0φ0φ+φ− λ2

φ3φ3φ+φ− λ2

Appendix B Couplings

The couplings are arranged in a tabular form as the following
(where θ is the Weinberg angle):
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Table 5 Cubic higgs-gauge couplings

λabc Couplings

hZ Z e2v
4 sec2 θ(cosec2 θ + x2)

hZ ′Z ′ e2v
4 x2 cosec2 θ

hZ Z ′ − e2v
2 x cosec2 θ sec θ

hW+W− e2v
2 (cosec2 θ + x2)

hW ′+W ′− e2v
2 x2 cosec2 θ

hW ′+W− − e2v
2 x cosec2 θ

Table 6 Quartic higgs-gauge couplings

λabcd Couplings

hhZ Z e2

8 sec2 θ(cosec2 θ + x2)

hhZ ′Z ′ e2

8 x2 cosec2 θ

hhZ Z ′ − e2

4 x cosec2 θ sec θ

hhW+W− e2

4 (cosec2 θ + x2)

hhW ′+W ′− e2

4 x2 cosec2 θ

hhW ′+W− − e2

4 x cosec2 θ

Table 7 Quartic gauge couplings for DM annihilation

λabcd Couplings

φ0φ0Z ′Z ′ e2 cosec2 θ
8x2 + e2

8 (3 + 2 cot2 θ) + e2

8 (3 + cot2 θ)x2

φ0φ0W ′+W ′− e2 cosec2 θ
4x2 + e2

4 (3 + 2 cot2 θ) + e2

4 (3 + cot2 θ)x2

φ3φ3W+W− e2(cosec2 θ + x2)

φ3φ3W ′+W ′− e2

4x2 cosec2 θ − e2

4 (cosec2 θ + cot2 θ) + e2

4 (cot2 θ − 1)x2

φ3φ3W ′+W− e2

2x cosec2 θ − e2

2 (cot2 θ)x

φ0φ3W ′+W− ie2

2x cosec2 θ + ie2

2 (cosec2 θ + 1)x

Table 8 Quartic couplings for charged scalar decay

λabcd Couplings

φ+φ0W−Z ′ − ie2

2x cosec2 θ − ie2

2 (cosec2 θ + 1)x

φ+φ3W−A −e2 cosec θ − e2(sin θ)x2

φ+φ3W−Z −e2 cos θ(cosec2 θ + x2)

φ+φ3W−Z ′ − e2

2x cosec2 θ + e2

2 (cot2 θ)x

φ+φ0W ′−A ie2

2x cosec θ + ie2

2 (cosec θ + sin θ)

φ+φ0W ′−Z ie2

2x cot θ cosec θ + ie2

2 cos θ(2 + cot2 θ)x

φ+φ3W ′−A − e2

2x cosec θ + e2

2 (cos θ cot θ)x

φ+φ3W ′−Z − e2

2x cot θ cosec θ + e2

2 (cos θ cot2 θ)x

φ+φ3W ′−Z ′ e2(cosec2 θ + x2)

Table 9 Quartic couplings for charged scalar annihilation

λabcd Couplings

φ+φ−AA e2 + e2 sin2 θx2

φ+φ−Z Z e2 cot2 θ + e2 cos2 θx2

φ+φ−Z ′Z ′ e2

4x2 cosec2 θ − e2

4 (1 + 2 cot2 θ) − e2

4 (1 − cot2 θ)x2

φ+φ−AZ 2e2 cot θ + 2e2(sin θ cos θ)x2

φ+φ−AZ ′ e2

x cosec θ − e2(cos θ cot θ)x

φ+φ−Z Z ′ e2

x cot θ cosec θ − e2(cos θ cot2 θ)x

φ+φ−W+W− e2(cosec2 θ + x2)

φ+φ−W ′+W ′− e2

2x2 cosec2 θ + e2

2 + e2

2 (cosec2 θ)x2

φ+φ−W ′+W− e2

2x cosec2 θ − e2

2 (cot2 θ)x

Table 10 A few more couplings between the scalar and gauge sectors

λabcd Couplings

φ+φ+W−W− − e2

2 (cosec2 θ + x2)

φ+φ+W ′−W ′− e2

2 (cosec2 θ + x2)

φ+φ+W ′−W− − e2

2x cosec2 θ + e2

2 (cot2 θ)x

Table 11 Cubic Couplings of gauge fields and BSM scalars involving
derivatives

λabcd Couplings

(∂φ0)φ3Z ′ − e
2x cosec θ − e

4 sec θ
(2 cot θ + 3 tan θ)x

(∂φ0)φ
+W ′− − e

2x cosec θ − e
4 sec θ

(2 cot θ + 3 tan θ)x

(∂φ3)φ0Z ′ e
2x cosec θ + e

4 sec θ
(2 cot θ + 3 tan θ)x

(∂φ3)φ
+W− −ie cosec θ − ie

2 (sin θ)x2

(∂φ3)φ
+W ′− − ie

2x cosec θ + ie
4 sec θ

(2 cot θ + tan θ)x

(∂φ+)φ0W ′− e
2x cosec θ + e

4 sec θ
(2 cot θ + 3 tan θ)x

(∂φ+)φ3W− ie cosec θ + ie
2 (sin θ)x2

(∂φ+)φ3W ′− ie
2x cosec θ − ie

4 sec θ
(2 cot θ + tan θ)x

(∂φ+)φ−A −ie − ie
2 (sin2 θ)x2

(∂φ+)φ−Z −ie cot θ − ie
2 (sin θ cos θ)x2

(∂φ+)φ−Z ′ − ie
2x cosec θ + ie

4 sec θ
(2 cot θ + tan θ)x

Appendix C h → γ γ Decay Width

The CP-even Higgs boson can decay into di-photon channel
through loop mediated processes. In case of SM, theW boson
loop and different fermion loops participate in this process.
For the present model, in addition to these loop diagrams the
heavy charged gauge boson W

′
and the charged scalar φ±

can also engage in the loop induced processes. In Fig. 12
we show the all the Feynman diagrams that can contribute to
these process. Refs. [68] have calculated this decay width for
MSSM scenario and adopting their formalism one can repro-
duce the width for the current model. The analytic expression

123



144 Page 14 of 17 Eur. Phys. J. C (2024) 84 :144

Table 12 Cubic Couplings of gauge fields with quarks

λabc Couplings

ZūLuL
g1 cos θ

2 − g2Ỹu sin θ

Z ′ūLuL − g1x
2

AūLuL
g1 sin θ

2 + g2 cos θ Ỹu

Z d̄LdL − g1 cos θ
2 − g2Ỹd sin θ

Z ′d̄LdL g1x
2

Ad̄LdL − g1 sin θ
2 + g2 cos θ Ỹd

Z ūRuR −g2 sin θ Ỹu

Z ′ū RuR 0

AūRuR g2 cos θ Ỹu

Z d̄RdR −g2 sin θ Ỹd

Z ′d̄RdR 0

Ad̄RdR g2 cos θ Ỹd

Wud g1√
2
VCKM

W ′ud − g1x√
2
VCKM

Table 13 Cubic Couplings of gauge fields with leptons

λabc Couplings

ZēReR −g2 sin θ Ỹe

Z ′ēReR 0

AēReR g2 cos θ Ỹe

Z ν̄LνL
g1 cos θ

2 − g2 sin θ Ỹl

Z ′ν̄LνL − g1x
2

Aν̄LνL
g1 sin θ

2 + g2 cos θ Ỹl

W ēLνL
g1√

2

W ′ēLνL − g1x√
2

Table 14 Relevant couplings of gauge bosons among themselves

λabc Couplings

WWγ e
(
1 + x2

)
W

′
W

′
γ e

(
1 + x2

)
WW

′
γ 0

WWZ e cot θw

(
1 + x2

)
W

′
W

′
Z

′ e
x sin θw

(
1 − x4

)
WWZ

′ − ex
sin θw

(1 + x)

for this decay width is given in Eq. C1


 (h → γ γ ) = α2g2

1024π3

m3
h

m2
W

∣∣∣∣∣
∑
i

I i
h

∣∣∣∣∣
2

(C1)

These equations have been solved to find the relic [70–
72] by defining an effective velocity averaged cross section

in a similar way as in Refs. [73,74] considering appropriate
channels of production.
where I i

h represent the individual loop contribution from dif-
ferent particles that flowing in the loop. In Eq. C2, we present
the explicit expression for I i

h .

I f
h = NcQ

2
f R

h
f F

h
1
2

(
τ f

)
IW/W

′
h = Rh

W/W ′ F1

(
τW/W ′

)

Iφ±
h = Rh

φ±
M2

W

M2
φ±

F0
(
τφ±

) (C2)

Here Nc and Q f represents the color factor and electromag-
netic charges for each SM fermions. The Rh

i s are the relative
coupling strength of the three point vertices λhii (where i can
vary based on the particle flowing in the loop) w.r.t corre-
sponding SM coupling. For the present model Rh

f = 1 as the
fermion sector is identical to the SM. In case of gauge bosons
and the charged scalar the relative coupling strength would be
Rh
W = (

1 + x2 sin2 θW
)
, Rh

W ′ = x2 and Rh
φ± = 2λab

g2 respec-
tively. To get the sense of these values one should the check
the corresponding vertices that are present in Appendix B.
The Fj (τi ) are the form factors corresponding to the gauge,
fermion and scalar loops which can take following form.

F0 = τ [1 − τ f (τ )]

F1
2

= −2τ [1 + (1 − τ) f (τ )]

F1 = 2 + 3τ + 3τ (2 − τ) f (τ )

(C3)

where τi = 4m2
i

m2
h

and depending on the value of τ the f (τ )

can take following form

f (τ ) =
[

sin−1

(√
1

τ

)]2

if τ ≥ 1

or

f (τ ) = −1

4

[
ln

(
1 + √

1 − τ

1 + √
1 − τ

)
− iπ

]2

if τ ≤ 1

(C4)

Appendix D Boltzmann equations

The coupled Boltzmann equations for the multicomponent
DM are given by the following equations:

dn0

dt
+ 3Hn0 = −〈σv〉00(n

2
0 − n2

0eq )

−〈σv〉03(n0n3 − n0eq n3eq ) (D1)

dn3

dt
+ 3Hn3 = −〈σv〉33(n

2
3 − n2

3eq )

−〈σv〉03(n0n3 − n0eq n3eq ) (D2)

123
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Fig. 12 All possible loop mediated processes that can contribute to h → γ γ decay mode

Fig. 13 Relevant φ0
annihilation channels for relic
abundance calculation

Fig. 14 The extra φ3
annihilation channels for relic
abundance calculation compared
to φ0 annihilation channels

where ni is the number density of φi and 〈σv〉i j is the velocity
averaged cross section of annihilation/co-annihilation of φi

and φ j . The expression for the cross sections can be found in
many references including [8,29,31,69]. The corresponding
Feynman diagrams for φ0 annihilation are given in Fig. 13

where V denotes the SM vector bosons. The φ3 annihilation
channels are same as the φ0 channels except the additional
channels of Fig. 14. The Feynman diagrams corresponding
to the co-annihilation channels are given in Fig. 15.

123
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Fig. 15 Relevant
co-annihilation channels for
relic abundance calculation
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