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Abstract Stimulated by the recent researches of black
hole thermodynamics for black hole with Newman–Unti–
Tamburino (NUT) parameter, we investigate the thermody-
namics and weak cosmic censorship conjecture for a Kerr–
Newman Taub–NUT black hole. By defining the electric
charge as a Komar integral over the event horizon, we con-
struct a consistent first law of black hole thermodynamics for
a Kerr–Newman Taub–NUT black hole through Euclidean
action. Having the first law of black hole thermodynamics,
we investigate the weak cosmic censorship conjecture for the
black hole with a charged test particle and a complex scalar
field. We find that an extremal black hole cannot be destroyed
by a charged test particle and a complex scalar field. For a
near-extremal black hole with small NUT parameter, it can be
destroyed by a charged test particle but cannot be destroyed
by a complex scalar field.

1 Introduction

Gravitational collapse inevitably leads to spacetime singular-
ity. This is the famous Hawking–Penrose singularity theorem
[1,2]. The presence of spacetime singularity might indicate
the failure of general relativity in the area of extremely strong
Gravitational field. To preserve the predictability of gravita-
tional theory, Penrose proposed the weak cosmic censorship
conjecture which states that spacetime singularities are hid-
den behind black hole event horizon and can never be seen by
distant observers [3]. The weak cosmic censorship conjec-
ture preserves the predictability of gravitational theory out-
side the event horizon, but it also forbids us to probe physics
near the singularity where quantum gravity effects cannot
be neglected. The weak cosmic censorship conjecture has
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been proposed more than 50 years, but a general proof of the
conjecture is still out of reach.

Though we cannot give a general proof of the conjecture,
we can still check it. There are many ways to test the weak
cosmic censorship conjecture. The one we are interested in
here is to test the conjecture through gedanken experiment.

The idea of testing the conjecture through thought exper-
iment was first proposed by Wald [4], who proposed to test
the weak cosmic censorship conjecture by throwing test parti-
cles with large charge or angular momentum into an extremal
Kerr–Newman black hole, and found that particles causing
the destruction of the event horizon cannot be captured by
the extremal black hole due to the Coulomb and centrifugal
repulsion force. Systematic works of Rocha and Cardoso et
al. for Bañados–Teitelboim–Zanelli (BTZ) black hole [5],
higher-dimensional Myers–Perry family of rotating black
holes and a large class of five-dimensional black rings [6]
also suggested that extremal black holes cannot be destroyed
by test particle. But further investigations suggest that a near-
extremal black hole can be destroyed by test particles [7–9].
Furthermore, the work of Gao and Zhang showed that even
an extremal Kerr–Newman black hole can be destroyed if
we take into account the second order of the energy, angular
momentum, and charge of the charged test particle [10]. Simi-
lar counterexamples are found in modified theories of gravity
[11,12]. But when backreaction and self-force are taken into
account, these counterexamples seemed to be rescued [13–
18]. Besides testing the conjecture by throwing test particle,
we can also check it through the scattering of fields [19–25].
Usually, classical fields cannot destroy the event horizon.
Recently, Sorce and Wald proposed a new thought experi-
ment by taking into account the second order perturbations
from the matter fields, and they found that a near-extremal
Kerr–Newman black hole cannot be destroyed [26]. Subse-
quent systematic works further support the result that the
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event horizon cannot be destroyed by this kind of gedanken
experiment [27–36].

A black hole with NUT parameter arises puzzling ques-
tions. It carries a peculiar gravitational charge, namely the
NUT charge, which is very similar to the magnetic monopole
[37]. Though solutions of Einstein field equation with NUT
parameter were obtained in the early 1950s [38,39], they
were even not regarded as black holes due to the strange
properties of the Misner strings [40]. Recent researches sug-
gest that solutions with NUT parameter are not so strange as
previous thought. Contrary to previous doubts [41,42], vari-
ous viewpoints on consistent thermodynamics for black hole
with NUT parameter have been formulated [37,43–51].

By introducing a pair of conjugate thermodynamic vari-
ables, the NUT charge N and the Misner potential ψ, Hen-
nigar et al. proposed a consistent first law for Lorentz Taub–
NUT black hole [37]. Following this way, Ballon Bordo et
al. obtained two kinds of consistent first laws of thermo-
dynamics for rotating NUTty dyons through different defini-
tions for electric charge and magnetic charge [52]. By choos-
ing different gauge for the electric and magnetic potentials,
Ballon Bordo et al. got the electric and magnetic first laws
of black hole thermodynamics, which correspond to g =
−er/

(
r2

h + a2 − n2
)

and e = 4gn2rh/
(
r2

h + a2 − n2
)
,

respectively. Here e and g are the electric and magnetic
parameters, respectively. However, they did not provide the
first law of black hole thermodynamics for the case of van-
ishing magnetic parameter. In this case, the rotating NUTty
dyons reduce to the Kerr–Newman Taub–NUT black hole.
There are also multi-hair viewpoint [47] for the thermody-
namics for Kerr–Newman Taub–NUT black hole. But it leads
mathematically problem that the mass and the NUT param-
eter should be interpreted as three independent thermody-
namic variables. Our first task is to get a consistent thermo-
dynamics for the Kerr–Newman Taub–NUT black hole.

Many works suggest that there are close relationship
between black hole thermodynamics and weak cosmic cen-
sorship conjecture [53–56]. As our previous work suggested
[57] that if we do not take the thermodynamics into account
or using inappropriate thermodynamics, this will lead to the
result that both extremal and near-extremal black holes can
be destroyed by a scalar field [58]. Using our obtained first
law of black hole thermodynamics, we investigate the weak
cosmic censorship conjecture for Kerr–Newman Taub–NUT
black holes. We find that an extremal Kerr–Newman Taub–
NUT cannot be destroyed by a charged test particle. While a
near-extremal black hole with small NUT parameter can be
destroyed by a charged test particle. However, for charged
scalar field scattering, both extremal and near-extremal black
holes cannot be destroyed.

The outline of the paper is as follows. In Sect. 2, we inves-
tigate the first law of black hole thermodynamics for Kerr–
Newman Taub–NUT black hole. In Sects. 3 and 4, we try to

destroy the event horizon of the extremal and near-extremal
Kerr–Newman Taub–NUT black holes by a charged test par-
ticle and a charged scalar field, respectively. The last section
is devoted to discussion and conclusion.

2 Kerr–Newman Taub–NUT black hole and its
thermodynamics

The Kerr–Newman Taub–NUT spacetime is a four-dimensi
onal electrovacuum solution of the Einstein’s field equation
[59]. The metric for the Kerr–Newman Taub–NUT spacetime
in Boyer–Lindquist coordinates can be written in the form

ds2 = −�

U

[
dt +

(
2n cos θ − a sin2 θ

)
dφ

]2 + U

�
dr2

+Udθ2 + sin2 θ

U

[
adt −

(
r2 + n2 + a2

)
dφ

]2
, (1)

and the electromagnetic field potential

A = −er

U
dt − (2n cos θ − a sin2 θ)er

U
dφ, (2)

which leads to the electromagnetic field

F = dA =
[
r2 − (n + a cos θ)2

]
e

U 2 dr ∧ dt

−2 (n + a cos θ) ear sin θ

U 2 dθ ∧ dt

+
[
r2 − (n + a cos θ)2] (2n cos θ−a sin2 θ

)
e

U 2 dr∧dφ

+2
(
r2 + n2 + a2

)
(n + a cos θ) er sin θ

U 2 dθ ∧ dφ. (3)

Here the metric functions are given by

� = r2 − 2mr + a2 + e2 − n2, (4)

U = r2 + (n + a cos θ)2, (5)

where m, a, e and n are the mass parameter, the angular
momentum parameter, the electric parameter, and the NUT
parameter, respectively.

The above metric describes a rotating black hole with two
Misner strings symmetrically located on the north and south
poles as depicted in Fig. 1.

Due to the presence of the Misner strings, the spacetime is
not asymptotical flat. For vanishing NUT parameter, the met-
ric describes a Kerr–Newman black hole. For nonvanishing
NUT parameter, there are two string singularities correspond-
ing to the two Misner strings. Besides the string singulari-
ties and horizon, there is a spacetime singularity for n ≤ a.

For n ≤ a, there is a ring singularity located at r = 0 and
cos θ = n/a. However, the spacetime is regular and there is
no spacetime singularity for n > a, and the metric describes
a nonsingular black hole.
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Fig. 1 Boundaries of the Kerr–Newman Taub–NUT black hole [57,
60]: Misner tubes. Apart from the standard boundaries, the event horizon
H and spatial infinity �∞, the Kerr–Newman Taub–NUT spacetime has
two Misner tubes T± located at the north and south poles

The horizons of the black hole are determined by

� = r2 − 2mr + a2 + e2 − n2 = 0. (6)

Solving the quadratic equation for r, we obtain the horizons
of the black hole

r± = m ±
√
m2 + n2 − a2 − e2, (7)

with the plus sign corresponds to the event horizon, and the
minus sign corresponds to the inner horizon, which is also
the Cauchy horizon. In the following, we use rh to denote the
event horizon.

The spacetime is stationary and axisymmetric. The mass
of the black hole is

M = m = r2
h + a2 + e2 − n2

2rh
. (8)

The area of the black hole event horizon is

A = 4π(r2
h + a2 + n2). (9)

The Bekenstein–Hawking entropy is different from the
Noether entropy for black hole with NUT parameter [37], and
there is no consensus on which definition for entropy should
be used. Here, we use the Bekenstein–Hawking entropy as
the black hole entropy. The entropy for the black hole is

S = A

4
= π(r2

h + a2 + n2). (10)

The metric describes a rotating charged black hole with
angular velocity

�h = a

r2
h + a2 + n2

, (11)

and electrostatic potential

φh = erh

r2
h + a2 + n2

. (12)

The electric charge surrounded by the event horizon is

Q = 1

4π

∫

H
∗F

= e
(
2a2r2

h + a4 − n4 + r4
h

)

(
a2 − 2an + n2 + r2

h

) (
a2 + 2an + n2 + r2

h

) . (13)

The event horizon of the black hole is the same as the
Killing horizon with Killing vector

K = ∂t + �h∂φ. (14)

The surface gravity of the black hole event horizon is

κ = �′(rh)

2(r2
h + n2 + a2)

= 1

2rh

r2
h + n2 − a2 − e2

r2
h + n2 + a2

. (15)

Then, the temperature associated with the black hole event
horizon reads

T = κ

2π
= 1

4πrh

r2
h + n2 − a2 − e2

r2
h + n2 + a2

. (16)

Besides the black hole horizon, there are also two Misner
string horizons, which are Killing horizons correspond to the
Killing vector fields

ξ± = ∂t ∓ 1

2n
∂φ. (17)

The surface gravity for the Misner string horizons can be
calculated by the standard formula

κ2± = 1

2
∇μξν∇μξν, (18)

which gives the result

κ± = 1

2n
. (19)

As in the work of Hennigar et al. [37], the surface gravity of
the two Misner string horizons is interpreted as the Misner
potential

ψ = κ±
2π

= 1

8πn
. (20)

To get the first law of black hole thermodynamics for the
Kerr–Newman Taub–NUT black hole, we consider the action
for the Kerr–Newman Taub–NUT AdS spacetime by using
the standard AdS counterterms, and take the asymptotically
flat limit. The Euclidean action for the Kerr–Newman Taub–
NUT AdS spacetime is [52]

I = 1

16π

∫

M
d4x

√
g

(
R + 6

l2
− F2

)

+ 1

8π

∫

∂M
d3x

√
h

(
K − 2

l
− l

2
R
)

, (21)

where K and R are the extrinsic curvature and Ricci scalar
of the boundary respectively, and h is the determinant of
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the induced metric. The action is related to the correspond-
ing free energy G = I/β with β = 1/T . After taking the
asymptotically flat limit l → +∞, the free energy for the
Kerr–Newman Taub–NUT black hole is

G = m − rh

2

(r2
h − n2 + a2)e2

[r2
h + (a + n)2][r2

h + (a − n)2] . (22)

The Gibbs free energy G can be regarded as a function
of the temperature T, the Misner potential ψ, the angular
velocity �h and the electric potential φh, with:

G = G(T,�h, φh, ψ), (23)

with which we can define the following thermodynamic
quantities:

S = −∂G

∂T
, Q = − ∂G

∂φh
, J = − ∂G

∂�h
, N = −∂G

∂ψ
.

(24)

From the above definition, we can get the thermodynamical
quantities:

S = π(r2
h + a2 + n2), (25)

Q = e
(
2a2r2

h + a4 − n4 + r4
h

)

(
a2 − 2an + n2 + r2

h

) (
a2 + 2an + n2 + r2

h

) , (26)

J = 1

2

[
a
(
a2 + n2

) (
a2 + e2 − n2

)

rh(a − n)(a + n)
+ 2e2n2rh(a − n)

(
(a − n)2 + r2

h

)2

+ 2e2n2rh(a + n)
(
(a + n)2 + r2

h

)2 − e2n2rh

r2
h (a − n) + (a − n)3

− e2n2rh

r2
h (a + n) + (a + n)3

+ arh

]

, (27)

N = 4πn3

[
(n2 − a2)(4a4 + 7a2e2 + 5e2n2 − 4n4)rh

(
a4 + 2a2(r2

h − n2) + (n2 + r2
h )2

)2

+ (a2 + e2 − n2)(n2 − a2)3 − r6
h

(
4a2 − 3e2 + 4n2

)

rh(a4 + 2a2(r2
h − n2) + (n2 + r2

h )2)2

− r7
h + r3

h

(
a2

(
3e2 + 4n2

) + 6a4 − 7e2n2 + 6n4
)

(
a4 + 2a2

(
r2

h − n2
) + (

n2 + r2
h

)2
)2

⎤

⎥
⎦ ,

(28)

where the electric charge is defined as the charge surrounded
by the event horizon instead of infinity.

It is evident that the above thermodynamic quantities sat-
isfy the first law of black hole thermodynamics and the Smarr
relation:

dM =TdS + �hd J + φhdQ + ψdN , (29)

M =2 (T S + �h J + ψN ) + φhQ. (30)

From the first law of black hole thermodynamics for
the Kerr–Newman Taub–NUT black hole, if the black hole
absorbs a particle or field with energy δE, angular momen-
tum δ J and charge δQ, we can get the change of the black
hole parameters from the first law of black hole thermody-
namics. Evidently, the NUT charge is conserved during the
absorption process as our previous works indicated [57,61].
Then we can check the validity of the weak cosmic censorship
conjecture for the Kerr–Newman Taub–NUT black hole.

3 Destroying the black hole with charged test particles

The viewpoint of gedanken experiment to destroy the event
horizon of a black hole was first proposed by Wald in 1974
[4]. By dropping a test particle with large charge or angu-
lar momentum into an extremal Kerr–Newman black hole,
Wald found that particles causing the destruction of the event
horizon can not be absorbed by the black hole [4]. But fur-
ther investigations show that a near-extremal black hole can
be destroyed by a test particle with large charge or angular
momentum [7–9].

To check the validity of the weak cosmic censorship con-
jecture for the Kerr–Newman Taub–NUT black hole, we
shoot a test particle with large charge or/and angular momen-
tum into an extremal or near-extremal black hole. The equa-
tion of motion for a particle with rest mass M0 and charge
δQ in the Kerr–Newman Taub–NUT spacetime is

d2xμ

dτ 2 + �
μ
αβ

dxα

dτ

dxβ

dτ
= δQ

M0
Fμ

ν

dxν

dτ
. (31)

The equation of motion for the charged test particle in
the Kerr–Newman Taub–NUT spacetime can also be derived
from the Lagrangian

L = 1

2
M0gμν

dxμ

dτ

dxν

dτ
+ δQAμ

dxμ

dτ

= −1

2
M0gμν ẋ

μ ẋν + δQAμ ẋ
μ. (32)

We shoot a charged test particle into the equatorial plane
of the black hole, with an angular momentum δ J, aligned in
the same direction as the black hole. From the Lagrangian
for the test charged particle, we can get the energy δE and
angular momentum δ J, which are

δE = −Pt = −∂L

∂ ṫ
= −M0g0ν ẋ

ν − δQAt , (33a)

δ J = Pφ = ∂L

∂φ̇
= M0g3ν ẋ

ν + δQAφ, (33b)

Pθ = ∂L

∂θ̇
= 0. (33c)

For a stationary spacetime, the energy δE is a constant of
motion; for an axisymmetric spacetime, the angular momen-
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tum δ J is a constant of motion. Since the Kerr–Newman
Taub–NUT spacetime is stationary and axisymmetric, both
the energy δE and angular momentum δ J of the particle are
constants of motion in the spacetime.

From the four-velocity of the particle, we obtain

UμUμ = 1

M2
0

gαβ (Pα − AαδQ)
(
Pβ − AβδQ

) = −1. (34)

Therefore, the energy δE and angular momentum δ J of the
particle satisfy the following equation:

g00 (δE + AtδQ)2 − 2g03 (Pφ − AφδQ
)
(δE + AtδQ)

+ g11P2
r + g33 (Pφ − AφδQ

)2 + M2
0 = 0. (35)

The above equation is a quadratic equation of energy δE .
Solving the quadratic equation, we can get the energy of the
particle,

δE = −AtδQ + g03

g00

(
Pφ − AφδQ

) ± 1

g00

{(
g03)2 (

Pφ

−AφδQ
)2 − g00

[
g11P2

r + g33 (Pφ − AφδQ
)2 + M2

0

]} 1
2
.

(36)

The motion of the particle should be future-directed. It fol-
lows that

dt

dτ
> 0. (37)

The future-directed condition for the particle implies that the
energy of the particle ought to be

δE = −AtδQ + g03

g00

(
Pφ − AφδQ

) − 1

g00

{(
g03)2 (

Pφ

− AφδQ
)2 − g00

[
g11P2

r + g33 (Pφ − AφδQ
)2 + M2

0

]} 1
2
.

(38)

From Eqs. (33a) and (33b), we have

M0g00 ṫ + M0g03φ̇ = −δE − δQAt , (39a)

M0g30 ṫ + M0g33φ̇ = δ J − δQAφ. (39b)

Clearly, the above two equations are linear equations for ṫ
and φ̇. By utilizing Eqs. (39a) and (39b), we can deduce the
following result:

ṫ ≡ dt

dτ
= − (δE + AtδQ) g33 + (

δ J − AφδQ
)
g03

M0
(
g00g33 − g2

03

) . (40)

Imposing the future-directed condition on the motion of the
particle, we obtain

(δE + AtδQ) g33 + (
δ J − AφδQ

)
g03 > 0. (41)

Thus, we have

δE >

(
g03

g33
Aφ − At

)
δQ − g03

g33
δ J. (42)

If the particle can be captured by the black hole, it will
inevitably cross the event horizon at a certain point along
its trajectory. At the precise moment of crossing the event
horizon, the aforementioned condition takes the form of

δE >
erh

r2
h + n2 + a2

δQ + a

r2
h + n2 + a2

δ J

= φhδQ + �hδ J. (43)

Evidently, if the angular momentum or/and charge of the test
particle is too large, the particle just “miss” the black hole
and cannot be absorbed by the black hole due to the Coulomb
and centrifugal repulsion force.

After the absorption of the charged test particle, the param-
eters of the black hole changes as

M → M ′ = M + δE, J → J ′ = J + δ J,

Q → Q′ = Q + δQ, N → N ′ = N . (44)

and the minimal of the metric function of the black hole
changes as

�min(M, J, Q, N ) → �′
min(M

′, J ′, Q′, N ′). (45)

After the absorption of the charged test particle, the minimal
of the metric function is

�′
min = �min(M + δE, J + δ J, Q + δQ, N )

= �min + ∂�min

∂M
δE + ∂�min

∂ J
δ J + ∂�min

∂Q
δQ. (46)

To destroy the event horizon of the black hole, we only need
the minimal of the metric function to be positive,

�′
min = �min + ∂�min

∂M
δE + ∂�min

∂ J
δ J + ∂�min

∂Q
δQ

= ∂�min

∂M

(

δE +
∂�min

∂ J
∂�min
∂M

δ J +
∂�min
∂Q

∂�min
∂M

δQ + �min
∂�min
∂M

)

> 0. (47)

Consequently, we can get an upper bound for the energy of
the charged test particle, which is

δE < −
∂�min

∂ J
∂�min
∂M

δ J −
∂�min
∂Q

∂�min
∂M

δQ − �min
∂�min
∂M

≡ �effδ J + �effδQ − E0. (48)

where we have defined the effective angular velocity �eff,

effective electric potential �eff and energy E0 as

�eff = −

(
∂�min

∂ J

)

M,Q,N(
∂�min
∂M

)

J,Q,N

, �eff = −
(

∂�min
∂Q

)

M,J,N(
∂�min
∂M

)

J,Q,N

,

E0 = �min(
∂�min
∂M

)

J,Q,N

. (49)
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Only when the conditions (43) and (48) are satisfied simulta-
neously, can the black hole be destroyed by the charged test
particle.

For an extremal Kerr–Newman Taub–NUT black hole,
Eq. (47) becomes

�′
min = −

(
m2 + n2 + a2

)
�

ϒ

[
δE − a

m2 + n2 + a2 δ J

−m
√
m2 + n2 − a2

m2 + n2 + a2 δQ

]

> 0, (50)

where ϒ and � are defined as

ϒ = 3m2(a2 + m2)2(a4 − 6a2m2 + m4)

+ 2(a2 + m2)2(2a4 − 19a2m2 + 13m4)n2

+ 4(11m6 − 3a6 − 3a4m2 + 17a2m4)n4

+ 6(2a4 + 9a2m2 + m4)n6 − (4a2 + 15m2)n8, (51)

� = 2m
[
8m2n4

(
9a2 + 2m2

)
− 3n8

+ 3
(
a2 + m2

)2 (
a4 − 6a2m2 + m4

)

− 2n2(a2 − m2)
(

30a2m2 + 3a4 + 11m4 − 3n4
)]

.

(52)

Evidently, the condition (50) to destroy an extremal Kerr–
Newman Taub–NUT black hole can be simplified as

δE <
a

m2 + a2 + n2 δ J + me

m2 + a2 + n2 δQ

= �hδ J + φhδQ. (53)

Clearly, Eq. (43) and Eq. (53) cannot be satisfied simultane-
ously. The result suggests that the Coulomb and centrifu-
gal repulsion force are just strong enough to prevent the
charged test particle satisfying Eq. (53) from entering the
black hole. Hence, the event horizon of an extremal Kerr–
Newman Taub–NUT black hole cannot be destroyed by a
charged test particle.

For an initially near-extremal Kerr–Newman Taub–NUT
black hole, considering the first-order contribution of the
energy δE, angular momentum δ J and charge δQ, the con-
ditions to destroy the black hole are

δE > φhδQ + �hδ J, (54)

δE < �effδ J + �effδQ − E0. (55)

Only the two conditions (54) and (55) are satisfied simulta-
neously, can the near-extremal black hole be destroyed.

In order to check whether the near-extremal Kerr–
Newman Taub–NUT black hole can be destroyed by charged
test particle, we define a small positive dimensionless param-
eter ε as

m2 + n2 − a2 − e2

m2 = ε2. (56)

For small NUT parameter n, the effective angular velocity
�eff and effective electric potential φeff can be expanded as

�eff = �h + 2am2

(
a2 + m2

)2 ε

+
2a

(
−8a2m2 + a4 − m4

)

3
(
a2 + m2

)4 n2ε + O(ε2), (57)

φeff = φh +
m
(
m2 − a2

)3/2

(
a2 + m2

)2 ε

−
m
(
−39a4m2 + 23a2m4 + 9a6 + 7m6

)

6
(√

m2 − a2
(
a2 + m2

)4
) n2ε + O(ε2).

(58)

Evidently, for a near-extremal Kerr–Newman Taub–NUT
black hole, we have

�eff > �h, φeff > φh, E0 > 0. (59)

Indeed, the result indicates that when the NUT parameter
is small, it is possible to destroy the near-extremal Kerr–
Newman Taub–NUT black hole by charged test particle. Fig-
ure 2 shows that there exists a small range of parameters of
energy, angular momentum and charge for charged test par-
ticles to destroy a near-extremal Kerr–Newman Taub–NUT
black hole.

Hence, for a near-extremal black hole, there exists test
particles with energy δE, angular momentum δ J and charge
δQ that can destroy the black hole.

4 Destroying the black hole with a test charged scalar
field

In addition to attempting to destroy the black hole using a
test particle, we can also explore the possibility of destroying
the black hole with classical charged test scalar field. In this
section, we examine whether it is feasible to destroy the event
horizon of the Kerr–Newman Taub–NUT black hole using a
test complex scalar field.

4.1 Charged scalar field in Kerr–Newman Taub–NUT
spacetime

In order to check the validity of the weak cosmic censor-
ship conjecture with classical field, we shoot a charged test
scalar field with mass μS and charge q into the black hole.
The action for the charged complex scalar field in the Kerr–
Newman Taub–NUT spacetime can be written as

SS =
∫ √−gd4xL, (60)
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Fig. 2 (Color online) The energy bounds for test particles δEmax (red
dashed lines) and δEmin (black solid lines), are plotted against the angu-
lar momentum δ J or charge δQ of the particle for near-extremal Kerr–
Newman Taub–NUT black hole with small NUT parameter. The grey
regions are for δEmax > δEmin that can destroy the near-extremal Kerr–
Newman Taub–NUT black hole, where we have chosen the mass M = 1
for the black hole, the NUT parameter n = 0.05, and a neutral test par-
ticles injected into a near-extremal Kerr–Newman Taub–NUT black
hole with angular momentum parameter a = 0.8 and electric parame-
ter e = 0.6, b charged test particles injected along the radial direction
of the near-extremal black hole, with angular momentum parameter
a = 0.785 and e = 0.62

where L is the Lagrangian density:

L = −1

2
Dμ�

(Dμ�
)∗ − 1

2
μS��∗, (61)

and Dμ is the covariant derivative Dμ = ∂μ − iq Aμ. From
the action, we can get the equation of motion for the complex
scalar field

(∇μ − iq Aμ

) (∇μ − iq Aμ
)
� − μ2

S� = 0. (62)

To make the problem more tractable, it is convenient to
decompose the scalar field into the form

� = e−iωt R(r)Slm′(θ)eim
′φ. (63)

Then we can get the angular part of the equation

1

sin θ

d

dθ

(
sin θ

dSlm′

dθ

)
−

{
μ2

S (n + a cos θ)2

+
[
ω
(
2n cos θ − a sin2 θ

) + m′]2

sin2 θ
− λlm′

}

Slm′(θ) = 0,

(64)

and the radial equation

d

dr

(
�
dR

dr

)
+

{[
ω
(
r2 + a2 + n2

) − m′a − qer
]2

�

−μ2
Sr

2 − λlm′
}
R(r) = 0, (65)

where λlm′ is the separation constant and is given by λlm′ =
l(l + 1) + O(aω). The solution to the angular equation is
the spheroidal angular function [62]. We are more concerned
with the radial part since the contribution of the angular part
will be reduced to unity in the fluxes by the normalization
condition.

The radial part of the equation can be simplified by intro-
ducing the tortoise coordinate

dr

dr∗
= �

r2 + a2 + n2 . (66)

Then the radial equation can be simplified as follows

d2R

dr2∗
+ 2r�

(
r2 + a2 + n2

)
dR

dr∗
+

[(
ω − m′a

r2 + a2 + n2

− qer

r2 + a2 + n2

)2

− �
(
μ2

Sr
2 + λlm′

)

(
r2 + a2 + n2

)2

]

R(r) = 0. (67)

In the vicinity of the event horizon r → rh, where � → 0,

the radial equation can be simplified as

d2R

dr2∗
+

(

ω − m′a
r2

h + a2 + n2
− qer

r2
h + a2 + n2

)2

R(r) = 0.

(68)

According to Eqs. (11) and (12), the above equation can be
written as

d2R

dr2∗
+ (

ω − m′�h − qφh
)2

R(r) = 0. (69)

The solution to the equation is

R(r) ∼ exp
[±i

(
ω − m′�h − qφh

)
r∗
]
. (70)

Since there is only ingoing wave mode at the horizon, we
select the minus sign:

R(r) ∼ exp
[−i

(
ω − m′�h − qφh

)
r∗
]
. (71)
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Consequently, the solution for the complex scalar field in the
vicinity of the black hole event horizon is given by

� = e−iωt exp
[−i

(
ω − m′�h − qφh

)
r∗
]
Slm′(θ)eim

′φ.(72)

With the solution for the charged scalar field near the event
horizon, we can get the flux of the scalar field into the black
hole and check the validity of the weak cosmic censorship
conjecture.

We shoot a monotonic complex scalar field with mode
(l,m′) into the black hole. After the scalar field is absorbed
by the black hole, the change of parameters of the black hole
can be estimated from the flux.

To get the flux of the scalar field into the black hole,
we start with the energy momentum tensor of the complex
scalar field. From the spacetime translation invariance for
the action, we can get the energy–momentum tensor of the
complex scalar field, which is [63]

Tμ
ν = − ∂L

∂(∂μ�)
∂ν� − ∂L

∂(∂μ�∗)
∂ν�

∗ + δμ
ν L

= 1

2

(Dμ�
)∗

∂ν� + 1

2
Dμ�∂ν�

∗

+ δμ
ν

(
−1

2
Dα�

(Dα�
)∗ − 1

2
μ2

S��∗
)

. (73)

Then the energy flux through the event horizon is

dE

dt
=

∫

H
T r

t
√−gdθdφ

= ω
(
ω − m′�h − qφh

) (
r2

h + a2 + n2
)

, (74)

and the angular momentum flux

d J

dt
= −

∫

H
T r

φ

√−gdθdφ

= m′ (ω − m′�h − qφh
) (

r2
h + a2 + n2

)
. (75)

The action for the complex scalar field is gauge invariant,
this implies that there is a conserved current – the electric
current, which is [64]

jμ = iq

2

(
�∗Dμ� − (Dμ�)∗�

)
. (76)

From the electric current, we can get the electric flux through
the event horizon, which is

dQ

dt
= −

∫

H
jr

√−gdθdφ

= q
(
ω − m′�h − qφh

) (
r2

h + a2 + n2
)

. (77)

In the calculation of Eqs. (74), (75) and (77), we used the
normalization condition of the function Slm′(θ) in the inte-
gration. As indicated in the work of Bekenstein [65], during
the scattering process, the ratio of the angular momentum
flux to the energy flux is m/ω, and the ratio of the electric
flux to the energy flux is q/ω.

From Eqs. (74), (75) and (77), the fluxes are negative for
wave modes satisfying ω < m′�h + qφh. This indicates that
energy, angular momentum and charge are extracted out from
the black hole. This is the so called superradiance [66].

Then during a small time interval dt, the changes of the
energy, angular momentum and charge of the black hole are

dE = ω
(
ω − m′�h − qφh

) (
r2

h + a2 + n2
)
dt, (78a)

d J = m′ (ω − m′�h − qφh
) (

r2
h + a2 + n2

)
dt, (78b)

dQ = q
(
ω − m′�h − qφh

) (
r2

h + a2 + n2
)
dt. (78c)

Having the changes of the mass, angular momentum and
charge of the black hole during the scattering process, we can
check the validity of the weak cosmic censorship conjecture
for the charged scalar field scattering.

4.2 Destroying the black hole with a monotonic charged
scalar field

In this subsection, we try to destroy the extremal and near-
extremal Kerr–Newman Taub–NUT black holes by shooting
a monotonic classical charged test scalar field with frequency
ω and azimuthal harmonic index m′ into the black hole, and
investigate the effect of the NUT parameter on the validity
of the weak cosmic censorship conjecture.

Without loss of generality, let’s consider a small time inter-
val dt. To analyze a long-time scattering process, we divide
it into a series of small time intervals dt and examine each
interval separately only by changing the initial parameters of
the black hole.

In the scattering process, an initial extremal or near-
extremal Kerr–Newman Taub–NUT black hole with mass
M, angular momentum J and charge Q absorbs a complex
scalar field with energy dE, angular momentum d J, and
charge dQ and becomes a composite object with mass M ′,
angular momentum J ′ and charge Q′. The parameters of the
black hole change as

M → M ′ = M + dE, J → J ′ = J + d J,

Q → Q′ = Q + dQ, N → N ′ = N , (79)

and the metric function of the black hole changes as

�min(M, J, Q, N ) → �min(M + dM, J + d J, Q + dQ, N ).

(80)

To check the validity of the weak cosmic censorship con-
jecture, we only need to check the sign of the minimal of the
metric function, which is

�′
min = �min(M + dM, J + d J, Q + dQ, N )

123



Eur. Phys. J. C (2023) 83 :1111 Page 9 of 13 1111

= �min + ∂�min

∂M
dE + ∂�min

∂ J
d J + ∂�min

∂Q
dQ. (81)

Substituting Eqs. (78a), (78b) and (78c) into Eq. (81), we
obtain

�′
min = �min + ∂�min

∂M
dE + ∂�min

∂ J
d J + ∂�min

∂Q
dQ

= −
(
m2 + n2 − a2 − e2

)
+

(
∂�min

∂M
ω + ∂�min

∂ J
m′

+∂�min

∂Q
q

) (
ω − m′�h − qφh

) (
r2

h + a2 + n2
)
dt.

(82)

For an extremal black hole, as Eq. (50) indicated, Eq. (82)
becomes

�′
min = −�

ϒ

(
m2 + n2 + a2

) (
ω − m′�h − qφh

)2

×
(
r2

h + a2 + n2
)
dt < 0, (83)

where ϒ and � are defined as Eqs. (51) and (52), respectively.
It is evident that an extremal Kerr–Newman Taub–NUT black
hole cannot be destroyed by test charged scalar field.

In Sect. 3, we introduced a small positive dimensionless
parameter in Eq. (56) for the particle injection to destroy the
black hole. Similarly, here we also define a dimensionless
parameter ε as

m2 + n2 − a2 − e2

m2 = ε2. (84)

For a near-extremal Kerr–Newman Taub–NUT black hole,
we have

�′
min = −

(
m2 + n2 − a2 − e2

)
+

(
∂�min

∂M
ω + ∂�min

∂ J
m′

+∂�min

∂Q
q

)
(
ω − m′�h − qφh

) (
r2

h + a2 + n2
)
dt

= −
(
m2 + n2 − a2 − e2

)
+ ∂�min

∂M

(
ω − m′�eff

−qφeff)
(
ω − m′�h − qφh

) (
r2

h + a2 + n2
)
dt.(85)

The above equation can be regarded as a quadratic equation
for the frequency ω of the complex scalar field. If the complex
scalar field shotting into black hole satisfies

ω = m′ (�eff + �h) + q (φeff + φh)

2
, (86)

the minimal of the metric function is the largest. If these
modes cannot destroy the event horizon of the black hole, all
the modes cannot destroy the black hole, either.

After these modes of the charged scalar field are absorbed
by the near-extremal black hole, the minimal of the metric
function is

�′
min = −

(
m2 + n2 − a2 − e2

)
+ ∂�min

∂M

(
ω − m′�eff

−qφeff)
(
ω − m′�h − qφh

) (
r2

h + a2 + n2
)
dt

= −
(
m2 + n2 − a2 − e2

)
− 1

4

∂�min

∂M

[
m′ (�eff

−�h) + q (φeff − φh)]
2
(
r2

h + a2 + n2
)
dt. (87)

As indicated by Eqs. (57) and (58), for small NUT parameter,
we have

�eff − �h = 2am2

(
a2 + m2

)2 ε +
2a

(
−8a2m2 + a4 − m4

)

3
(
a2 + m2

)4 n2ε,

(88)

φeff − φh =
m
(
m2 − a2

)3/2

(
a2 + m2

)2 ε

−
m
(
−39a4m2 + 23a2m4 + 9a6 + 7m6

)

6
(√

m2 − a2
(
a2 + m2

)4
) n2ε. (89)

Plugging Eqs. (88) and (89) into Eq. (87), we can obtain

�′
min = −m2ε2 − 1

4

∂�min

∂M

{

m′
[

2am2

(
a2 + m2

)2

+ 2a
(−8a2m2 + a4 − m4

)

3
(
a2 + m2

)4 n2

]

+q

[
m
(
m2 − a2

)3/2

(
a2 + m2

)2

−m
(−39a4m2 + 23a2m4 + 9a6 + 7m6

)

6
(√

m2 − a2
(
a2 + m2

)4
) n2

⎤

⎦

⎫
⎬

⎭

2

×ε2 (r2
h + a2 + n2) dt. (90)

Since dt is of order ε, then for small NUT parameter n, we
have

�′
min = −m2ε2 + O(ε3) < 0. (91)

It is clear that a near-extremal Kerr–Newman Taub–NUT
black hole cannot be destroyed by test complex scalar field.

Consequently, our investigation suggests that both extremal
and near-extremal Kerr–Newman Taub–NUT black hole can-
not be destroyed by charged test scalar field.

4.3 Destroying the black hole with a non-monotonic
charged scalar field

Having considered the gedanken experiment to destroy a
black hole by a monotonic charged scalar field, now we con-
sider to destroy the black hole by shooting a more complex
charged scalar field.

We consider to shoot a charged scalar field which is a
superposition state of approximate solutions corresponding
to two different frequencies ω. The solution for the scalar
field in the vicinity of the black hole event horizon is
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� = Ae−iω1t exp
[−i

(
ω1 − m′�h − qφh

)
r∗
]
Slm′(θ)eim

′φ

+ Be−iω2t exp
[−i

(
ω2−m′�h−qφh

)
r∗
]
Slm′(θ)eim

′φ.

(92)

Following the same procedure as the previous subsection,
we can get the changes of mass, angular momentum and
charge of the black hole during the small time interval dt,
which are

dE = {
ω1

(
ω1 − m′�h − qφh

) | A |2 +ω2
(
ω2 − m′�h

−qφh) | B |2 + [
ω1

(
ω2 − m′�h − qφh

) + ω2 (ω1

−m′�h − qφh
)]

Re
[
AB∗ exp[−i(ω1 − ω2)(t + r∗)]

]}

× (
r2

h + a2 + n2) dt, (93a)

d J = m′ {(ω1 − m′�h − qφh
) | A |2 + (

ω2 − m′�h

−qφh) | B |2 + (
ω1 + ω2 − 2m′�h − 2qφh

)

×Re
[
AB∗ exp[−i(ω1 − ω2)(t + r∗)]

]} (
r2

h + a2 + n2) dt,

(93b)
dQ = q

{(
ω1 − m′�h − qφh

) | A |2 + (
ω2 − m′�h

−qφh) | B |2 + (
ω1 + ω2 − 2m′�h − 2qφh

)

×Re
[
AB∗ exp[−i(ω1 − ω2)(t + r∗)]

]} (
r2

h + a2 + n2) dt.

(93c)

For an extremal Kerr–Newman Taub–NUT black hole,
we only need to check the sign of the minimal of the metric
function �′

min. We find

�′
min = −

(
m2 + n2 + a2

)
�

ϒ
(dE − �hd J − φhdQ)

≤ −
(
m2 + n2 + a2

)
�

ϒ

[| ω1 − m′�h − qφh || A |
− | ω2 − m′�h − qφh || B |]2

(
r2
h + a2 + n2

)
dt < 0.

(94)

The result shows that the charged scalar field which is the
superposition state of approximate solutions corresponding
to two different ω cannot destroy an extremal Kerr–Newman
Taub–NUT black hole.

In fact, applying the same procedure for the charged scalar
field which is the superposition state of approximate solutions
corresponding to any different frequencies ω,

� =
∑

i

Ai e
−iωi t e−i(ωi−m′�h−qφh)r∗ Slm′(θ)eim

′φ (95)

we can show that the minimal of the metric function

�′
min = −

(
m2 + n2 + a2

)
�

ϒ
(dE − �hd J − φhdQ)

≤ −
(
m2 + n2 + a2

)
�

ϒ

[∑

i

εi | ωi − m′�h

−qφh || Ai |
]2 (

r2
h + a2 + n2

)
dt < 0, (96)

where εi = ±1. The result suggests that an extremal Kerr–
Newman Taub–NUT black hole cannot be destroyed by a
non-monotonic charged scalar field.

5 Discussion and conclusions

Spacetime singularities are windows onto physics beyond
general relativity, and weak cosmic censorship conjecture
has become one of the foundations of black hole physics.
In this paper, we investigated the weak cosmic censorship
conjecture for the Kerr–Newman Taub–NUT black hole by
throwing a charged test particle and a charged scalar field.
However, to investigate the weak cosmic censorship conjec-
ture using gedanken experiments, the key problem is how
do the parameters of the black hole change. This problem is
closely related to the first law of black hole thermodynamics.
Due to the presence of the Misner strings, the Kerr–Newman
Taub–NUT spacetime is not asymptotic flat. This leads to the
non-uniqueness for the definition of thermodynamic quanti-
ties such as mass, angular momentum, and charge. Following
the viewpoint of Hennigar et al., we constructed the first law
of black hole thermodynamics for the Kerr–Newman Taub–
NUT black hole. Different from other black hole solutions,
the electric charge in the first law is defined as the Komar
integral at the event horizon instead of infinity.

Having the first law, we investigated the weak cosmic cen-
sorship conjecture by a charged test particle and a complex
scalar field. We found that particles causing the destruction
of the extremal Kerr–Newman Taub–NUT black hole can-
not be absorbed by the black hole. However, there exists
particles with energy, charge and/or angular momentum to
destroy the near-extremal Kerr–Newman Taub–NUT black
hole. For charged scalar field scattering, we found that both
the extremal and near-extremal Kerr–Newman Taub–NUT
black holes cannot be destroyed by a monotonic charged
scalar field, and an extremal Kerr–Newman Taub–NUT black
hole cannot be destroyed by a non-monotonic complex scalar
field.

In our investigation, we showed that there is a small range
of parameters for the energy, angular momentum and charge
of the test particle that can destroyed the event horizon of
a near-extremal Kerr–Newman Taub–NUT black hole. It
seems that the weak cosmic censorship conjecture might not
valid for this black hole, however, when backreaction and
self-force are taken into account, the event horizon of a near-
extremal Kerr–Newman Taub–NUT black hole might still
cannot be destroyed as the case of a near-extremal Kerr–
Newman black hole [26].
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