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Abstract We study the charges and first law of thermody-
namics for accelerating, non-rotating black holes with dyonic
charges in AdS4 using the covariant phase space formalism.
In order to apply the formalism to these solutions (which
are asymptotically locally AdS and admit a non-smooth con-
formal boundary I ) we make two key improvements: (1)
We relax the requirement to impose Dirichlet boundary con-
ditions and demand merely a well-posed variational prob-
lem. (2) We keep careful track of the codimension-2 corner
term induced by the holographic counterterms, a necessary
requirement due to the presence of “cosmic strings” pierc-
ing I . Using these improvements we are able to match the
holographic Noether charges to the Wald Hamiltonians of the
covariant phase space and derive the first law of black hole
thermodynamics with the correct “thermodynamic length”
terms arising from the strings. We investigate the relation-
ship between the charges imposed by supersymmetry and
show that our first law can be consistently applied to vari-
ous classes of non-supersymmetric solutions for which the
cross-sections of the horizon are spindles.
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1 Introduction

The understanding of black holes as thermodynamic objects
is one of the key directions in uncovering the quantum nature
of gravity. The origin of this field lies in the pioneering work
by Bekenstein [1,2], who conjectured that the entropy of
a black hole should be proportional to the horizon area A,
and later Hawking [3], where it was demonstrated that by
taking into account the effects of quantum particle creation
near the horizon, black holes possess a temperature T . This
confirmed Bekenstein’s conjecture and resulted in the famous
Bekenstein–Hawking entropy formula

SBH = A
4G

. (1.1)

Alongside this identification of black hole entropy was the
realisation that black holes obey certain laws of mechanics
closely analogous to the ordinary laws of thermodynamics.
Of particular focus in this work will be the first law of black
hole thermodynamics, which was originally formulated for
stationary, asymptotically flat black holes as [4]

δM = T δSBH + �Hδ J + �eδQe, (1.2)

a formula which relates variations in the charges M, J, Qe

(mass, angular momentum and electric charge) of the black
hole to variations in the entropy (�H is the angular veloc-
ity of the horizon and �e the electrostatic potential). Such a
formula was generalised by Wald [5] to all diffeomorphism
invariant theories of gravity, (i.e. beyond just general relativ-
ity) with the entropy taking the form of a local integral over
the bifurcation surface of the horizon �H

SBH = 2π

κsg

∫
�H

Q, (1.3)

where Q is the so-called Noether charge (d − 2)-form of
the theory and κsg the surface gravity of the black hole. This
approach uses a technique known as the covariant phase
space formalism [5–7] and not only has the advantage of
extending to other theories but also gives an elegant geomet-
rical derivation of the first law in terms of covariant expres-
sions, most importantly the local formula for the entropy
above.

In this work we will study accelerating black holes
in asymptotically locally anti-de Sitter (AlAdS) spacetime
using the covariant phase space formalism. Black holes in
AdS have proven to be particularly rich hunting grounds
for those looking to understand their quantum properties
thanks to the AdS/CFT correspondence [8–10]. This allows
for entropy counting in the gravitational side to be refor-
mulated in terms of an index computation in the dual CFT,
see e.g. [11–14] for black holes in d = 4 and [15–17] for
d = 5. These techniques have made it possible to recover
the Bekenstein–Hawking entropy (1.1) from the dual theory.

For classical AdS gravity, the analogous first law to (1.2) has
been derived for a wide class of AlAdS black holes [18] using
the covariant phase space [5,7] together with the necessary
implementation of holographic renormalisation [19–24] at
the level of the on-shell action. The use of the covariant phase
space has been extended to theories beyond those initially
considered in [18] (see for example the recent works [25–
27] on various d = 5 supergravity theories) but has not yet
been adapted to accelerating AdS4 black holes. This impor-
tant gap in the literature will be addressed in this work.

The progenitive accelerating black hole in AdS4 is the
famous C-metric solution [28], a member of the more gen-
eral Plebanski–Demiański class of stationary, axisymmetric
solutions [29–32]. These black holes possess conical sin-
gularities due to the presence of cosmic strings stretching
from the horizon of the black hole out to infinity. The cos-
mic strings have associated tensions which exert a force on
the black hole, resulting in acceleration and displacing the
object from the “centre” of the spacetime. In this work we
will consider black holes which are said to be slowly accel-
erating [33,34], meaning that they possess an event horizon
but no acceleration horizons. We will take the solutions to
have charges corresponding to mass, electric, and magnetic
charges but, importantly, not rotation. We will thus work with
static solutions with

J = 0, (1.4)

for reasons we will discuss in the main text. As we shall
see, the fact that these spacetimes contain conical singular-
ities, together with the fact that one cannot apply Dirichlet
boundary conditions when varying all of the parameters are
the crucial obstruction in applying the methods of [18]. In
this work we will provide a suitable extension of the meth-
ods developed in [18] in order to discuss the charges and
thermodynamics of accelerating solutions.

The covariant phase space [5,7,18] has yet to be applied
to accelerating AlAdS black holes, although analysing their
charges and associated thermodynamics using different tech-
niques have been the study of a slew of recent work [35–40]
which we will follow closely (see also [41–45] for related
works). A major feature present in these papers was the
seeming inevitability of being forced to choose a particular
parameter-dependent normalisation of the time coordinate in
order to arrive at the correct form of the first law. Some jus-
tification for this was given in [38] in terms of asymptotic
observers, although the conformal invariance at the bound-
ary should negate the need to study a particular representa-
tive of the conformal class. This scaling is thus a somewhat
unsatisfactory feature which is also not at all clear from the
perspective of the dual field theory. We note that this story
is somewhat similar in spirit to that of [46] where it was
argued that the normalisation of the Killing vector in the
first law was crucial in defining the charges and first law,
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before [18] demonstrated that the correct application of the
covariant phase space overrides such issues and the first law
is satisfied for all non-accelerating AlAdS black holes. It is
in this vein that we expect the application of the covariant
phase space formalism to shed new light on the time scaling
and uncover the physics of this poorly-understood feature of
black hole thermodynamics. In particular, we will show that
the previous choice of the time scaling is only a well-posed
choice when one also fixes the overall conical deficit in the
spacetime. In this work we will consider the more general
problem of well-posed variations, without explicitly fixing
the time scaling.

Accelerating solutions are also of interest in the field of
supergravity due to their relation to the field of spindle solu-
tions [40,47–49]. If the cosmic strings associated to accelera-
tion are arranged in a particular way, then the surfaces of con-
stant time and radius � can be given the topology of a spindle
� ∼= WCP

1[n−,n+], a complex projective space parameterised
by two coprime positive integers {n−, n+}. Such solutions are
interesting because despite exhibiting conical singularities in
d = 4, they are rendered completely smooth in d = 11 super-
gravity when uplifted on a suitably chosen Sasaki–Einstein
manifold SE7 [48]. Following in the style of [40], we will
work in d = 4 for the entirety of this paper and the uplift
will not come into play. Supersymmetry will be preserved in
d = 11 if it is satisfied in d = 4 and thus it is of interest
to constrain the parameters of the solution via the supersym-
metry conditions discussed in [40,48,50].

A further important subclass of these solutions are the
supersymmetric and extremal AdS4 black holes with � ∼=
WCP

1[n−,n+]. These exhibit a near-horizon geometry of

AdS2 × WCP
1[n−,n+] and uplift in d = 11 to solutions with

near horizon regions of the form AdS2 × Y9, where Y9 is a
geometry of the type discussed in [51,52]. A thorough under-
standing of the d = 4 solutions may also shed new light into
the class of solutions with an AdS2 factor and thus one is also
motivated to apply extremality as well as supersymmetry for
solutions in d = 4. We will use the supersymmetry relations
in order to derive a “supersymmetric locus” of conserved
charges but will stop short of being able to apply our first
law to the supersymmetric solutions. This is because such
solutions must contain either acceleration horizons (when
extremal) or naked singularities (when non-extremal) [48]
and thus fall outside the class of slowly accelerating solu-
tions that we consider. Instead, we will apply our law to
non-supersymmetric spindles, including the classes of close-
to-supersymmetric and close-to-supersymmetric and close-
to-extremal solutions, which are smoothly connected to the
supersymmetric cases [48].

This paper is organised as follows: in Sect. 2 we provide a
brief introduction to the family of solutions that we consider
and discuss the physics of the parameters that specify the

solutions. In Sect. 3 we perform a careful asymptotic analy-
sis of the metric and gauge field which specify the solution.
This includes a presentation of the Fefferman–Graham [53]
expansion for the metric as well as an analysis of the bound-
ary Cotton tensor. We use the asymptotic analysis to discuss
the variational problem and derive a master equation for well-
posedness. In Sect. 4 we use the covariant phase space for-
malism [5,18] to construct the conserved charges for the solu-
tion. This section includes an introduction to the formalism
as well as a discussion of the required corner modifications in
order to allow for application to spacetimes with conical sin-
gularities. We use this to give expressions for the mass, elec-
tric, and magnetic charges of the accelerating solutions. In
Sect. 5 we focus on the thermodynamics of accelerating black
holes, again using the covariant phase space approach to write
down the first law of thermodynamics. We provide a com-
ment on the form of our law relative to others in the literature
[35–40]. In Sect. 6 we provide an application of our results
for the conserved charges and first law to spindle solutions:
we fix the string tensions and apply various other constraints
related to supersymmetry and extremality. In Sect. 7 we con-
clude and discuss some interesting directions for future work.
Also included are two appendices: Appendix A discusses the
nature of magnetic charges from the covariant phase space
and Appendix B provides a detailed comparison with other
literature [35–40]. This includes a demonstration of equiva-
lence between the covariant phase space and “horizon poly-
nomial” methods of deriving the first law, as well as a more
detailed discussion concerning the discrepancies in our laws.

2 Accelerating solutions

In this work we study Einstein–Maxwell theory in the pres-
ence of a cosmological constant � = −3/	2 < 0 on a d = 4
dimensional spacetime manifold M . We will consider the
following bulk action:

Sbulk = 1

16πG

∫
M

(R − 2�)ε − 2F ∧ ∗F, (2.1)

where ε is the volume 4-form, oriented such that ε0123 =√−g. F = dA is the 2-form field strength tensor with A
the 1-form gauge potential. We will discuss the possibility of
adding a purely topological term related to magnetic charges
in Appendix A but this bulk action will be sufficient for all
of our analysis of the first law.

We consider the following family of accelerating, static
solutions [28–32,54] with metric

ds2 = 1

H2

{
− Q

r2

1

κ2 dt
2 + r2

Q
dr2

+r2

P
dθ2 + Pr2K 2 sin2 θdϕ2

}
, (2.2)
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and gauge field

A = −e

r

1

κ
dt − g cos θKdϕ, (2.3)

where

H(r, θ) = 1 − αr cos θ,

Q(r) = (r2 − 2mr + e2 + g2)(1 − α2r2) + r4

	2 ,

P(θ) = 1 − 2αm cos θ + α2(e2 + g2) cos2 θ. (2.4)

The solution is determined by five physical parameters:
{m, e, g, α, K } as well as the cosmological constant � =
−3/	2 and the time scaling κ > 0 which as in [39,40] we
take to be a spacetime constant. The physical parameters
have the rough identifications as corresponding to mass, elec-
tric charge, magnetic charge, acceleration and deficit angle1

respectively and thus we will refer to them as such through-
out the text. We will make explicit their relation to the true
charges of the spacetime in Sect. 4. Following [40,48] we
consider w.l.o.g. the following ranges of parameters

m, K > 0, α, e, g ≥ 0, (2.5)

although in general we will be interested in the case of all
parameters being strictly positive.

The metric is determined by three functions {H, Q, P}
given in Eq. (2.4) which we now describe in some detail in
order to explain the physics of this solution. Firstly, Q is the
horizon polynomial and the roots of Q are the locations of
horizons in the spacetime. We will demand that the solution
contains a black hole and thus the largest positive root r+
corresponds to the location of the (outer) event horizon H in
the spacetime:

Q(r+) = 0, r+ > 0. (2.6)

In the entirety of this work, following [33–40], we will restrict
to the case of slowly accelerating solutions, i.e. those with-
out an acceleration horizon. This assumption corresponds to
there being no further roots of Q between H and the con-
formal boundary I . For a technical discussion of this in
terms of the parameters of the solution we point the reader
to [33,34,37], an analysis which we omit here as we will
only use this assumption implicitly. We will be interested in
studying the region of the solution outside the black hole,
and thus we restrict consideration to the coordinate range

r > r+ > 0. (2.7)

H is the conformal factor and thus the conformal bound-
ary I is located at H = 0. This sets the upper bound on the

1 Note that our choice of deficit parameter K is related to that of [38]
by K → 1/K .

radial coordinate as

r <
1

α cos θ
, (2.8)

where we note that r is not a good coordinate to analyse the
conformal boundary for θ ≥ π/2 and we will utilise a differ-
ent choice for the asymptotic analysis in Sect. 3. Combining
Eqs. (2.7) and (2.8) in the region of validity, we note that this
sets

r+ <
1

α
, (2.9)

a condition which can be physically interpreted as ensuring
that the horizon does not touch the conformal boundary [40].

P is a function which encodes the fact that the space-
time contains conical singularities, physically interpreted as
cosmic strings stretching from H to I . In order to see this
explicitly [38,48], one can perform an analysis of the metric
near the poles of the azimuthal coordinate θ±

θ− = 0, θ+ = π, (2.10)

which are the North and South poles respectively. Near the
poles, the metric on the constant (t, r) surfaces takes the form
[38,48]

ds2
θ,ϕ �

[
r2

PH2

]
θ=θ±

[dθ2 + P2±K 2(θ − θ±)2dϕ2], (2.11)

where

P± = P(θ±) = � ± 2αm, (2.12)

and following [38,40,48] we have introduced

� = 1 + α2(e2 + g2). (2.13)

Returning to (2.11), we note that ϕ is a 2π -periodic coor-
dinate and thus the metric near each pole takes the a form
similar to the usual plane polar coordinates on R

2 with θ

acting a radial coordinate and ϕ the polar angle. In order
to remove the possibility of conical singularities, one needs
to choose the parameter K s.t. P±K = 1, although this is
clearly impossible when P− 	= P+ ⇐⇒ αm 	= 0. The
resulting spacetime thus contains conical singularities at θ±,
with deficit angles given by

δ± = 2π(1 − P±K ). (2.14)

We note that one can choose K = 1/P− or K = 1/P+ in
order to remove one of the singularities and leave a spacetime
with one smooth pole and one singular one. This was the
approach taken in [35–37] where the North pole was takes
to be regular, corresponding to the choice K = 1/P− and
clearly fixing K in terms of the other parameters. In this
work we will follow more closely in the footsteps of [38–40]
where K is allowed to remain generic and thus we allow for
conical singularities at both poles.
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Fig. 1 A cartoon of a constant-t slice of the accelerating black hole
solution. The dark object in the interior is the black hole region with
horizon cross-section at r = r+ denoted by �H. Stretching from the
horizon along the poles θ± are two cosmic strings S±, providing coni-
cal deficits δ± at the poles and physically understood to accelerate the

black hole along the North pole axis, resulting in the black hole being
moved from the “centre” of the spacetime. The outer boundary �∞ is a
cross-section of the conformal boundary I . The axial coordinate ϕ is
suppressed in this picture which should be understood as a volume of
revolution about the string axis

Physically, these singularities correspond to the presence
of cosmic strings stretching from the black hole horizon to
conformal infinity, as shown in Fig. 1. These cosmic strings
have associated tensions given by

μ± = δ±
8πG

= 1

4G
(1 − P±K ), (2.15)

which accelerate the black hole. We see explicitly that the
overall tension is

μ− − μ+ = αmK

G
> 0 (2.16)

and thus the black hole accelerates in the North direction by
virtue of αmK > 0. We also note the value of the overall
deficit in the spacetime

μ− + μ+ = 1

2G
(1 − �K ), (2.17)

explicitly demonstrating that K acts as a parameter for the
conical deficit.

We finally note that we also require P > 0 in order to
have the correct signature of the full metric (2.2). As dis-
cussed in [39,48], this means that we also have the following
constraints between the parameters

mα <

{
�
2 for � ∈ (0, 2],√
� − 1 for � > 2,

(2.18)

which we will never use explicitly in any calculations in this
paper, in a similar style to the assumption of slow accelera-
tion.

3 Asymptotic analysis

In this section we will perform an asymptotic (i.e. near I )
analysis of the solution presented in Eqs. (2.2) and (2.3). This
will allow us to demonstrate that the geometry is explicitly an
asymptotically locally AdS (AlAdS) solution and, through
the analysis of the variational problem, derive a constraint
between the variations of the parameters. We also note that
from this point on we will always use the normalisation of

� = −3 ⇐⇒ 	 = 1, (3.1)

which can be reinstated via the usual dimensional analysis.
For the asymptotic analysis of both the metric and the

gauge field, we will often use the inverse radial coordinate
z > 0 of [40], defined by

1

r
= α cos θ + z, (3.2)

where z = 0 gives the location of I as this clearly corre-
sponds to H = 0.

3.1 Gauge field

The gauge field (2.3) is smooth as one takes the limit z =
ε → 0 and takes the boundary value

A(0) = lim
ε→0

Ai |z=εdx
i = − cos θ

[α

κ
edt + gKdϕ

]
. (3.3)

This can be used to compute the boundary field strength via
F(0) = dA(0). In doing this, we note that we will sometimes
switch between the usual azimuthal angle coordinate θ and
an alternative coordinate x given by

x = cos θ (3.4)
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and thus the boundary field strength takes the form

F(0) = αe

κ
dt ∧ dx − gKdx ∧ dϕ. (3.5)

The final asymptotic quantity that it will be important to
define here is the electric current [40]

j i = − 1

4πG
lim
ε→0

[
1

ε3 nμF
μi

]
z=ε

, (3.6)

where n is the outward pointing unit normal to the hypersur-
faces of constant z. The only non-trivial components of the
electric current are

j t = κ
e

4πG
, jϕ = αg

4KπG
. (3.7)

3.2 Metric: Fefferman–Graham expansion

We begin the asymptotic analysis of the metric (2.2) by pro-
viding the Fefferman–Graham expansion [53]. This calcula-
tion has already been performed in [38,39] (the asymptotic
analysis was performed via an alternative ADM approach in
[40]) and here we will merely collect all of the prior results
together and set our conventions. We begin by recalling that
the Fefferman–Graham expansion for any AlAdS spacetime
takes the form

ds2 = 1

ρ2

[
dρ2 +

(
g(0)
i j + ρ2g(2)

i j + ρ3g(3)
i j + . . .

)
dxi dx j

]
,

(3.8)

where ρ > 0 is an inverse radial coordinate and the con-
formal boundary I is located at ρ = 0. 2 This gauge has
proved extremely useful in studying AlAdS spacetimes in the
AdS/CFT correspondence [19,21–23]. The two key pieces
of data in the expansion above are g(0) and g(3), which act
as the CFT background metric and the expectation value of
the CFT energy–momentum tensor respectively. The precise
relationship [21] is

2 Although I also corresponds z = 0 as defined in (3.2), z 	= ρ

away from I . One can see this by applying the explicit coordinate
transformation (3.2) to the metric (2.2).

Ti j = 3

16πG
g(3)
i j . (3.9)

The explicit coordinate transformation which is required
to put the metric (2.2) into the gauge (3.8) was given in [38,
39] and for brevity we will not reproduce the steps here but
merely summarise the important results of the expansion.
Following the boundary coordinate convention of [40], our
chosen representative of the conformal class is given by

ds2
(0) = − P̃

κ2 dt
2 + 1

P P̃
dθ2 + PK 2 sin2 θdϕ2,

P̃(θ) = 1 − α2P(θ) sin2 θ, (3.10)

and the non-zero components of the energy–momentum ten-
sor are (now using the coordinate x defined in (3.4)):

T t
t = {αm − 2(� − 1)x} {

3α2
[
x2 − 1

]
[x(2αm − �x + x) − 1] − 2

}
8πGα

, (3.11a)

T x
x = αm − 2(� − 1)x

8πGα
, (3.11b)

T ϕ
ϕ = −{αm − 2(� − 1)x} {

3α2
[
x2 − 1

]
[x(2αm − �x + x) − 1] − 1

}
8πGα

. (3.11c)

This formula is an extension of [39] which now includes
the magnetic charge parameter g. It can be obtained via the
simple exchange of e2 → e2 + g2 in equation (A8) of that
work.

With all of the important boundary quantities defined, we
note that a number of Ward identities are satisfied due to the
bulk equations of motion. These take the form of conserva-
tion identities related to boundary diffeomorphisms andU (1)

gauge transformations respectively:

∇(0)
i T i

j = − j i F (0)
i j = 1 − �

4παG
δxj , (3.12)

∇(0)
i j i = 0. (3.13)

where ∇(0) is the Levi-Civita connection associated with
(3.10) and all indices are understood to be moved with g(0).
There is also a trace identity

T i
i = A = 0, (3.14)

where the right hand side of the above equation vanishes
due to the vanishing of the trace anomaly A in four bulk
dimensions [19].

3.3 Boundary cotton tensor

The boundary conformal class [g(0)] determines (in part) the
asymptotic classification of the spacetime. In particular, we
will follow [23,24] in classifying a spacetime as asymptot-
ically AdS if g(0) is conformally flat and I ∼= R × S2. If
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either of these conditions fail to hold then the spacetime will
be asymptotically locally AdS (AlAdS).

Restricting consideration to the case of mα 	= 0,3 the
family of solutions (2.2) are AlAdS as they fail both of the
criteria listed above. Firstly, we note that the presence of
cosmic strings stretching from H to I gives a boundary
topology of I ∼= R× �∞, where �∞ is a surface with one
or two conical deficits due to the strings piercing the poles
and thus the topological condition is not satisfied. We will
see that this plays a role in the construction of the conserved
charges of these solutions in Sect. 4.

More importantly for our current analysis is the failure of
the boundary to be conformally flat. The conformal invariant
we will use is the Cotton tensor of g(0), defined as

Ci j
(0) = εikl(0)∇(0)

k

(
R(0) j

l − 1

4
δ
j
l R

(0)

)
, (3.15)

where ε(0) is the volume form for g(0), oriented as ε
(0)
tθϕ =√−g(0). The Cotton tensor is symmetric and vanishes for any

conformally flat 3-metric. Using the representative (3.10), we
explicitly compute

Ctϕ
(0) = Cϕt

(0) = 6κ(� − 1)x − 3ακm

K
, (3.16)

which in particular is non-zero, demonstrating that the con-
formal boundary is not conformally flat and thus provid-
ing another criterion for this spacetime to be AlAdS. We
conclude this subsection by noting that the tensor density√−g(0)C

i
(0) j is invariant under local conformal transfor-

mations, the non-trivial components of which are:

√−g(0)C
t

(0) ϕ = 3K 2
(

1 − x2
)3/2

[αm − 2(� − 1)x] [x(2αm − �x + x) − 1] , (3.17)

√−g(0)C
ϕ

(0) t = 3
√

1 − x2
{
α2

[
x2 − 1

] [−2αmx + (� − 1)x2 + 1
] + 1

}
κ2 (2(1 − �)x + αm). (3.18)

It will be of interest to examine the allowed variations
among the parameters m, e, g, α, K , κ which preserve the
conformal class. Any variations which preserve the confor-
mal class will be solutions to the equations

δ
(√−g(0)C

i
(0) j

)
= 0. (3.19)

In order to examine these solutions we start with the first
non-trivial component (3.17) and note that (3.19) has to be
satisfied at all orders in x . Ignoring the factor of (1 − x2)3/2

which sits out of the front of the equation as an overall phase
space constant, we find the following equations at each order
in x

3 The α = 0 solutions are asymptotically AdS.

O(x0) : 0 = δ(K 2mα), (3.20)

O(x1) : 0 = δ[K 2(� − 1 + m2α2)], (3.21)

O(x2) : 0 = δ[K 2mα(� − 1)], (3.22)

O(x3) : 0 = δ[K (� − 1)], (3.23)

which can be solved simultaneously to give

δK = δ� = δ(mα) = 0. (3.24)

We now look at the variation of the other non-trivial com-
ponent, i.e. the one given in Eq. (3.18). This equation will
produce equations at five different orders in x (ignoring the
overall

√
1 − x2 factor) but we will only need two of them,

namely

O(x0) : 0 = δ

(
mα(−1 + α2)

κ2

)
�⇒ δ

(−1 + α2

κ2

)
= 0,

(3.25)

O(x4) : 0 = δ

(
mα3(� − 1)

κ2

)
�⇒ δ

(
α2

κ2

)
= 0,

(3.26)

where we used the relations in (3.24). Subtracting these two
equations leaves us with the result for the allowed variations
of the parameters

δκ = δ(mα) = δα = δK = δ� = 0. (3.27)

Despite this seeming like a very strong restriction upon the
space of parameters, we note that δ� = 0 does not entirely

fix the electric and magnetic parameters e and g. Instead it
allows for a circle on the phase space

e2 + g2 = c2, (3.28)

where c is a phase space constant. This is to be expected as
e, g only enter the metric via �, so analysis of the metric
will not put any constraints upon them individually. We will
return to analyse the variations of the gauge parameters in
the next section.

3.4 Variational problem

We analyse the variational problem for the family of space-
times (2.2), an issue which will be crucial in determining the
class of variations which are allowed to enter into the first
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law of accelerating black hole thermodynamics. We begin by
noting that the bulk action (2.1) must first be supplemented by
a boundary action consisting of the Gibbons–Hawking–York
boundary term as well as the usual holographic counterterms
[20–23]. We begin by presenting this action at a regulated
boundary z = ε > 0

Sbdy = SGHY + Sct

= 1

16πG

∫
z=ε

d3x
√−h(2K − 4 − R), (3.29)

where hi j is the induced metric on the hypersurface z = ε,
K is its trace extrinsic curvature when embedded in the bulk
spacetime and R is the Ricci scalar of h. The total action is
thus4

S = Sbulk + Sbdy (3.30)

and we define the renormalised action as

Sren = lim
ε→0

S. (3.31)

The variational problem is well-posed when variations of
the renormalised action vanish iff the equations of motion
are satisfied. The general formula for the variation of the
renormalised on-shell action is [18]

δSren ≈
∫
I

d3x
√−g(0)

(
1

2
T i jδg(0)

i j + j iδA(0)
i

)
(3.32)

and thus the variational problem is well-posed when the right
hand term above vanishes. The typical way of ensuring this
is to select Dirichlet boundary conditions [18], i.e. to demand
that the variations satisfy

δg(0)
i j ∝ g(0)

i j , δA(0)
i = 0, (3.33)

which clearly makes the variational problem well-posed due
to the tracelessness condition (3.14). We will now show
explicitly that these boundary conditions cannot be satisfied
non-trivially for the solutions (2.2) when we treat the param-
eters m, e, g, α, K , κ as changing under variation.

We start with the metric boundary condition in (3.33)
which we have already built up to in the analysis of the Cot-
ton tensor (3.16) in the previous subsection. Due to the fact
that

√−g(0)C
i

(0) j is invariant under local conformal trans-
formations and varies under changes in the conformal class,
we have the following relationship amongst the variations:

δg(0)
i j ∝ g(0)

i j ⇐⇒ δ
(√−g(0)C

i
(0) j

)
= 0, (3.34)

where we have already determined that space of variations
in the right hand set above are those given in Eqs. (3.27) and
(3.28).

4 One may conjecture that the presence of the cosmic strings should
also alter the action. However, this has already been shown not to be
the case [55] as the delta function arising from the extrinsic curvature
precisely cancels the string contribution.

Moving on to the gauge field, we start by using (3.3) to
write the constraint of [18] as

0 = δA(0) = δ
(
− cos θ

[α

κ
edt + gKdϕ

])
, (3.35)

resulting in

δe = δg = 0, (3.36)

which we note is a much stronger constraint than the one
imposed for the solutions with α = g = 0 (such as those
considered in [18]), where the boundary condition (3.35) is
satisfied trivially. This analysis demonstrates that if one wants
to apply Dirichlet boundary conditions (3.33) then the only
allowed perturbation is the trivial one

δm = δα = δK = δe = δg = δκ = 0. (3.37)

At first sight this appears to be a troubling result. It means
that studying the black hole first law for the class of accel-
erating solutions (2.2) via the approach of [18] is not possi-
ble. Indeed, this tension was remarked upon in [40] due to
the variations in that work changing the boundary conformal
class [g(0)]. It is clear that if we wish to apply techniques
along the line of [18] then we need to consider more general
boundary conditions than the Dirichlet conditions (3.33).

In order to resolve these tensions, one may take inspiration
from [39], where the requirement of a well-posed variational
problem was used to fix κ in terms of the other parameters.
We follow [56] in considering the most general solutions to
the variational problem i.e. we look to solve

δSren ≈
∫
I

d3x
√−g(0)

(
1

2
T i jδg(0)

i j + j iδA(0)
i

)
= 0,

(3.38)

without applying any specific boundary conditions upon the
metric and gauge field. The analysis of the U (1) term goes
through very straightforwardly due to the gauge choice (2.3):
applying Eqs. (3.3) and (3.7), we obtain

√−g(0) j
iδA(0)

i = − sin 2θ

8πG

K

κ

[
eκδ

(αe

κ

)
+ gαδ(gK )

]
,

(3.39)

which vanishes under the integration performed in (3.38),
reducing that equation to a purely gravitational problem, i.e.
we only need to solve

δSren ≈ 1

2

∫
I

d3x
√−g(0) T

i jδg(0)
i j = 0. (3.40)

Using (3.10) and (3.11) and performing the θ (equivalently
x) integral we reach

−2Kακ�δα + 2K (α2� − 1)δκ + κ(2α2� − 1)δK = 0,

(3.41)
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which is the master formula constraining the variations of the
parameters in order to have a well-posed variational problem.
We will use this relation in order to derive the first law.

3.5 Comment on the “master formula”

We conclude this section with some comments concerning
our master formula (3.41) and a comparison to previous liter-
ature [39,40,57]. The first point we note about (3.41) is that
it is not an integrable equation on the phase space i.e. one
cannot directly solve for κ as a function of the other param-
eters. In order to examine the nature of the non-integrability,
we find it useful to first manipulate equation (3.41) into the
following form

δ log κ − 1

2
δ log

(
�(1 − α2�)

)
= 1 − 2α2�

2α2� − 2
δ log(�K ),

(3.42)

where we note that the terms on the left hand side are exact 1-
forms on the phase space and thus the integrability is spoiled
entirely by the term on the right hand side. In order to recover
integrability, we immediately see that one possibility is to
consider a restricted set of variations which satisfy

δ(�K ) = 0, (3.43)

a constraint which can be interpreted as fixing the overall
deficit in the spacetime (2.17). Upon making this choice, one
can then solve (3.42) for κ directly in order to find

κ =
√

�(1 − α2�), (3.44)

is agreement with the κ found in previous work [35–40].
This also agrees with the motivation of [39,40,57], where
the requirement of a well-posed variational problem (in the
setting of fixed cosmic string tensions) was used to derive κ .
It is interesting to note that (3.43) is actually a smaller set of
constraints than those postulated in [39,40,57], where both
tensions μ± were chosen to be fixed, rather than just their
sum.

Returning to Eq. (3.42), we note that although the non-
integrability may appear at first to be a disturbing feature,
there is no a priori reason for (3.42) to be an integrable equa-
tion as the integrand in (3.38) is not a closed form on the
phase space. Schematically speaking, we start with a generic
six parameter phase space {m, e, g, α, K , κ} and the impo-
sition of well-posedness generically leads to a differential
equation containing variations of a subset of these parame-
ters. This has the effect of reducing the number of degrees of
freedom to five, without providing an explicit relation due to
the non-integrability.

In order to recover integrability one must necessarily con-
sider a restricted set of variations such as those given in
Eq. (3.43), resulting in a restricted phase space. Working

more generally, we note that the non-integrable master for-
mula (3.42) illustrates that κ as given in (3.44) is the correct
choice when one fixes the overall deficit. However, if one
chooses κ as given in (3.44) but does not impose (3.43) then
the variational problem is generically ill-posed. The general
philosophy (and technical tool) is simply that one needs to
consider a space of variations amongst the parameters for
which the variational problem (3.38) is well-posed. This new
approach to the accelerating solutions allows us to study ther-
modynamics for (many) alternative choices of κ . In proceed-
ing, we will work completely generically, i.e. we will not fix
κ to the form of (3.44) but rather we will merely require that
the master constraint Eq. (3.41) holds. We will now construct
the conserved charges and derive the most general form of
the first law for which the variations are well-posed and the
cosmic string tensions μ± are independent thermodynamic
variables. In doing this, we will regularly highlight the impor-
tance of well-posedness.

4 Charges

Before discussing the thermodynamics of the solution spec-
ified by (2.2) and (2.3), we first need to establish the appro-
priate conserved charges which will later appear in the first
law. In order to define these charges we utilise the covari-
ant phase space formalism, following closely in the style
of [5–7,58–61]. We will now briefly review this formalism
for a generic diffeomorphism covariant Lagrangian theory
in d-dimensions in order to familiarise the reader with the
notation, before applying the tools to our theory of interest
(2.1).

4.1 Covariant phase space

We begin by considering a variation of the Lagrangiand-form
L[ψ], where ψ denotes the dynamical fields of the theory. A
variation of L takes the generic form

δL = E[ψ]δψ + d�[ψ; δψ], (4.1)

where E is the equation of motion d-form (E ≈ 0) and �

is a (d − 1)-spacetime form called the symplectic potential.5

We note that � is also a 1-form on the phase space.
Using �, one can construct the symplectic current

ω[ψ; δ1ψ, δ2ψ] = δ1�[ψ; δ2ψ] − δ2�[ψ; δ1ψ], (4.2)

a (d − 1)-form on spacetime and a 2-form on phase space.
Integrating the symplectic current over a partial Cauchy slice

5 Strictly speaking, this object is a pre-symplectic potential as there is
no guarantee that it will give rise to an invertible symplectic form on
phase space. We will ignore these subtleties as they will play no role in
our analysis.
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C defines the symplectic form

�C (ψ; δ1ψ, δ2ψ) =
∫
C

ω[ψ; δ1ψ, δ2ψ], (4.3)

a spacetime scalar and a phase space 2-form.
In order to construct the charges, we will often be inter-

ested in the case when one of the variations is generated by
a Killing vector field ξ (δξ = Lξ ) or a U (1) gauge trans-
formation f . For these cases we are able to define the Wald
Hamiltonians corresponding to these transformations via

δHξ = �C (ψ; δψ,Lξψ) =
∫
C

ω[ψ; δψ,Lξψ] (4.4)

and

δH f = �C (ψ; δψ, δ f ψ) =
∫
C

ω[ψ; δψ, δ f ψ]. (4.5)

It remains to be seen that these Wald Hamiltonians are
boundary quantities. We show this first for Hξ by defining
the Noether current (d − 1)-form

J[ξ ] = �[ψ;Lξψ] − iξL, (4.6)

an object which is locally exact on-shell i.e. when E = 0, we
have

J[ξ ] = dQ[ξ ], (4.7)

where Q is the Noether charge (d − 2)-form. Restricting to
the case when both the equations of motion E = 0 and the
linearised equations of motion δE = 0 are satisfied, one is
able to show that [7,18]

ω[ψ; δψ,Lξψ] = d
(
δQ[ξ ] − iξ�[ψ; δψ]) (4.8)

and thus

δHξ = �C (ψ; δψ,Lξψ) =
∫
C

ω[ψ; δψ,Lξψ]

=
∫

∂C∞
δQ[ξ ] − iξ�[ψ; δψ], (4.9)

where ∂C∞ is the intersection of C with the conformal
boundary.

For the U (1) transformation, the analysis is even simpler
in that the Noether current takes the form

J[ f ] = �[ψ; δ f ψ] ≈ dQ[ f ]. (4.10)

By gauge invariance of the symplectic potential we have

ω[ψ; δψ, δ f ψ] = δ�[ψ; δ f ψ] ≈ dδQ[ f ], (4.11)

and thus the Wald Hamiltonian is

δH f = �C (ψ; δψ, δ f ψ) =
∫
C

ω[ψ; δψ, δ f ψ]

=
∫

∂C∞
δQ[ f ]. (4.12)

This can be immediately integrated on phase space to give

H f =
∫

∂C∞
Q[ f ]. (4.13)

4.2 Corner improvement

With the general terminology of the covariant phase space
now introduced, we now study Einstein–Maxwell theory
(2.1) using these techniques. We return to working explic-
itly in d = 4 and note that the dynamical fields of this theory
amount to

ψ = {gμν, Aρ}. (4.14)

The variations of the metric under the diffeomorphism and
U (1) transformations are

δξ gμν = Lξ gμν, δ f gμν = 0, (4.15)

and the variations of the gauge field are

δξ Aμ = Lξ Aμ, δ f Aμ = ∂μ f, (4.16)

where we note that we have taken the diffeomorphism to
also act on the gauge field with the Lie derivative. This
is in order to preserve our gauge choice (2.3), which will
turn out to be a particularly convenient choice to analyse
the charges and thermodynamics of the solution. One can
instead work in an entirely gauge-independent manner [62–
65] in which case the diffeomorphism transformation above
includes an additional ξ -dependent gauge transformation:
δξ Aμ = Lξ Aμ + dχξ . When restricting to ξ as a Killing
vector, our gauge choice (2.3) is such that Lξ Aμ = 0
and thus the only allowed gauge transformations would be
χξ = a1dt + a2dϕ, with a1,2 constants. These transforma-
tions have no effect on the laws of thermodynamics [40] and
thus we will use the simpler transformation formulae above.

We are almost at the stage of being able to compute
the conserved quantities which will appear in the first law.
There is one final subtlety for the accelerating solutions (2.2),
(2.3) in that the cross-sections of the conformal boundary
∂C∞ = �∞ themselves have boundary: ∂�∞ = S1− � S1+,
where S1± are the small circles around the cosmic strings at
θ± respectively. The inclusion of these boundaries will mean
that Eq. (4.9) needs to be supplemented by a corner improve-
ment in order to give the correct charges.

The form of this corner term can be discerned from the
holographic counterterms (3.29). The counterterms are not
only responsible for renormalising the action but also the
symplectic potential [18]. The full expression for the renor-
malised symplectic potential, including the corner terms, is
given in equation (2.13) of [66] and in our notation reads

�ren[ψ; δψ] ≡ �[ψ; δψ] − δLGHY[hi j ]
−δLct[hi j ] + d�ct[hi j ; δhi j ], (4.17)
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where Lct is the counterterm Lagrangian and �ct is the sym-
plectic potential arising from the variation of counterterm
action, defined via

δLct[hi j ] = Ekl
(3)[hi j ]δhkl + d�ct[hi j ; δhi j ], (4.18)

where Ei j
(3) are the “equations of motion” for the bound-

ary metric hi j , explicitly not satisfied as we do not impose
dynamical gravity on the boundary.

The adjustments to � in (4.17) can be seen as utilising all
of the inherent ambiguities in the construction of the sym-
plectic potential [7]. The δLbdy = δLGHY + δLct term does
not alter the symplectic current (4.2) and as such it will not
affect the either the symplectic form (4.3) or the Wald Hamil-
tonians (4.4), (4.5). We can safely ignore the contribution
from this term in our analysis.

The d�ct term will be important. In order to see this, we
recall that this d-exact term shifts the Noether charge form
[7] as

Qren = Q + �ct[hi j ;Lξhi j ] (4.19)

and thus the renormalised diffeomorphism Hamiltonian is

δH ren
ξ = δHξ +

∫
�∞

δ�ct[hi j ;Lξhi j ] − Lξ�ct[hi j ; δhi j ]
+diξ�ct[hi j ; δhi j ]

= δHξ +
∫

�∞
ωct[hi j ; δhi j ,Lξhi j ]

+diξ�ct[hi j ; δhi j ], (4.20)

where we used the form expression for the Lie derivative
Lξ = iξd + diξ and introduced the counterterm symplectic
current ωct in the second line. If we restrict consideration to
the case of ξ being an asymptotic Killing vector [18], then
the vector will preserve the conformal class [g(0)] and thus

ωct[hi j ; δhi j ,Lξhi j ]
∣∣
�∞ = 0, (4.21)

which allows us to write our final formula for the renor-
malised Hamiltonian as

δH ren
ξ = δHξ +

∫
∂�∞

iξ�ct[hi j ; δhi j ], (4.22)

a formula which can be viewed as the extension of those
in [18,66] to encompass spacetimes where cross-sections of
I have non-vanishing boundary. The new term acts as a
counterterm at O(1/ρ) in the coordinates (3.8) and plays a
similar role to the counterterm required to define charges in
NUT charged spacetimes [67]. This is perhaps expected as in
that case the presence ofMisner strings results in singularities
in much the same way the cosmic strings do in our setup.
We will see further similarities between these cases when
discussing the first law of thermodynamics.

We conclude this section by noting that due to the trans-
formation properties of the metric (4.15) we have δ f hi j = 0

and thus the U (1) Hamiltonian is invariant i.e.

H ren
f = H f . (4.23)

We will now apply formulae (4.22) and (4.23) to compute
the charges for our accelerating solution (2.2)–(2.3).

4.3 Mass

The first charge we compute is the mass charge M, given by

M = H ren
ξ , (4.24)

where we take the timelike Killing vector to be

ξ = ∂t . (4.25)

Note that this is the same normalisation as [38–40], where
they argued that the normalisation was crucial in arriving at
the correct law of thermodynamics. The key difference in our
approaches is that we use the well-posedness master equa-
tion (3.41) as our guiding principle, and thus we will arrive at
the correct first law for any parameter independent normali-
sation, as long as Eq. (3.41) is satisfied. If the normalisation
depends upon the parameters we no longer have δξ = 0,
which is an important assumption in [5]. Allowing for “field
dependent” symmetries in the formalism is a topic of some
study, (see e.g. related formulae in [68,69]) but we do not
consider such cases here.

We will be explicit in constructing the mass charge as it
will provide an important illustration of the corner improve-
ment present in our formula (4.22). We begin by noting that
one could completely bypass this discussion of covariant
phase space/Wald Hamiltonians and simply use the holo-
graphic mass formulae of [18,70]

Mhol = −
∫

�∞
d2x

√−g(0)

(
T t
i + j t A(0)

i

)
ξ i , (4.26)

which was the approach taken in [38–40]. Putting our vector
(4.25) into the above formula and using the gauge choice
(3.3) we find the holographic mass to be

Mhol = −
∫

�∞
d2x

√−g(0)T
t
t = Km(1 − α2�)

Gκ
. (4.27)

It was shown in [18] that the holographic mass was equiv-
alent to the Wald Hamiltonian Hξ for spacetimes without
conical deficit. Here we extend this proof to include those
which do. We start by computing the contribution to (4.22)
from the first term, i.e. the “bare” Wald Hamiltonian

δHξ =
∫

�∞
δQ[ξ ] − iξ�[ψ; δψ], (4.28)

where

Q = QEH + QM, � = �EH + �M (4.29)
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for the respective Einstein–Hilbert and Maxwell contribu-
tions to the bulk action (2.1). The formulae for the symplectic
quantities for these theories are well-known, see for example
[7,18,69] and read as follows6

QEH = 1

16πG
· 1

2!εμνρσ ∇νξμdxρ ∧ dxσ , (4.30)

�EH = 1

16πG
· 1

3!εμνρσ

(∇μ(gαβδgαβ)

−∇αδgμα
)
dxν ∧ dxρ ∧ dxσ , (4.31)

QM = − 1

4πG
(iξA) ∗ F

= − 1

4πG
· 1

2!ξ
μAμ(∗F)ρσdx

ρ ∧ dxσ , (4.32)

�M = − 1

4πG
δA ∧ ∗F

= − 1

4πG
· 1

2!δAν(∗F)ρσdx
ν ∧ dxρ ∧ dxσ , (4.33)

which agree with the formulae of [69] up to our differing
normalisations of the gauge fields. We can quickly see that
all of the Maxwell terms in the charge integral (4.28) drop
out due to the gauge choice (3.3) (each azimuthal integral is
of the form

∫ 1
−1 x dx = 0) and so the mass charge becomes a

purely gravitational issue.7 After working through all of the
algebra one finds the bare Hamiltonian contributes

δHξ = lim
ε→0

∫
�

δQ − iξ�

= lim
ε→0

[
1

εκ
δ(μ+ + μ−) + 1

2κ
(3mδK + 2K δm)

]
,

(4.34)

where we regulate using the inverse radial coordinate defined
in (3.2) as z = ε > 0. We see that this term is clearly diver-
gent due to the presence of theO(1/ε) term in the asymptotic
expansion on the right hand side and will need to be supple-
mented by the corner term in (4.22). This term is constructed
from the counterterm Lagrangian

Lct = − 1

16πG

√−h(4 + R)dt ∧ dθ ∧ dϕ (4.35)

and so the corner symplectic potential is just that of three
dimensional Einstein gravity, up to an overall minus sign.
The only formula we need is thus

6 The convention for the volume form is

εtrθϕ = √−g = r2 sin θ

H4κ
K .

7 Even if we used a different gauge for Aμ, the analysis would go
through in exactly the same manner as [18] and the Maxwell contri-
bution to the Wald Hamiltonian would match the contribution to the
holographic mass.

�ct = 1

16πG
· 1

2!εi jk
(
Dlδh

li −Di (hlmδhlm)
)
dx j ∧ dxk,

(4.36)

where εtθφ = √−h, D is the Levi-Civita connection associ-
ated with h and all indices are understood to be moved with
h. This will be sufficient to compute the corner improvement
in (4.22). Explicitly, we have

lim
ε→0

∫
∂�

iξ�ct = lim
ε→0

(∫
S1+

iξ�ct −
∫
S1−

iξ�ct

)

= lim
ε→0

{
− 1

εκ
δ(μ+ + μ−)

−α

κ
[δ(�Kmα) + �αmδK ]

}
, (4.37)

where we can immediately see that this term acts as an
O(1/ε) correction to the bare charge formula (4.34). The
finite term is a little less obvious but after some algebraic
manipulation we can show that the fully renormalised Hamil-
tonian is

δH ren
ξ = δMhol + m

2κ2

{
2Kακ�δα − 2K (α2� − 1)δκ

−κ(2α2� − 1)δK
}

= δMhol, (4.38)

where in the second equality we used the well-posedness
constraint (3.41). This can trivially be integrated in phase
space to prove that

H ren
ξ = Mhol = M, (4.39)

concluding the proof of equivalence between the holographic
mass formula and Wald Hamiltonian for the solution (2.2)–
(2.3).

4.4 Electric charge

The next charge we will need to define is the electric charge,
which can be done in a straightforward manner using (4.13),
taking f to be a constant. We follow [18] in computing the
U (1) Noether charge form as

Q[ f ] = − 1

4πG
f ∗ F (4.40)

and the electric charge is defined as

Qe = H−1 =
∫

�∞
Q[−1] = 1

4πG

∫
�∞

∗F

=
∫

�∞
d2x

√−g(0) j
t , (4.41)

where we assume w.l.o.g that f → −1 on I . This picks the
opposite sign convention to [18] but will give the same value
for Qe as we use a volume element with the opposite sign
to that work. Our result matches equation (3.24) of [40] and
thus completes the derivation of the electric charge from the
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covariant phase space. In order to evaluate this charge for the
solution (2.3), we compute explicitly

F = gK sin θdθ ∧ dϕ − e

κr2 dt ∧ dr, (4.42)

∗F = eK sin θdθ ∧ dϕ + g

κr2 dt ∧ dr (4.43)

and thus the electric charge is given by

Qe = 1

4πG

∫ π

0
dθ

∫ 2π

0
dϕ eK sin θ = eK

G
. (4.44)

Looking ahead to the first law, we also note that the elec-
tric charge can be defined as an integral over a cross-section
of the horizon �H (as opposed to a cross-section of the con-
formal boundary �∞), which we can take w.l.o.g. to be the
bifurcation 2-surface [5,71]. To see this, we recall Maxwell’s
equations

EM = d ∗ F (4.45)

and consider now a constant time slice C which stretches
between the black hole horizon and the conformal boundary.
When on-shell we have

0 ≈
∫
C
d ∗ F =

∫
∂C

∗F =
∫

�∞
∗F

−
∫

�H
∗F +

∫
S−

∗F −
∫
S+

∗F, (4.46)

by Stokes’ theorem. Using (4.43) we see that (∗F)rϕ = 0
and thus the string terms do not contribute. This allows us to
write the electric charge as an integral over the horizon

Qe = 1

4πG

∫
�∞

∗F = 1

4πG

∫
�H

∗F, (4.47)

a fact which will be crucial in our derivation of the first law.

4.5 Magnetic charge

Our final conserved charge is the magnetic charge Qm , an
object which seems somewhat difficult to define using the
covariant phase space approach: we have already assigned
conserved charges to both the time translation Killing vector
∂t and the constant U (1) gauge transformation so it seems
like there is nothing left to produce additional charges! (The
axial Killing field ∂ϕ is associated to angular momentum,
which vanishes trivially in the case we consider.) As it turns
out, one can define the magnetic charge using the covariant
phase space formalism by adding a topological term to the
action, the details of which we provide in Appendix A. This
term will play no role in the first law, so we leave the detailed
discussion of this term as an aside.

The magnetic charge is given by

Qm = 1

4πG

∫
�∞

F = gK

G
, (4.48)

where we used (4.42) to evaluate the charge explicitly. Fol-
lowing a similar line of logic to the electric charge, the mag-
netic charge can also be written as an integral over the bifurca-
tion surface by using the Bianchi identity for the field strength
tensor

0 =
∫
C
dF =

∫
∂C

F =
∫

�∞
F −

∫
�H

F +
∫
S−

F −
∫
S+

F

(4.49)

and in much the same manner as the electric argument, the
cosmic string terms do not contribute, leaving

Qm = 1

4πG

∫
�∞

F = 1

4πG

∫
�H

F. (4.50)

5 First law

With all of the charges defined, we are almost ready to move
on to the derivation of the first law. First we have to establish
the definitions of the other important quantities in the law
which are not explicit conserved charges. The first is the
Bekenstein–Hawking entropy, given by the usual formula in
terms of the horizon area A

SBH = A
4G

= 1

4G

∫ π

0
dθ

∫ 2π

0
dϕ

√
gθθgϕϕ

∣∣
r=r+

= Kπr2+
G(1 − α2r2+)

. (5.1)

The second quantity is the black hole temperature T . We
recall that this is defined as T = β−1 = κsg

2π
, where the

surface gravity κsg is constructed from the horizon generator
ξ = ∂t via κ2

sg = − 1
2∇μξν∇μξν . Utilising these definitions,

we find the temperature of the black hole to be

T = Q′(r+)

4κπr2+
. (5.2)

We note consistency with [5,7] in that these objects can be
constructed in terms of the gravitational part of the Noether
charge form (4.30)
∫

�H
QEH[ξ ] = T SBH, (5.3)

a fact which will reappear in our derivation of the first law.
The next quantities we need to define are the potentials

dual to the electric and magnetic charges respectively [18,
40]. In the electric case we have the electrostatic potential
defined via

�e ≡ �∞ − �H = −�H = − iξA
∣∣
r=r+ , (5.4)

where we used �∞ = 0 which is a result of the gauge choice
(3.3) as there are no θ -independent terms in iξA(0) [40]. Now
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applying Eq. (2.3) allows us to read off the potential as

�e = e

κr+
. (5.5)

The magnetic potential is slightly more subtle in that in
[40] it was simply introduced as the electric-magnetic dual
of �e by replacing e → g. Here we will discuss how this
can be realised as a potential dual to the magnetic charge. We
note that we can write the magnetic charge as

Qm = 1

4πG

∫
�∞

∗G, (5.6)

whereG = −∗F. In order to compute the magnetic potential,
we first compute the dual gauge field Ã that sources G, i.e.
dÃ = G. Using (4.43) we find

Ã = − g

rκ
dt + eK cos θdϕ, (5.7)

where we note that

Ã(0) = lim
ε→0

Ãi |z=εdx
i = cos θ

(
−gα

κ
dt + eKdϕ

)
(5.8)

and we have again chosen a gauge s.t.
∫ π

0 dθ Ã(0)
i = 0. Hav-

ing established the magnetic gauge field, we can now define
the magnetic potential as

�m = �̃∞ − �̃H = −�̃H = − iξ Ã
∣∣∣
r=r+

= g

κr+
, (5.9)

which we see can be obtained from �e under replacement of
e → g.

5.1 Geometric derivation

With all of the charges (M, Qe, Qm) and auxiliary quanti-
ties (SBH, T, �e, �m) defined, we are finally ready to derive
the first law using the covariant phase space. In doing this, we
follow [5,7] by considering a spacelike slice of spacetime C
which stretches from a cross-section of the black hole hori-
zon �H (which can be taken without loss of generality to be
the bifurcation surface [71]) out to a cross-section of confor-
mal infinity �∞. The novel aspect of this surface in case of
the accelerating solution is that the boundary of C does not
merely consist of the two aforementioned surfaces but also
includes the two cosmic strings responsible for the black hole
acceleration! Technically speaking, we have

∂C = �∞ − (�H − S− + S+), (5.10)

where the signs are due to the induced orientations on each
surface. A similar boundary structure has already been con-
sidered in the study of accelerating black hole thermodynam-
ics in asymptotically (locally) flat spacetime [69,72] and we
will see that this will also play a crucial role in the thermo-
dynamics of the AlAdS case.

The derivation of the first law follows the same logic as
[5], namely in that we begin with an integral of the symplectic
current over the surface C

0 =
∫
C

ω[ψ; δψ,Lξψ] =
∫

∂C
kξ

=
∫

�∞
kξ −

∫
�H

kξ +
∫
S−

kξ −
∫
S+

kξ , (5.11)

where ξ is the horizon generator given in Eq. (4.25) and the
integral vanishes by virtue of ξ being a Killing vector. In
the series of equalities on the right hand side above we have
introduced

kξ = δQ[ξ ] − iξ�[ψ; δψ] + diξ�ct[hi j ; δhi j ], (5.12)

which can be seen from Eq. (4.8) and we have chosen to add
the additional d-exact term on the right hand side. We have
already seen that the inclusion of this exact term gives the
correct definition of the charges (4.22) and it will also be an
elegant choice in explaining the role of each boundary con-
tribution in the first law. Note however that this term is not
necessary as the first law is invariant under transformations
of the form kξ → kξ + dB. This can be seen directly from
(5.11) where the orientations mean that all corner contribu-
tions cancel. We now will provide the analysis of each term
in (5.11) in order to derive the first law.

5.1.1 Conformal boundary term

The first term we will analyse is the contribution at the con-
formal boundary, namely∫

�∞
kξ =

∫
�∞

δQ[ξ ] − iξ�[ψ; δψ] + diξ�ct[hi j ; δhi j ].
(5.13)

Upon using Eqs. (4.22) and (4.38) we immediately see∫
�∞

kξ = δH ren
ξ = δM, (5.14)

so the term at the conformal boundary contributes precisely
the variation of the mass charge.

5.1.2 Horizon term

The horizon term is∫
�H

kξ =
∫

�H
δQ − iξ� (5.15)

and to analyse this we will use the split of the symplectic
quantities into their “Einstein–Hilbert” and “Maxwell” com-
ponents as in (4.29).

The gravitational piece contributes∫
�H

kEH
ξ =

∫
�H

δQEH = δ(T SBH), (5.16)
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where the fact that ξ vanishes at the bifurcation surface
removes the iξ�EH term and then the Wald entropy for-
mula (5.3) ensures the right equality. This term simplifies
further in that we follow [5,18] in choosing perturbations
such that we match the horizons of the perturbed and unper-
turbed solutions, as well as the unit surface gravity generators
of the horizons ξ̃ = 1

κsg
ξ . We immediately have δκsg = 0 (as

δξ = 0), so this in turn leads to δT = 0. This allows us to
write the final form of the horizon term as∫

�H
kEH

ξ = T δSBH, (5.17)

precisely as one would find for AlAdS black holes without
cosmic string insertion [18].

The electromagnetic piece is∫
�H

kM
ξ =

∫
�H

δQM − iξ�M, (5.18)

where we note that the iξ�M can no longer be ignored. We
observe from (5.4) that iξA|r=r+ is non-zero and thus one
needs to treat the contractions of the Maxwell symplectic
potential and the horizon generator more carefully. We also
note that the gauge field (2.3) is not regular at the black hole
horizon [40,48], a statement which is generically true for
spacetimes with magnetic charge. Analysing this term more
carefully we find

δQM − iξ�M = − 1

4πG

[
iξA (δ ∗ F) + δA ∧ iξ ∗ F

]
(5.19)

and working on-shell so that d ∗ F ≈ 0 and recalling that
δξ ∗ F = Lξ ∗ F = 0, we have

0 = (iξd + diξ ) ∗ F ≈ diξ ∗ F

�⇒ iξ ∗ F ≈ dX (locally). (5.20)

In order to solve forX, we recall the dual field strength dÃ =
G = − ∗ F and using δξ Ã = 0 we can write the equation
above as

iξ ∗ F = −iξdÃ = diξ Ã ≈ dX �⇒ iξ Ã = X. (5.21)

We apply this to Eq. (5.19) and use “by parts” type manipu-
lations in order to obtain

δQM − iξ�M

= − 1

4πG

[
iξA (δ ∗ F) + iξ Ã (δF) − d

(
δAiξ Ã

)]
,

(5.22)

which we note is consistent with previous formulae derived in
[73] and utilised in [74]. When integrated over the bifurcation
surface (5.22) gives∫

�H
kM

ξ = �eδQe + �mδQm, (5.23)

where we used Eqs. (4.47), (4.50), (5.4), (5.9) and the fact that
the corner integrals over the poles of the bifurcation surface
cancel one another out. We note that due to this careful anal-
ysis, we have not been forced to fix the electric and magnetic
potentials between the perturbed and unperturbed solutions
i.e. (5.23) will still hold when δ�e 	= 0 and δ�m 	= 0. This
is an advancement upon [18], where the iξ� term was not
considered carefully enough at the horizon and they were
forced to fix the value of the electric potential δ�e = 0.

5.1.3 Cosmic string terms

The final contributions to the first law are those which are
special to accelerating solutions, namely the thermodynamic
length and tension terms which arise from the presence of
the cosmic strings. We begin by recalling that the strings are
located at θ− = 0 and θ+ = π respectively and thus

∫
S±

kξ = lim
ε→0

∫ 1
ε∓α

r+

∫ 2π

0
krϕ

∣∣
θ± drdϕ. (5.24)

Using the general formula for the Maxwell contribution
(5.22) we see that this term contributes nothing to the integral
above except for the d-exact term which will not contribute
to the first law. Thus we can treat the cosmic string terms as
purely gravitational
∫
S±

kξ =
∫
S±

δQEH − iξ�EH + diξ�ct. (5.25)

Explicit computation using (4.30) shows that the Noether

charge 2-form does not contribute due to Q
S±= 0 and thus

we have∫
S±

kξ =
∫
S±

−iξ�EH + diξ�ct

= −
∫
S±

iξ�EH +
∫
S1±

iξ�ct, (5.26)

where we have used Stokes’ theorem in order to separate the
integral into bare and counterterm pieces just as we did for
the mass charge. We will present these results of these terms
one by one, illustrating again the elegance of the corner term.
The bare contribution is∫
S±

kbare
ξ = −

∫
S±

iξ�EH = ∓λbare± δμ±, (5.27)

where

λbare± = − 1

κε
+ r+

κ(1 ± αr+)
(5.28)

are the bare thermodynamic lengths and μ± are the string
tensions defined in (2.15). This term clearly diverges as ε →
0.
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The counterterm contribution is∫
S±

kct
ξ =

∫
S1±

iξ�ct = ∓ 1

κ

[
1

ε
− α(2αm ± �)

]
δμ±

(5.29)

and thus combining this term appropriately with (5.28), we
arrive at∫
S±

kξ = ∓λ±δμ±, (5.30)

where the renormalised thermodynamic lengths are defined
as

λ± = r+
κ(1 ± αr+)

− α

κ
(2αm ± �)

= r+
κ(1 ± αr+)

∓ α

κ
P±. (5.31)

5.2 Final statement of the law

Combining Eqs. (5.14), (5.17), (5.23) and (5.30) with the
signs given in (5.11) we arrive at the final form of the first
law

T δSBH = δM − �eδQe − �mδQm + λ−δμ− + λ+δμ+,

(5.32)

where, to recap, the relevant quantities are defined as

M = Km(1 − α2�)

κG
,

SBH = A
4G

= Kπr2+
G(1 − α2r2+)

, T = Q′(r+)

4κπr2+
,

Qe = eK

G
, �e = e

κr+
,

Qm = gK

G
, �m = g

κr+
,

μ± = 1

4G
(1 − P±K ) , λ± = r+

κ(1 ± αr+)
∓ α

κ
P±.

(5.33)

We note that all of these quantities are identical to those
of [40], except λ± which are different because our phase
space of parameters is different and not due to the fact that
we derived our laws using different techniques. We demon-
strate this by deriving the first law (5.32) using the “horizon
polynomial” method of [35] in Appendix B, where we also
demonstrate explicitly the reasons for the differences in the
thermodynamic length terms. The law presented above can be
seen as a five-parameter law: one starts with the six parame-
ters {m, e, g, α, K , κ} and then the constraint equation (3.41)
reduces this by one.

It is important to discuss some of the key differences
with the law presented in [40] and ours: the law presented

in equation (3.46) of [40] is a full cohomogeneity law
with an ill-posed variational problem whereas (5.32) is a
cohomogeneity-1 law with a well-posed variational prob-
lem. In fact, the variations that enter the first laws of [35–40]
(when δμ± 	= 0) are all generically ill-posed and this results
in their expressions for the thermodynamic lengths λ± dif-
fering from ours. The crucial feature of well-posedness is in
demonstrating the equivalence of the holographic mass and
the Wald Hamiltonian, as was shown in Eq. (4.39). Due to
this equivalence, our first law (5.32) can be taken to be read
with either quantity acting asM in the law and is thus entirely
consistent. This is in great contrast to [40] where the holo-
graphic mass is not equivalent to the Wald Hamiltonian and
thus the first law changes form depending on the charge that
appears in the law. As explained in detail in Appendix B.2,
if one writes their first law with the Wald Hamiltonian Hξ

then one finds the same λ± as given in (5.33). If one uses
the holographic mass Mhol then one finds the λ± as given
in equation (3.43) of [40]. This inconsistency in the form
of the law is manifested due to ill-posedness and thus we
strongly advocate a first law where the variations satisfy the
well-posedness constraint (3.41).

There are various choices of κ which solve the master
equation (3.41) that one may now want to examine. One
obvious choice is to take κ as a phase space constant such
that δκ = 0. This is the clearest limit from the perspective
of both Einstein–Maxwell theory in four dimensions and the
dual CFT3: all of the parameters {m, e, g, α, K } are physi-
cally well understood, and the fact that κ is fixed on phase
space means that different choices correspond to scaling of
dimensionful quantities in the dual field theory [40]. On the
other hand, allowing for a phase space dependent κ may
yet be crucial to discuss the thermodynamics of the super-
symmetric solutions [50] and thus the uplift into d = 11
supergravity [48]. We shall now show that a phase space
dependent κ is important in consistently analysing the ther-
modynamics of a class of solutions that we shall define as
close-to-supersymmetric and close-to-extremal spindles.

6 Spindles and supersymmetry

In this section we will discuss various relations between the
conserved charges {M, Qe, Qm} as given in (5.33) and appli-
cations of the first law (5.32) when we constrain the parame-
ters of the solution. These constraints will arise by requiring
various combinations of supersymmetry, extremality, and for
the surfaces of constant (t, r) to have the topology of a spin-
dle. We will begin with the technical details of these require-
ments, before applying them to derive loci satisfied by the
conserved charges and a number of applications of the first
law.
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6.1 Overview

We have so far kept the choice of the deficit parameter K
entirely generic and thus considered a setup with conical
singularities at both poles due to the presence of two cosmic
strings. Within this class of solutions, a particularly inter-
esting case is that of the constant (t, r) surfaces having the
topology of a spindle. Following [40,48], we note that such
a topology is obtained when we choose

K = 1

n+P+
= 1

n−P−
, (6.1)

where n± are coprime positive integers i.e. gcd(n−, n+) = 1.
With this choice, one has � ∼= WCP

1[n−,n+], the orbifold
space known as a spindle. Such objects have been the topic of
much recent study in the supergravity context [40,47–49] due
to their remarkable property that despite being singular sur-
faces (and thus inducing conical singularities when present
in the low-dimensional spacetime) they admit smooth solu-
tions when suitably uplifted into d = 11 supergravity. When
working with a spindle we can rewrite the cosmic string ten-
sions μ± entirely in terms of the spindle data, namely the
coprime integers n±. Using Eq. (2.15) together with (6.1)
we find

1

n±
= 1 − 4Gμ± (6.2)

and we also note that the orbifold Euler characteristic of �

is given by [40]

χ = 1

n−
+ 1

n+
= 2 − 4G(μ− + μ+) (6.3)

and is thus determined purely by the overall conical deficit
(2.17) present in the spacetime.

A crucial property for the uplift into regular solutions in
supergravity is the property that the four dimensional solu-
tions (2.2)–(2.3) are supersymmetric, i.e. that there exists a
solution to the Killing spinor equation. Such equations have
been analysed in [40,48,50] and result in the following con-
straints between the parameters

g = αm, (6.4)

g2 = �(� − 1). (6.5)

A supersymmetric solution is also extremal (T = 0) if [48]

e = 0 �⇒ Qe = 0. (6.6)

6.2 Charge loci

It is natural to ask what algebraic constraints are placed
upon the conserved charges {M, Qe, Qm} given in (5.33)
when one applies various combinations of the supersymme-
try, extremality and spindle topology conditions. We will now

examine some interesting combinations and derive the vari-
ous charge loci that result.

6.2.1 Supersymmetric locus

The first case of interest is to apply the supersymmetry con-
straints (6.4)–(6.5) in order to write down the supersymmetric
locus of charges. We note that supersymmetric solutions no
longer have a black hole horizon8 [48], although they can
still be slowly accelerating and exhibit a single conformal
boundary with representative (3.10) and energy–momentum
tensor (3.11). It is for these reasons that our analysis of the
conserved charges should extend without issue to this class
of solutions. In order to derive the locus, we find it helpful to
rewrite (6.4)–(6.5) as

m = g

α
, α2� = g2

e2 + g2 = Q2
m

Q2
e + Q2

m
(6.7)

and thus we find the supersymmetric locus of charges is given
by

M = QmQ2
e

ακ(Q2
e + Q2

m)
. (6.8)

6.2.2 Supersymmetric and extremal locus

An immediate application of the supersymmetry locus (6.8)
is to the supersymmetric and extremal black holes. Applica-
tion of the extremality constraint (6.6) immediately results
in

Qe = M = 0. (6.9)

This result seems somewhat surprising at first but these
are still genuine black hole solutions as discussed in [48].
The vanishing of M imposes no further constraints upon the
parameters than those already given in (6.4)–(6.6), in par-
ticular one still has m, g, α, K 	= 0 and a highly non-trivial
global structure, including the presence of acceleration hori-
zons [48]. It is important to note that these acceleration hori-
zons split the conformal boundary into two pieces [48] and
thus it is unclear if (6.9) is really a relationship between the
true conserved charges of the supersymmetric and extremal
solution. It would be interesting to investigate this issue more
deeply in future work.

6.2.3 Supersymmetric spindle locus

We note that (6.8) is quantitatively different from the a → 0
limit of the rotating supersymmetric locus as given in equa-
tion (1.1) of [40]. This is because we have applied the super-
symmetry conditions before fixing the solution to have the

8 They exhibit a naked curvature singularity, visible at the conformal
boundary I .
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topology of a spindle. In order to work explicitly with a spin-
dle, we start as in [40] by requiring that we fix the spindle
data (6.2), namely we require

δn± = 0 ⇐⇒ δμ± = 0, (6.10)

where we used Eq. (6.2) in writing down the iff statement.
Using Eqs. (2.16) and (2.17) we see that this corresponds to
fixing the products αmK and �K which can be physically
understood as fixing the overall tension and deficit respec-
tively. Fixing the overall deficit has an important implication
for the well-posedness constraint (3.41): it is equivalent to
Eq. (3.43) and thus in order to ensure well-posedness we
must fix κ as in Eq. (3.44), namely

κ =
√

�(1 − α2�). (6.11)

This is consistent with the observation made in [38–40] that
when one fixes the string tensions the choice of κ given above
ensures well-posedness. Using (6.7), we find

κ = QeQm

α(Q2
e + Q2

m)
(6.12)

and thus the supersymmetric locus for a spindle is

M = Qe. (6.13)

We note that fixing a spindle is actually a stronger than nec-
essary requirement in order to arrive at this locus. The locus
would be equivalent if one merely demands supersymme-
try (6.4)–(6.5) and a fixed Euler characteristic (6.3) (which
is equivalent to fixing the overall deficit (2.17)). The super-
symmetric and extremal spindle exhibits the same locus as
(6.9).

6.3 Applications of the first law

We would like to apply our first law of slowly accelerat-
ing black hole thermodynamics (5.32) to the supersymmetric
spindle solutions, although this is made difficult due to the
global nature of such solutions. As mentioned, the supersym-
metric and extremal solutions are not slowly accelerating and
are thus beyond the scope of our first law. The next possi-
ble case of interest is the supersymmetric and non-extremal
solutions (i.e. those where both (6.4) and (6.5) are satisfied
but (6.6) is not) but as was shown in [48], these do not even
possess a black hole horizon and thus these are also entirely
unsuitable! We will instead first apply our law to solutions
with a fixed overall deficit angle, then those with a spindle
as the constant (t, r) surfaces. Finally, we will show that
our law can be further restricted to the families of close-to-
supersymmetric and close-to-supersymmetric and close-to-
extremal spindles, which we shall introduce using criteria
inspired by those given in Section 6.3 of [48]. We note that
such solutions were referred to as “non-supersymmetric and
non-extremal” in [48] and we will alter this terminology here

to avoid confusion with the other cases we study, none of
which are supersymmetric or extremal.

6.3.1 Fixed deficit

The first case we consider is to fix the overall deficit (2.17)
(equivalently the orbifold Euler characteristic (6.3))

δ(μ+ + μ−) = δχ = 0, (6.14)

a condition which results in Eq. (6.11) for well-posedness.
Applying this relation to the first law (5.32) we find the fol-
lowing reduction of the law

T δSBH = δM − �eδQe − �mδQm + (λ+ − λ−)δμ+,

(6.15)

which is now a four-parameter law.

6.3.2 Fixed spindle

In order to write down the first law for a spindle, we start
by applying Eqs. (6.10) and (6.11) in order to fix the spin-
dle topology and ensure well-posedness. We note that fixing
the spindle topology corresponds to fixing the overall deficit
(2.17) and the overall tension (2.16) and thus can be obtained
directly from (6.15) by imposing δμ+ = 0. We can then
immediately write down the first law for a spindle

T δSBH = δM − �eδQe − �mδQm, (6.16)

which equivalently follows from (5.32) after fixing the string
tensions and is a three-parameter law.

6.3.3 Close-to-supersymmetric spindle

The next case is to apply some supersymmetry condition
on top of (6.10). As we cannot apply both supersymmetry
conditions, we follow Section 6.3 of [48] in only applying

g = αm, (6.17)

an equation which we take with (6.10) to define a close-
to-supersymmetric spindle solution. The application of this
constraint is straightforward in that we have

0 = δ(μ− − μ+) = 1

G
δ(αmK ) = 1

G
δ(gK ) = δQm

(6.18)

and so this just amounts to fixing the magnetic charge, reduc-
ing the first law of (6.16) down to the “standard” form of

T δSBH = δM − �eδQe. (6.19)

We note that this is equivalent to that written down in [40]
(with J = 0) but is now a two-parameter law.
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6.3.4 Close-to-supersymmetric and close-to-extremal
spindle

The final case of interest is the close-to-supersymmetric
and close-to-extremal spindle solution, which in addition to
(6.10) and (6.17) also has

e = Qe = 0. (6.20)

Note that this solution is not extremal as this condition only
corresponds to extremality when the solution is supersym-
metric, i.e. when both supersymmetry conditions (6.4)–(6.5)
hold. This solution is now characterised by a single parame-
ter, which we can take to be the magnetic charge parameter
g. In order to apply our first law to such a solution we need
to specify the range of g for which the solution is slowly
accelerating. Such a range was computed in [48] and reads

g < gBPS =
√

1 − α2

α2 , (6.21)

where gBPS corresponds to the supersymmetric and extremal
solution. Restricting g to the range above, the first law for
this solution is

T δSBH = δM, (6.22)

which completes the application of our current law to slowly
accelerating spindle solutions. We note that this reduction
would not have been possible if κ was not treated as a phase
space dependent parameter. If κ was taken to be a phase
space constant, the master equation (3.41) would reduce to
a non-trivial constraint, and subsequently applying (6.10),
(6.17) and (6.20) would overconstrain the first law (5.32)
down to a trivial (0-parameter) statement. This application
thus provides important motivation to treat κ as a generic
parameter of the solution.

It will be of future interest to study more carefully the
effect of rotation: as well as adding an additional parameter,
rotation also allows for slowly accelerating supersymmetric
and extremal solutions [40]. This would open up many more
interesting reductions of the more general first law, although
the key issue of extracting the true mass for accelerating
solutions must first be tackled. We leave this work to future
studies.

7 Conclusions and outlook

In this work we have extended the techniques of [18] in
describing the charges and thermodynamics of AlAdS solu-
tions to encompass accelerating solutions in d = 4 space-
time dimensions. This effort relied on two important devel-
opments, firstly the relaxation of Dirichlet boundary condi-
tions to the more general demand that the variational prob-
lem is well-posed (3.38). Secondly, one needs to supplement

the definition of the Wald Hamiltonians by a suitable corner
improvement due the topology of I : a hypersurface which
is not smooth due to the presence of cosmic strings pierc-
ing the poles of the constant time cross-sections. With these
improvements in place, we were able to show agreement for
the conserved charges between the usual holographic defini-
tions [18,70] and the charges constructed via the covariant
phase space [5].

The main motivation in developing these techniques was
to examine the first law of thermodynamics for these solu-
tions, and in particular to make comparison and contrast with
the results of [35–40]. Of crucial importance in these works
was the choice of the time scaling parameter κ of which we
have now shed more light on: we have shown that one can use
the techniques developed in this paper to derive an entirely
consistent first law of thermodynamics with κ as long as one
imposes the constraint (3.41). We emphasise that the key idea
in deriving this constraint is the requirement of a well-posed
variational problem (3.38), an idea which was previously
considered for the restricted case of fixed string tensions in
[39]. However, such a requirement was not in place for the
variations which change the overall deficit of the accelerating
solution considered in [35–40] and this results in a mismatch
between the holographic mass and the Wald Hamiltonian
associated with the time translation. This mismatch results
in an ambiguous form of the first law depending upon the
“mass” that appears in the law, manifested explicitly in find-
ing different values for the thermodynamic lengths λ± for the
holographic and Wald masses. In contrast, our first law (5.33)
is valid for both the holographic and Wald masses (because
they are equivalent) and thus gives the true expression for
the thermodynamic lengths λ±. We note that when one fixes
the overall deficit angle in the spacetime and one chooses the
value of κ as in (3.44) (as considered in [35–40]), the well-
posedness constraint (3.38) is solved. This gives a concrete
reason for the value of κ used in [40] (the authors noted at
the time that κ “gives the first law by trial and error”).

One peculiar feature that arises in our approach is that
unlike [35–40], the master equation (3.41) is not integrated
on phase space (due to the non-integrability) and thus does
not provide a closed form expression for κ in terms of the
other parameters. Equation (3.41) can be understood as a con-
straint on variations of κ and is crucial in the derivation of the
first law (5.32). As a consequence of (3.41), the law effec-
tively depends only on the variations of the (physically well-
understood) parameters m, e, g, α, K . We note however, due
to their dependence on κ , one does not generically have (and
cannot have due to non-integrability) closed expressions for
the thermodynamic quantities M, T,�e,�m, λ± (defined
in (5.33)) in terms of m, e, g, α, K .

This work thus provides a platform to study the thermody-
namics of spindle solutions from the covariant phase space,
but there are still many future directions which need to be pur-
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sued for a more complete understanding. The first issue is that
of rotation, in particular in that one needs to first establish the
true mass charge for accelerating, rotating solutions. The dif-
ficulty in doing this lies in the fact that the true mass charge is
associated to the timelike Killing vector of the solution when
the boundary is in a non-rotating frame, an issue which was
resolved for AdS–Kerr–Newman black holes in [18,46] but
is yet to be entirely settled for the accelerating solutions. In
[39,40,48], the mass charge is associated with the timelike
Killing vector in a rotating frame, and only matches the true
mass along the poles of the spindle (θ = θ±). We believe
that a more careful analysis of the mass charge must first be
carried out, with the �-BMS gauge fixing of [68] providing
a possible algorithm in order to find the correct non-rotating
frame. It would be interesting to observe how this would
affect the first law, and would also open the door to apply the
law to supersymmetric and extremal spindle solutions, where
the rotation can be tuned so as to ensure slow acceleration
[40].

In addition to rotation, it would also be interesting to
include the other parameters of the Plebanski–Demiański
family as spelled out in [32]. One could for example pro-
mote to thermodynamic objects the cosmological constant 	

[75–79] or Newton constant G [80,81], the former of which
may be understood in terms of a braneworld interpretation as
recently discussed in [82]. Perhaps more interesting would
be to include a non-zero NUT parameter N .9 The thermo-
dynamics of this parameter have been the subject of much
recent study [67,86–95] and we note that the conical singu-
larity structure we dealt with in this work via the covariant
phase space is remarkably similar to that of the Taub-NUT-
AdS as discussed in [67], with the difference being that the
NUT charge introduces Misner strings rather than cosmic
strings along the poles of the constant (t, r) surfaces. It would
be interesting to combine these techniques to derive the ther-
modynamics for the entire class of solutions [32]. It may also
be of interest to understand the role of the NUT parameter in
accelerating solutions where the underlying theory is some-
thing other than Einstein–Maxwell. As an example of this:
accelerating, NUT charged black holes have recently been
found in the theory of Einstein gravity conformally coupled
to a scalar field (for � = 0) [96]. If such solutions are found
in the � < 0 case, then the methods discussed in this paper
may prove fruitful in analysing their charges and first law.

Another important future direction would be to move
away from the slowly accelerating case and apply these tech-
niques to AlAdS solutions with an acceleration horizon. In
the asymptotically (locally) flat setting, the lack of a cosmo-
logical constant forces the inclusion of an acceleration hori-

9 This must be performed together with non-zero “Kerr-like” rotation,
as otherwise the accelerating, NUT-charged black holes fall outside the
Plebanski–Demiański family [83–85].

zon and covariant phase space techniques have been used
[69,72] to derive a first law using the background subtrac-
tion of the massless cosmic string spacetime. Such techniques
should be readily applicable to the AlAdS case, and in fact
should go further as the holographic counterterms will negate
the need for background subtraction. Physically speaking,
spacetimes containing multiple horizons with different sur-
face gravities makes the assignment of a thermodynamic tem-
perature unclear [79] and thus this issue would also have to
be explored more deeply in the rapidly accelerating case. A
direct application of this would be the supersymmetric and
extremal non-rotating solutions, as these must contain (for
certain values of the azimuthal coordinate θ ) acceleration
horizons [48]. These solutions possess a near-horizon geom-
etry of AdS2 ×WCP

1[n−,n+] and thus are an important direc-
tion in understanding AdS2 solutions, both from the lower
dimensional and uplifted perspectives [97].

Finally, we note that the techniques pioneered here should
be applicable to spacetimes whose conformal boundary
cross-sections �∞ are generic 2-manifolds-with-boundary
as (4.22) will still hold. We conjecture that this formula
should apply immediately to higher even dimensions whereas
odd dimensions may be more subtle due to the different
boundary conditions one imposes due to the conformal
anomaly [18]. While it is proven that there is no analogue
of the C-metric in higher dimensions [98] (and thus no good
candidate solution to describing accelerating spacetime) such
formulae may still be crucial in describing the charges and
thermodynamics of more exotic solutions to the field equa-
tions.
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Appendix A: Magnetic charges from the covariant phase
space

In this appendix we show that the magnetic charge (4.48) can
be realised as a true conserved charge in the covariant phase
space formalism by adding an additional term to the action
(3.30). This term will be purely topological and thus will not
contribute to the equations of motion, but will modify the
symplectic structure (and thus the charges). We will show
that this term does not affect either the variational problem
(as studied in Sect. 3.4) or the derivation of the first law
(Sect. 5) and thus the analysis of the main text is entirely
sufficient to discuss the first law.

A.1 Topological term

As discussed in Sect. 4.5, the standard discussion of Maxwell
theory does not derive the magnetic charge as a conserved
quantity from the covariant phase space point of view. In
order to see how the magnetic charge is constructed on phase
space we follow [67] by considering the action (3.30) sup-
plemented by an additional term

S = Sbulk + Sbdy + Stop, (A.1)

where the new term is

Stop = − 1

8πG

∫
M
F ∧ F. (A.2)

This term is often referred to as the “θ -term” [99,100] when
added to the usual Yang–Mills Lagrangian and is responsible
for the breaking of CP-symmetry in the quantum theory when
included. As we will treat the theory purely classically we
will not worry about such features and we use it purely to
illustrate this feature of the magnetic charge.

The contribution from this new term to the equation of
motion is trivial (Etop ≡ 0) due to the closed field strength
tensor dF = 0 and thus we see that this term is entirely
topological. Despite this, there will be a modification in the
symplectic potential. Computing explicitly, we find

�top = − 1

4πG
δA ∧ F, (A.3)

which shows that the effect of this topological term will be
identical to that of the Maxwell term (4.32) with a replace-
ment of ∗F → F. Putting everything together, we see that
the total U (1) Hamiltonian (4.23) is modified from the form
given in (4.41) and now reads

H−1 = 1

4πG

∫
�∞

(∗F + F) = Qe + Qm, (A.4)

i.e. the U (1) charge is now the sum of the electric and mag-
netic charges. We note that even though only the linear com-
bination of Qe + Qm appears in the definition of the U (1)

Hamiltonian, both can be understood as conserved charges
independently. Such a result follows immediately from the
equation of motiond∗F ≈ 0 and the Bianchi identitydF = 0.

As an aside, we note that (as expected) the electric and
magnetic charges appear from the covariant phase space point
of view as “dual charges”, a topic of recent interest in gravita-
tion [67,101–104]. We will not need these more sophisticated
notions as our solution of interest (2.2) does not contain non-
trivial dual gravitational charges. It would be of interest to
generalise the solutions to include spacetimes which do (for
example those with non-trivial NUT parameter) although we
leave these discussions to future work.

A.2 No contribution to the variational problem

As we have modified the action via the addition of the topo-
logical term (A.2), it is natural to ask whether this may affect
the variational problem analysis that was performed with-
out the term in Sect. 3.4. We note that the variation of the
topological term is

δStop ≈
∫

d3x
√−g(0) j

i
mδA(0)

i , (A.5)

where we have introduced the magnetic current vector field
jm , defined analogously to the electric current (3.7) via

j im = 1

4πG
lim
ε→0

[
1

ε3 nμ(∗F)μi
]

, (A.6)

which can also be used to define the magnetic charge

Qm =
∫

�∞
d2x

√−g(0) j
t
m = 1

4πG

∫
�∞

F. (A.7)

Computing the values of the magnetic current explicitly for
(2.3), we find as the only non-zero components

j tm = κ
g

4πG
, jϕm = − αe

4KπG
, (A.8)

which clearly take constant values. Combining this with∫ π

0 dθ
√−g(0)δA

(0)
i = 0 immediately tells us that

δStop ≈ 0 (A.9)

and thus the question of well-posedness is independent of
whether or not one adds (A.2) to the action. We also note
that the presence of the magnetic current will not affect the
Ward identities (3.12), (3.13) as these are determined by the
equations of motion which are unaffected by the addition of
the topological term (A.2).
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A.3 No contribution to the first law

Finally, we show that this topological term gives no contri-
bution to the first law. We start by noting that this will be the
case if we can show

ktop
ξ = δQtop − iξ�top = dZ, (A.10)

for some 1-form Z, as then all contributions from the corners
will cancel in the full statement of the law using the logic as
argued in the paragraph below Eq. (5.12). The topological
contribution to the Noether charge is

Qtop[ξ ] = − 1

4πG
(iξA)F, (A.11)

which when combined with Eq. (A.3) allows us to write

ktop
ξ = δQtop − iξ�top

= − 1

4πG

[
(iξA)δF + δA ∧ iξF

]
. (A.12)

Using dA = F together with δξA = 0, we can now perform
elementary manipulations to reach

ktop
ξ = − 1

4πG
d

[
(iξA)δA

]

�⇒ Z = − 1

4πG
(iξA)δA, (A.13)

allowing us to conclude that the topological term does not
contribute to the first law.

Appendix B: Comparison with other literature

In this appendix we provide a careful analysis of our first
law (5.32) with other literature, namely that of [35–40]. In
the first subsection we show that our law can also be con-
sistently derived using the “horizon polynomial” method of
[35]. In the second subsection we show explicitly that ill-
posedness of the variational problem results in the discrepan-
cies between our thermodynamic lengths λ± given in (5.33)
and those of [40].

B.1 Consistency with the “horizon polynomial” method

In Eq. (5.32) we wrote down the first law of accelerating
black hole thermodynamics using the covariant phase space
formalism, an elegant approach as this immediately allows
one to identify the appearance of the conserved charges and
entropy entering the law. In previous works [35,36,38–40] a
different first law was obtained by studying the variation of
the horizon polynomial

δQ(r+) = 0, (B.1)

where the right hand side comes from the fact that the per-
turbed horizon polynomial vanishes at the perturbed horizon
location.

It is natural to ask whether our law is consistent with
those of [35,36,38–40]: we have used a different method and
arrived at a different result. Here we will provide a deriva-
tion of our law using Eq. (B.1), providing a useful consistency
check and demonstrating that the differences in our result to
those of [35,36,38–40] are purely due to our different choices
of phase space.

We begin by recalling the definition of the horizon poly-
nomial from (2.4) (with 	 = 1)

Q(r+) = (r2+ − 2mr+ + e2 + g2)(1 − α2r2+) + r4+ = 0,

(B.2)

an equation we will both vary and utilise on its own. Com-
puting the variation (B.1) explicitly, we find

0 = κT
2πKr+

(1 − α2r2+)2
δr+ − K

1 − α2r2+
δm

+ K

r+(1 − α2r2+)
(eδe + gδg) − Kαr2+

r+ − 2m

(1 − α2r2+)2
δα

(B.3)

and recalling the definition of the Bekenstein–Hawking
entropy (5.33), we have

δSBH = 2πKr+
(1 − α2r2+)2

δr+

+ πr2+
1 − α2r2+

δK + 2Kπr4+α

(1 − α2r2+)2
δα, (B.4)

allowing us to write the law in (B.3) as

T δSBH = 1

κ(1 − α2r2+)

[
κTπr2+δK

+Kr+(2κTπr3+ + r2+ − 2mr+ + e2 + g2)

1 − α2r2+
αδα

+K δm − K

r+
(eδe + gδg)

]
. (B.5)

All that remains now is to write the right hand side as
δM − �eδQe − �mδQm + λ−δμ− + λ+δμ+. This calcu-
lation is straightforward but a little tedious and requires use of
Eq. (5.33) for the definitions ofM,�e, Qe,�m, Qm, λ±, μ±.
After some algebraic manipulation we arrive at

T δSBH = δM − �eδQe − �mδQm

+λ−δμ− + λ+δμ+ + C, (B.6)

where

C = Km

κ2 (1 − α2�)δκ
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+
(
r+
κ

− r3+
(r2+α2 − 1)κ

− m(3 + 2α2)

2κ

−(e2 + g2)
mr+α4 − 1

rκ

)
δK

+
(
m

[
α2r2+ − 1

] [
−α2

(
e2 + g2

)

+r2+
(
α2 + α4

(
e2 + g2

)
+ 4

)
− 1

]

+2r+
[
−α2r2+

(
e2 + g2 + r2+

)

+e2 + g2 + r4+ + r2+
])

αK δα

(1 − α2r2+)2κ
(B.7)

and now utilising the phase space relationship (3.41) required
for well-posedness of the variational problem we can sim-
plify this to

C = Q(r+)
δK (1 − α2r2+) + 2αδαKr2+

κr+
(
α2r2+ − 1

)2 = 0, (B.8)

where we used (B.2) in the final step, thus demonstrating
equivalence between the covariant phase space and horizon
polynomial approaches.

B.2 Differences in thermodynamic lengths

We will now demonstrate the reason for the differences in
our “thermodynamic length” parameters λ± to those of the
previous literature [35–40]. We compare our law with that of
[40], as that is the case with the largest number of non-trivial
parameters and in particular has g 	= 0. Their general first
law is given in equation (3.46) of that work and in order to
compare with ours we set

J = 0, 	 = 1, δ	 = 0, δG = 0, (B.9)

reducing equation (3.46) of [40] down to

δMhol = T δSBH + �eδQe + �mδQm

−λ̃−δμ− − λ̃+δμ+, (B.10)

where all quantities above are equivalent to those defined
in (5.33), except for the thermodynamic lengths, which are
given by

λ̃± = r+
κ(1 ± αr+)

− m

κ�
∓ α�

κ
. (B.11)

We also note that we have explicitly put the holographic mass
Mhol as defined in (4.26) in the first law when written as in
(B.10). This is a crucial feature of this law as we shall now
demonstrate.

In order to compare with [40] we remove the requirement
of well-posedness (3.41) and choose κ as given in (3.44).
Using Eq. (4.38) together with the definitions of the string

tensions (2.15) we find that the difference between the vari-
ations of the masses is now

δH ren
∂t

− δMhol = m(2α2� − 1)

κ�
δ(μ+ + μ−), (B.12)

which we note is no longer zero.10 This means that the first
law is sensitive to the choice of mass that appears, for example
we can rewrite (B.10) with the Wald Hamiltonian as

δH ren
∂t

= T δSBH + �eδQe + �mδQm

−λ−δμ− − λ+δμ+, (B.13)

where the right hand side of (B.12) has been absorbed into
the thermodynamic lengths, which are now in agreement with
our expression for λ± given in (5.33).

This calculation demonstrates explicitly that the removal
of a well-posed variational problem results in an ambigu-
ous first law which changes form depending on the choice
of mass charge that one uses. If the variational problem is
well-posed then both notions of mass are equivalent and one
finds a single consistent first law as given in (5.32). We thus
strongly advocate well-posedness as a requirement in order
to establish equality between various notions of mass and to
obtain consistent thermodynamic relations.
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86. R.A. Hennigar, D. Kubizňák, R.B. Mann, Thermodynam-
ics of Lorentzian Taub–NUT spacetimes. Phys. Rev. D 100,
064055 (2019). https://doi.org/10.1103/PhysRevD.100.064055.
arXiv:1903.08668

123

https://doi.org/10.1007/JHEP11(2021)002
https://doi.org/10.1007/JHEP11(2021)002
http://arxiv.org/abs/2105.13344
https://doi.org/10.1007/JHEP05(2013)123
http://arxiv.org/abs/1303.3119
https://doi.org/10.1088/1126-6708/2007/04/005
https://doi.org/10.1088/1126-6708/2007/04/005
http://arxiv.org/abs/hep-th/0612253
https://doi.org/10.1007/s00220-008-0575-5
http://arxiv.org/abs/0710.2590
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1088/0264-9381/20/14/321
https://doi.org/10.1088/0264-9381/20/14/321
http://arxiv.org/abs/gr-qc/0305089
https://doi.org/10.1088/0264-9381/19/2/308
https://doi.org/10.1088/0264-9381/19/2/308
http://arxiv.org/abs/hep-th/0107108
https://doi.org/10.1088/0264-9381/25/19/195014
https://doi.org/10.1088/0264-9381/25/19/195014
http://arxiv.org/abs/0805.1902
https://doi.org/10.1016/j.physletb.2022.137447
http://arxiv.org/abs/2205.15777
https://doi.org/10.1063/1.528801
https://doi.org/10.1103/PhysRevD.52.4430
https://doi.org/10.1103/PhysRevD.52.4430
http://arxiv.org/abs/gr-qc/9503052
https://doi.org/10.12942/lrr-2001-6
http://arxiv.org/abs/gr-qc/9912119
https://doi.org/10.1103/PhysRevD.61.084027
https://doi.org/10.1103/PhysRevD.61.084027
http://arxiv.org/abs/gr-qc/9911095
https://doi.org/10.1007/JHEP09(2020)026
http://arxiv.org/abs/2006.02792
https://doi.org/10.1007/JHEP07(2021)007
http://arxiv.org/abs/2012.13323
https://doi.org/10.1007/JHEP05(2021)110
http://arxiv.org/abs/2012.14892
https://doi.org/10.1007/JHEP11(2022)081
http://arxiv.org/abs/2207.12008
https://doi.org/10.1007/JHEP10(2020)205
https://doi.org/10.1007/JHEP10(2020)205
http://arxiv.org/abs/2004.10769
https://doi.org/10.1103/PhysRevD.106.024022
http://arxiv.org/abs/2205.10043
https://doi.org/10.1088/1361-6382/ab3d4b
https://doi.org/10.1088/1361-6382/ab3d4b
http://arxiv.org/abs/1905.00971
https://doi.org/10.1088/1361-6382/ac0766
https://doi.org/10.1088/1361-6382/ac0766
http://arxiv.org/abs/2008.03682
https://doi.org/10.1088/0264-9381/22/14/004
https://doi.org/10.1088/0264-9381/22/14/004
http://arxiv.org/abs/hep-th/0503045
https://doi.org/10.1103/PhysRevD.49.6587
https://doi.org/10.1103/PhysRevD.49.6587
http://arxiv.org/abs/gr-qc/9312023
https://doi.org/10.1088/1361-6382/ac2139
https://doi.org/10.1088/1361-6382/ac2139
http://arxiv.org/abs/2103.07521
https://doi.org/10.1007/JHEP11(2013)033
https://doi.org/10.1007/JHEP11(2013)033
http://arxiv.org/abs/1307.6243
https://doi.org/10.1007/JHEP10(2022)142
http://arxiv.org/abs/2202.08290
https://doi.org/10.1088/0264-9381/17/2/310
https://doi.org/10.1088/0264-9381/17/2/310
http://arxiv.org/abs/hep-th/9908022
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
http://arxiv.org/abs/0904.2765
https://doi.org/10.1103/PhysRevD.84.024037
https://doi.org/10.1103/PhysRevD.84.024037
http://arxiv.org/abs/1012.2888
https://doi.org/10.1088/0264-9381/33/24/245001
https://doi.org/10.1088/0264-9381/33/24/245001
http://arxiv.org/abs/1507.08630
https://doi.org/10.1088/1361-6382/aa5c69
http://arxiv.org/abs/1608.06147
https://doi.org/10.1103/PhysRevLett.127.091301
https://doi.org/10.1103/PhysRevLett.127.091301
http://arxiv.org/abs/2105.02223
https://doi.org/10.1103/PhysRevD.105.106014
https://doi.org/10.1103/PhysRevD.105.106014
http://arxiv.org/abs/2101.04145
https://doi.org/10.1103/PhysRevLett.130.161501
https://doi.org/10.1103/PhysRevLett.130.161501
http://arxiv.org/abs/2212.14055
https://doi.org/10.1103/PhysRevD.102.084024
https://doi.org/10.1103/PhysRevD.102.084024
http://arxiv.org/abs/2007.09169
https://doi.org/10.1007/JHEP08(2023)085
https://doi.org/10.1007/JHEP08(2023)085
http://arxiv.org/abs/2305.03744
http://arxiv.org/abs/2307.10534
https://doi.org/10.1103/PhysRevD.100.064055
http://arxiv.org/abs/1903.08668


1095 Page 26 of 26 Eur. Phys. J. C (2023) 83 :1095

87. A.B. Bordo, F. Gray, D. Kubizňák, Thermodynamics and phase
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